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Abstract

We devise a new generalized univariate Newton method for solving nonlinear equations,

motivated by Bregman distances and proximal regularization of optimization problems. We

prove quadratic convergence of the new method, a special instance of which is the classical

Newton’s method. We illustrate the possible benefits of the new method over classical New-

ton’s method by means of test problems involving the Lambert W function, Kullback-Leibler

distance and a polynomial. These test problems provide insight as to which instance of the

generalized method could be chosen for a given nonlinear equation. Finally, we derive a closed-

form expression for the asymptotic error constant of the generalized method and make further

comparisons involving this constant.
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1 Introduction

Newton’s method and its variants are essential in solving nonlinear equations arising from problems

in many disciplines such as mathematical programming, engineering, physics, and economics, just

to name a few. As a result, new properties of Newton’s method are studied and novel extensions

constantly developed and tested, see, e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and the references

therein. In the present paper, we consider the problem of finding a solution of a nonlinear equation

in a single variable:

f (x) = 0 , (1)

where f : X ⊂ R → R is at least once continuously differentiable. In order to find a solution to (1)

for a given initial approximation x0, Newton’s method generates a sequence {xn}n∈N by the rule

xn+1 = xn − f (xn)

f ′ (xn)
, (2)

which is referred to as the Newton iteration.

The problem of finding a zero of a function of a single variable is widely encountered in optimiza-

tion methods, e.g. as part of a subproblem in line-search algorithms, where powerful techniques are

needed. It is well-known that, under standard assumptions, the sequence generated by the Newton

iteration (2) is well-defined and it converges to a solution quadratically, provided x0 is chosen close

enough to the solution. In practice, modifications of Newton’s method and its variants are needed

to ensure global convergence. In this paper, we focus on local convergence properties.
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Our generalized version of the Newton iteration formula (2) is given by

xn+1 := s−1

(
s(xn) − s′(xn)

f(xn)

f ′(xn)

)
, (3)

where the function s is an invertible function with Lipschitz derivative in an interval containing

the solution. The generalized method defined by (3) shares all the virtues of (2): it is well-defined

and quadratically convergent near a solution (see Theorem 4.1). Note also that the choice s(x) = x

reduces to (2), hence (3) provides extra flexibility simply because Newton’s method is one of its

specific instances. On the other hand, (3) is a particular instance of (2), in which f is replaced by

f ◦ s−1. More precisely, set f̃ := f ◦ s−1, yn := s(xn), and apply (2) to f̃ , to get

yn+1 := yn − f̃(yn)

(f̃)′(yn)
. (4)

Because s is invertible in a neighbourhood of the solution, classical results on Newton’s method

imply that iteration (4) can be used to solve (1). In summary, both (3) and (4) can be used to solve

(1), and both reduce to (2) when s(x) = x. This is why we call iteration (3) a “generalized Newton

method”. In our analysis, we will focus on iteration (3).

In the literature, “generalized Newton method” is also a description used for an analogue of

Newton’s method for solving nonlinear equations, but with a nondifferentiable f . In these non-

differentiable approaches, the derivative f ′ in (2) is usually replaced by a suitable analogue; see,

for example, [11] for semi-smooth Newton methods and [5] for generalized Newton methods based

on the so-called graphical derivatives. A recent literature survey on nonsmooth Newton-like meth-

ods can also be found in [5]. Our generalized Newton’s method is for solving equations with a

differentiable f as in (1).

Our study is motivated by proximal regularization of convex optimization problems via Bregman

distances, which lead to proximal point methods (see, e.g., [14, 15, 16] or [17, Sections 6.2-6.4]).

It is well-known that these methods result in fixed point iterations whose convergence rate can be
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at most linear. In the present paper, an anti-resolvent formulation (see [15, Equation 3.1]) and

the replacement of a parameter in the proximal regularization turn out to be the key in obtaining

quadratically convergent fixed-point iterations. Numerical experiments suggest that some choices

of s in (3) result in a better (i.e. faster and more robust) behaviour than that exhibited by (2),

which is the case when s(x) = x in (3).

At this point, we should say a few words regarding the practicality of the generalized Newton

method we propose. At first sight, it may appear impractical having to choose a function s based

on f for an instance of the generalized method. However, it should be kept in mind that Newton’s

method, where simply s(x) = x, does not provide the same flexibility. As long as s(x) and its

inverse s−1(x) are easy, i.e. cheap, to compute, our generalized method offers a flexibility which in

turn can result in a faster and more robust algorithm, as we illustrate in the numerical examples.

The paper is organized as follows. In Section 2, standard convergence results for fixed-point

methods are recalled. In Section 3, proximal regularization for convex problems using Bregman

distances is described, and an anti-resolvent formulation of the fixed point iteration is introduced

as a motivation for designing the generalized Newton’s method. In Section 4, well-definedness

and convergence of the new generalized method are proved. In Section 5, we provide a list of

particular instances of our generalized Newton method, and illustrate some of these instances using

three test problems. We also derive a closed-form expression for the asymptotic error constant of

the generalized method and make further comparisons. Finally, in Section 6, we discuss possible

further questions and extensions of our analysis.
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2 Fixed Point Methods

Let f : X ⊂ R → R be a differentiable function. It is easy to see that Newton’s method (2) is a

fixed point method: Define

g (x) = x− f (x)

f ′ (x)
. (5)

Then a fixed point of g, that is, a point x that satisfies g (x) = x, is a zero of f .

We recall the following standard definitions about the rate of convergence of iterative methods,

which we will use in the sequel.

Suppose that {xn}n∈N is a sequence that converges to x∗, with xn �= x∗ for all n ∈ N. If there

exists two positive constants α and λ such that

lim
n→∞

|xn+1 − x∗|
|xn − x∗|α = λ , (6)

then {xn}n∈N converges to x∗ of order α with asymptotic error constant λ. Two cases are given

special attention:

(i) If α = 1 and λ < 1 then the sequence is linearly convergent ;

(ii) if α = 2 then the sequence is quadratically convergent.

Theorems 2.1 and 2.2 below furnish conditions under which fixed point iteration methods converge

with a linear or a quadratic rate, respectively (see [18]).

Theorem 2.1 (Linear Rate of Convergence). Let g ∈ C1[a, b] be such that g (x) ∈ [a, b] for any

x ∈ [a, b]. Suppose, in addition, that there exists a positive constant L < 1 such that

|g′ (x)| ≤ L, ∀x ∈ (a, b).

If g′ (x∗) �= 0, then for any number x0 �= x∗ in [a, b], the sequence {xn}n∈N which is generated by

xn+1 = g (xn) converges only linearly to the unique fixed point x∗ in [a, b].
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Theorem 2.2 (Quadratic Rate of Convergence). Let g ∈ C2[a, b] be such that g (x∗) = x∗, g′(x∗) = 0

and |g′′ (x)| ≤M for all x ∈ I, where I ⊂ [a, b] is an open interval containing x∗. Then there exists

δ > 0 such that for x0 ∈ [x∗ − δ, x∗ + δ], the sequence defined by xn+1 = g (xn), for any n ≥ 0,

converges at least quadratically to x∗. Moreover, for sufficiently large values of n, the following

inequality holds:

|xn+1 − x∗| < M

2
|xn − x∗|2 .

Theorems 2.1 and 2.2 together imply that for a fixed point method to converge quadratically one

needs to have g′ (x∗) = 0 with g (x∗) = x∗. In this situation, if f (x∗) = 0 and f ′ (x∗) �= 0, then for

starting values sufficiently close to x∗, Newton’s method (2) will converge at least quadratically.

Theorem 2.2 requires the iteration function g to be twice differentiable. Quadratic convergence,

however, can be established under weaker hypotheses, as shown in [21, Theorem 2.4.3]. We quote

this result below.

Theorem 2.3 (Quadratic Rate of Convergence under Lipschitzian assumptions). Let a, b ∈ R such

that a < b and consider F : (a, b) → R such that F ′ is Lipschitz in (a, b) with constant γ. Assume

that for some ρ > 0, we have |F ′(x)| ≥ ρ for all x ∈ (a, b). If F (x∗) = 0 has a solution x∗ ∈ (a, b),

then there exists some η > 0 such that: If |x0 − x∗| < η then the sequence {xk} generated by

xk+1 := xk − F (xk)

F ′(xk)
, k = 0, 1, . . . ,

exists and converges to x∗. Furthermore, for k = 0, 1, . . . ,

|xk+1 − x∗| ≤ γ

2ρ
|xk − x∗|2. (7)
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3 Motivation by Proximal Regularization

Consider the problem of minimizing a convex function φ : R → R ∪ {+∞} =: R, namely,

min
x∈X

φ (x) , (8)

where X is a closed interval in R. Let h : X → R, with X ⊂ R, be a strictly convex function

which is twice continuously differentiable. The Bregman distance (see, e.g., [14, 16, 17, 19] and the

references therein) induced by a function h is the function Dh : X × int X → [0,+∞] given by

Dh (y, x) = h (y) − h (x) − h′ (x) (y − x) . (9)

If h(t) = t2 then X = R and Dh(y, x) = (x− y)2 for every x, y ∈ R. It is common practice to

“regularize” the minimization problem in (8) by adding a positive multiple of the Bregman distance

to the objective function φ. The regularized problem will certainly have a solution because the

Bregman distance has bounded level sets. Indeed, the function Dh(·, x) is convex and its level set

{y : Dh(y, x) ≤ 0} = {x} is bounded. Hence all its level sets are bounded (see [20, Corollary

8.7.1]). The resulting numerical methods, when applied to the “regularized” problem, are expected

to exhibit a better behaviour. Starting at a given x0 ∈ X, the Bregman-proximal sequence {xn} is

defined as follows. Given xn ∈ X, let xn+1 ∈ X be the solution of the problem:

min
x∈X

φ(x) + αnDh (x, xn) , (10)

where αn > 0 and bounded above. The resulting sequence {xn} is well defined and contained in X

under standard assumptions. Moreover, this sequence converges to a solution from any starting point

x0 if and only if solutions exist (see [16]). Under our differentiability assumptions, the convergence

rate with positive αn can at most be linear, as the following simple proposition states.

Proposition 3.1. Let h : X → R be a strictly convex function which is twice continuously dif-

ferentiable, with X ⊂ R a closed convex and nonempty set. Let φ : R → R be convex and twice
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continuously differentiable. Consider the sequence {xn} defined by (10), where 0 < α ≤ αn ≤ β for

all n. If {xn} converges to a solution x∗, it does so at most linearly.

Proof. The necessary and sufficient condition of optimality for problem (10) is

1

αn
φ′(xn+1) + h′(xn+1) − h′(xn) = 0 , (11)

which can be solved implicitly for xn+1, for n ≥ 1. Indeed, since αn > 0, the iteration function

ηn(x) := (φ′/αn + h′)−1 ◦ h′(x) associated with the proximal iteration (11) is well defined (because

(φ′/αn + h′) is invertible) and invertible for every x ∈ int X. In other words, we can write

xn+1 = ηn(xn) =

(
φ′

αn

+ h′
)−1

◦ h′(xn) ,

for all n. Denote by x∗ the limit of {xn}. Without loss of generality, we can assume that {αn}

converges to some α∗ > 0. Taking limits in the expression above yields

x∗ =

(
φ′

α∗ + h′
)−1

◦ h′(x∗) =: η̄(x∗) .

Note that x∗ is a fixed point of both η̄ and its inverse (which are well defined because α∗ > 0).

Differentiating the equality x = (η̄ ◦ (η̄)−1)(x) and evaluating at x∗ we obtain

1 = η̄′(η̄−1(x∗))(η̄−1)′(x∗) = η̄′(x∗)(η̄−1)′(x∗),

where we have used the fact that η̄−1(x∗) = x∗. Therefore, we cannot have η̄′(x∗) = 0. Using

Theorem 2.1 we conclude that convergence of (11) can at most be linear.

As a result of the proposition above, we must use a negative parameter α in the iteration (11) if

we wish to obtain quadratic convergence. This leads us to consider the iteration function

g̃(x) := (h′)−1

(
h′(x) +

1

α
φ′(x)

)
. (12)

Note that this function is well defined for any nonzero α, since h is strictly convex, and that it can

be seen as the inverse of the proximal iteration function η := (φ′/α+h′)−1 ◦h′, which may not exist
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for α < 0. For α = −1, the expression obtained above coincides with the anti-resolvent of φ with

respect to h as defined by Butnariu and Kassay (see [15, Equation 3.1]).

Finding a solution of the minimization problem we stated in (8) is then equivalent to finding a

fixed point of g̃. By Theorem 2.2, quadratic convergence is achieved only in the case when g̃′(x∗) = 0.

Assume now that φ, h are strongly convex. Then we can differentiate both sides of (12) and using

g̃(x∗) = x∗, one obtains

g̃′(x∗) =
1

h′′(x∗)

(
h′′(x∗) +

1

α
φ′′(x∗)

)
.

From the above equality, we see that g̃′(x∗) = 0 if and only if

α = −φ
′′(x∗)
h′′(x∗)

.

Hence the above choice of α guarantees quadratic convergence. Of course, in practice, this choice of

α cannot be used in (12), because it requires the knowledge of x∗, which is not available. However,

if the same functional form is substituted for α in (12), we obtain what we call here the generalized

Newton function :

g(x) := (h′)−1

(
h′(x) − h′′(x)

φ′(x)
φ′′(x)

)
. (13)

The function g depends only on the first and second derivatives of φ and h. So, for notational

convenience, let

f := φ′ and s := h′ ,

and re-write the generalized Newton function g as

g(x) = s−1

(
s(x) − s′(x)

f(x)

f ′(x)

)
. (14)
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4 The Generalized Newton Method

The convexity assumptions on the functions φ and h have been posed in Section 3 mainly to relate

the generalized method we propose with the Bregman distances and the associated proximal regu-

larization of the problem of minimizing φ(x) given in (8). In fact, the strong convexity assumption

we used for deriving (13) can be replaced by the weaker conditions φ′′(x∗) �= 0 and h′′(x∗) �= 0, in

other words, by f ′(x∗) �= 0 and s′(x∗) �= 0.

The following trivial lemma formalizes some claims we stated in Introduction regarding iteration

(4).

Lemma 4.1. Let yn = s(xn). The iteration formula (3) can be re-written in terms of the new

variable iterate yn as

yn+1 = yn − (f ◦ s−1)(yn)

(f ◦ s−1)′(yn)
. (15)

Proof. The iteration formula (3) can be re-written as

s(xn+1) := s(xn) − s′(xn)
f(xn)

f ′(xn)
, (16)

Let yn = s(xn). Then the iteration formula (16) becomes

yn+1 := yn − f(s−1(yn))

f ′(s−1(yn))/s′(s−1(yn))
,

which simply yields (15).

The iteration formula in Lemma 4.1 is nothing but the classical Newton iteration as applied to

(f ◦ s−1)(y) = 0 .

So our generalized method can be interpreted as the classical Newton’s method applied for finding

the transformed solution y∗, such that (f ◦ s−1)(y∗) = 0, and that a solution of the original problem

is obtained simply by x∗ = s−1(y∗).
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We will establish quadratic convergence by invoking Theorem 2.3, which requires Lipschitzianity

of the first derivative of the iteration function. The following simple lemma establishes conditions

under which F := (f ◦ s−1)′ is Lipschitz.

Lemma 4.2. Let f, s ∈ C1[a, b]. Assume that for some θ > 0, we have 0 < θ < |s′(x)| for

every x ∈ (a, b). If f ′, s′ are Lipschitz in (a, b), then (f ◦ s−1)′ is well defined and Lipschitz in

I := s([a, b]). Moreover, if Lf and Ls are the Lipschitz constants of f ′ and s′, respectively, then the

Lipschitz constant for (f ◦ s−1)′ over I is

Mfs :=
Mf Ls +Ms Lf

θ3
, (17)

where Mf ≥ max{|f ′(x)| : x ∈ [a, b]} and Ms ≥ max{|s′(x)| : x ∈ [a, b]}.

Proof. Note first that Mf can be chosen finite because by assumption f ′ is continuous on [a, b]. The

assumptions on s′ ensure that s is a bijection from [a, b] to I. Therefore, (f ◦ s−1) is well defined

on I. To establish the Lipschitzianity, take y1, y2 ∈ I, and denote by J := f([a, b]), the range of f

restricted to the interval [a, b]. Then (f ◦ s−1) : I → J , and there exist unique z1, z2 ∈ [a, b] such

that s(z1) = y1 and s(z2) = y2. We can write

∣∣(f ◦ s−1)′(y1) − (f ◦ s−1)′(y2)
∣∣ =

∣∣∣∣(f ′(s−1(y1))

s′(s−1(y1)
− (f ′(s−1(y2))

s′(s−1(y2)

∣∣∣∣
=

∣∣∣∣f ′(z1)s′(z2) − f ′(z2)s′(z1)
s′(z1) s′(z2)

∣∣∣∣
=

∣∣∣∣f ′(z1)s′(z2) − f ′(z1)s′(z1) − f ′(z1)s′(z1) − f ′(z2)s′(z1)
s′(z1) s′(z2)

∣∣∣∣
≤ 1

θ2
[ |f ′(z1)| |s′(z2) − s′(z1)| + |s′(z1)| |f ′(z1) − f ′(z2)| ]

≤ Mf Ls +Ms Lf

θ2
|z1 − z2| (18)

Use the Mean Value Theorem to write

|y1 − y2| = |s(z1) − s(z2)| = |s′(ψ)| |z1 − z2| ≥ θ|z1 − z2|,
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for some ψ ∈ (a, b), which yields |z1 − z2| ≤ |y1 − y2|/θ. Combine the latter inequality with (18) to

obtain

|(f ◦ s−1)′(y1) − (f ◦ s−1)′(y2)| ≤ Mf Ls +MsLf

θ3
|y1 − y2| = Mfs|y1 − y2|,

as claimed.

The following theorem states that the fixed-point iteration xn+1 = g(xn) generates a sequence

{xn}n∈N which is convergent to a zero of f at least quadratically.

Theorem 4.1. Let f, s ∈ C1[a, b] satisfy the assumptions of Lemma 4.2 and assume that there

exists x∗ ∈ (a, b) such that f(x∗) = 0. Assume that for some ρ > 0, |f ′(x)| ≥ ρ for every x ∈ (a, b).

Then there exists η > 0 such that if x0 ∈ (x∗ − η, x∗ + η) then the sequence {xn} defined recursively

as

xn+1 = g(xn), k = 0, 1, 2, . . . , (19)

where g is as given in (14), is well-defined. In this situation, the sequence {xn} converges quadrat-

ically to x∗; in particular,

|xn+1 − x∗| ≤ Mfs (Ms)
3

2 ρ θ
|xn − x∗|2 , (20)

where θ,Mfs and Ms are as in Lemma 4.2.

Proof. Since s′(x) �= 0 for every x ∈ (a, b),

s : I1 := (a, b) → I2 , (21)

is a C1-diffeomorphism, where I2 is either (s(a), s(b)) or (s(b), s(a)). In other words, s : I1 →

s(I1) = I2 is C1 with inverse s−1 : I2 → I1 also C1. Moreover, since x∗ ∈ (a, b), y∗ = s(x∗) ∈ I2, by

virtue of the diffeomorphism of s. By Lemma 4.2, (f ◦ s−1)′ is well defined and Lipschitz in (a, b)

with constant Mfs. Since |f ′(x)| > ρ and 0 �= |s′(x)| ≤ Ms for every x ∈ (a, b), one has that, with
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y = s(x),

|(f ◦ s−1)′(y)| = |f ′(s−1(y))/s′(s−1(y))| = |f ′(x)/s′(x)| > ρ/Ms,

for every y ∈ I2. Consider the iteration formula given in (15) for yn. Therefore, by applying

Theorem 2.3 to F = (f ◦ s−1), there exists γ > 0 such that if y0 ∈ (y∗−γ, y∗ +γ) then the sequence

{yn} defined recursively as in (15) is well-defined. In this situation, the sequence {yn} converges

quadratically to y∗; in particular,

|yn+1 − y∗| ≤ Mfs Ms

2 ρ
|yn − y∗|2 . (22)

Clearly, yn is in the domain of s−1. Furthermore, by Lemma 4.1, the sequence {xn} = {s−1(yn)}

is generated by (19). Since {yn} is well-defined, the sequence {xn} is also well-defined. Re-write

(22) with yn = s(xn):

|s(xn+1) − s(x∗)| ≤ Mfs Ms

2 ρ
|s(xn) − s(x∗)|2 . (23)

Using the Mean Value Theorem as in Lemma 4.2 we can write

|s(xn+1) − s(x∗)| = |s′(ψ1)| |xn+1 − x∗| ≥ θ|xn+1 − x∗| ,

and we can also write

|s(xn) − s(x∗)| = |s′(ψ2)| |xn − x∗| ≤ Ms |xn − x∗| ,

for some ψ1, ψ2 ∈ (a, b). Using the last two inequalities in (23), one gets

|xn+1 − x∗| ≤ Mfs (Ms)
3

2 ρ θ
|xn − x∗|2, (24)

as desired.

It should be pointed that iteration (19), with g defined as in (14), is in itself an iterative procedure

unless s−1 is known analytically. In other words, for general s, evaluation of g(xn) using (14) requires
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carrying out an additional iterative scheme. As discussed in the forthcoming sections, our method

is practical, because we choose functions s for which s−1 can be written down easily and computed

cheaply.

4.1 Instances of the generalized Newton function

Several choices for the function h and the resulting generalized Newton function g, using (14), are

listed in Table 1. Note that the choice of the Bregman function h(x) = x2/2 in (13), which is the

case when p = 2 in the first row of Table 1, yields the classical Newton function (5).

In Table 1, we have chosen h in such a way that the inverse of its derivative could be written

in terms of elementary functions. Although our motivation was furnished by convex functions, the

following proposition illustrates that h does not have to be convex.

Proposition 4.1. Both functions h and −h yield the same generalized Newton function g.

Proof. Suppose that g is obtained by using −h. Then s(x) = −h′(x), s−1(x) = (h′)−1(−x) and

s′(x) = −h′′(x). Substituting these into (14) one gets

g(x) := (h′)−1

(
−

(
−h′(x) + h′′(x)

f(x)

f ′(x)

))
= (h′)−1

(
h′(x) − h′′(x)

φ′(x)
φ′′(x)

)
,

which is the same as the expression in (13), namely, the expression for g(x) obtained using h(x).

In Table 1, the domain on which h is defined is also listed. We have taken R+ as the domain

of h(x) = x log x − x, since limx→0+ h(x) = 0. It should be noted that some g in the list have a

domain different from that of h. For example, while the domain of h(x) = ex is R, the domain

of the resulting g depends on the function f : g is defined whenever f(x) < f ′(x) (see the second

row in Table 1). This might be restrictive for some problems; in other words, it may make g not

applicable to some problems.
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4.2 Asymptotic error constant

We observe in the forthcoming sections 5.1-5.3 that a small asymptotic error constant λ is desirable

for the generalized Newton method. With twice continuous differentiability of f and s, we can

provide a closed-form expression for λ as follows.

Proposition 4.2. Let f, s ∈ C2[a, b]. Then

λ =
1

2

∣∣∣∣f ′′(x∗)
f ′(x∗)

− s′′(x∗)
s′(x∗)

∣∣∣∣ . (25)

Proof. From the proof of Theorem 2.9 in [18], one has

λ =
1

2
|g′′(x∗)| . (26)

Now re-write (14) as

s(g(x)) = s(x) − s′(x)
f(x)

f ′(x)
,

and differentiate both sides to get

s′(g(x)) g′(x) = s′(x) − s′′(x)
f(x)

f ′(x)
− s′(x)

[
(f ′(x))2 − f(x) f ′′(x)

(f ′(x))2

]
. (27)

Because f(x∗) = 0, f ′(x∗) �= 0, g(x∗) = x∗ and s′(x∗) �= 0, the expression in (27), when all functions

in it are evaluated at x = x∗, simply yields g′(x∗) = 0.

Next, differentiate both sides of (27). It is not difficult to show that, with f(x∗) = 0, g′(x∗) = 0,

f ′(x∗) �= 0 and s′(x∗) �= 0, one gets, after manipulations and rearranging,

g′′(x∗) =
f ′′(x∗)
f ′(x∗)

− s′′(x∗)
s′(x∗)

, (28)

which, combined with (26), completes the proof.

It is interesting to note that the asymptotic error constant for the iteration formula given in (15)

is given by

λ̃ =
1

2

∣∣∣∣ 1

s′(x∗)
f ′′(x∗)
f ′(x∗)

− s′′(x∗)
s′(x∗)

∣∣∣∣ , (29)
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which is different from λ given in (25).

5 Numerical Experiments

In this section, we discuss the behaviour of the generalized Newton iteration formula in (14) by

means of three examples and various choices of function s. Our aim here is two-fold.

(i) Illustrate that the generalized Newton method works; and

(ii) gain insight as to which function s needs to be chosen for a particular problem.

In Tables 3-5, we tabulate the intervals [a, b] in which the generalized Newton method converges

in at most 5 and 10 iterations, respectively, under different choices of function s. All cases of the

generalized Newton method, associated with different choices of function s, converge quadratically

to a solution. We also tabulate the asymptotic error constant, λ, obtained through iterations

numerically, for each function s.

In the intervals [a, b] mentioned above, a and b are given as numbers with two decimal places.

Convergence in at most 5 and 10 iterations are shown to be achieved for every initial approximation

(or initial guess) x0 chosen in the following way:

x0 ∈ {a+ 0.01 i : i = 0, 1, 2, . . . , 100 (b− a)}. (30)

For each of the examples in Sections 5.1-5.3, one gets

λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∣∣∣∣x∗ + 2

x∗ + 1
− s′′(x∗)
s′(x∗)

∣∣∣∣ , for Example in Section 5.1 ;

1

2

∣∣∣∣ 8

x∗ (x∗ − 8)
− s′′(x∗)
s′(x∗)

∣∣∣∣ , for Example in Section 5.2 ;

1

2

∣∣∣∣ 6x∗

3(x∗)2 + 1
− s′′(x∗)
s′(x∗)

∣∣∣∣ , for Example in Section 5.3 ;
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Table 2 calculates the term (s′′(x)/s′(x)) for those functions s that we used in the three examples

in Sections 5.1-5.3.

s(x) s′(x) s′′(x) s′′(x)/s′(x)

x 1 0 0

ex ex ex 1

log x 1/x −1/x2 −1/x

1/x −1/x2 2/x3 −2/x

sinh x cosh x sinhx tanh x

x3 3x2 6x 2/x

x5 5x4 20x3 4/x

1/x3 −3/x4 12/x5 −4/x

tan x sec2 x 2 tan x sec2 x 2 tan x

arctan x 1/(1 + x2) −2x/(1 + x2)2 −2x/(1 + x2)

Table 2: Expressions with several choices of function s.

In Tables 3-5, we tabulate the exact values of λ, denoted by λ∗, correct to four decimal places.

Note that the tabulated values of λ∗ agree with those obtained numerically in Sections 5.1-5.3.

5.1 An example with the Lambert W function

Consider the function φ(x) = (x− 1) ex −x, which is depicted in Figure 1. Then φ′(x) = x ex − 1 =

f(x) and φ′′(x) = (x + 1) ex = f ′(x). Note that φ(x) gives a nonconvex problem; in fact, x = −1

is a point of inflection, where φ′′(x) = 0 and concavity of the function changes: for x > −1, φ

is convex, and, for x < −1, φ is concave. If x is optimal then x ex − 1 = 0 which has a unique

solution, x∗ = 0.567143290409784 (correct to 15 decimal places), which is the value of the so-called

Lambert w function [22] at 1. Note that x∗ is the global solution. The Lambert w function arises
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Figure 1: The graph of φ(x) = (x− 1) ex − x.

in many applications involving exponential growth, e.g. rumour processes [23], where an efficient

computation of its values is important.

Table 3 contains the results of numerical experiments for the function φ(x) = (x− 1) ex − x and

several choices of function s.

For any x0 chosen as in (30) in an interval in the third column of Table 3, the methods all take at

most five iterations to find the solution correct to 15 decimal places. For example, when s(x) = x is

chosen, i.e. when the classical Newton’s method is taken (see the first entry of Table 1 for p = 2),

with any initial approximation x0 in the interval [0.44, 0.72] the classical Newton’s method converges

to the solution in at most five iterations. On the other hand, with any initial approximation x0

in the interval [−0.42, 3.78], the classical Newton’s method converges to the solution in at most 10

iterations.

When the lengths of intervals in which a method converges in at most a given number of iterations
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Interval Int. length Interval Int. length

s(x) λ for N ≤ 5 for N ≤ 5 for N ≤ 10 for N ≤ 10 λ∗

tan x 0.18 [0.05, 0.92] 0.87 [−0.31, 1.17] 1.48 0.1821

ex 0.32 [0.25, 0.92] 0.67 [−0.99, 9.40] 10.39 0.3191

sinh x 0.56 [0.39, 0.78] 0.39 [−0.97, 8.40] 9.37 0.5624

x 0.82 [0.44, 0.72] 0.28 [−0.42, 3.78] 4.20 0.8191

x3 0.94 [0.45, 0.69] 0.24 [0.01, 1.33] 1.32 0.9442

arctan x 1.2 [0.48, 0.66] 0.18 [−0.06, 2.82] 2.88 1.2482

log x 1.7 [0.51, 0.64] 0.13 [0.22, 2.84] 2.62 1.7007

1/x 2.6 [0.53, 0.61] 0.08 [0.35, 2.27] 1.92 2.5823

x5 2.7 [0.52, 0.61] 0.09 [0.03, 0.73] 0.70 2.7074

1/x3 4.3 [0.55, 0.59] 0.04 [0.45, 1.63] 1.18 4.3455

Table 3: Numerical experiments for f(x) = x ex − 1 = φ′(x) = 0.

is taken into account (as some measure of robustness), the generalized Newton method with s(x) =

ex and s(x) = sinh x looks certainly superior over the classical Newton’s method. It is interesting

to note that these two instances also have smaller asymptotic error constants, λ. Although the

generalized Newton method with s(x) = tanx has the smallest λ of all choices in Table 3, it doesn’t

appear as robust as the methods with s(x) = ex and s(x) = sinh x.

The interval in which the classical Newton’s method converges is rather large for this problem. On

the other hand, for x0 = 10, while Newton’s method takes 18 iterations to converge, the generalized

method with s(x) = ex and s(x) = sinh x takes 11 iterations in each instance. The method with

s(x) = tan x does not converge at all with x0 = 10. For x0 = 100, while Newton’s method converges

in 110 iterations, the generalized method with s(x) = ex and s(x) = sinh x converges in 34 and 35

iterations, respectively.
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Figure 2: The graph of φ(x) = 8 (x log x− x) − x2/2.

In φ(x), ex certainly looks like the “dominating” function, and so “prompts” one to consider

either ex or sinh x as a candidate for s, as an alternative to the classical Newton method’s s(x) = x.

5.2 An example with Kullback-Leibler distance

Consider the function φ(x) = 8 (x log x − x) − x2/2, which is depicted in Figure 2. Then φ′(x) =

8 log x−x = f(x) and φ′′(x) = 8/x−1 = f ′(x). The term (x log x−x) is referred to as the Kullback-

Leibler distance. The problem has two stationary points: a minimum at x∗ = 1.155370825100078

and a maximum at x∗ = 26.093485476611910, both correct to 15 decimal places. We will focus on

the behaviour of the generalized Newton method with various choices of s(x) around the minimum

point.

Table 4 provides insight as to which s(x) should be employed in the generalized Newton’s method.

Clearly the method with s(x) = arctanx, results in the “best” behaviour in terms of both small λ and
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robustness. The generalized Newton method with s(x) = log x, which appears as the “dominating”

term in f , seems to be equally preferable, over the classical Newton’s method.

Interval Int. length Interval Int. length

s(x) λ for N ≤ 5 for N ≤ 5 for N ≤ 10 for N ≤ 10 λ∗

arctan x 0.01 [0.42, 5.95] 5.53 (0.00, 7.18] 7.18 0.0110

log x 0.07 [0.05, 2.57] 2.52 (0.00, 7.98] 7.98 0.0730

1/x 0.36 [0.92, 1.54] 0.62 [0.44, 7.46] 7.02 0.3597

x 0.51 [0.95, 1.37] 0.42 [0.01, 2.71] 2.70 0.5058

sinhx 0.92 [1.03, 1.27] 0.24 [0.01, 1.86] 1.85 0.9156

ex 1.0 [1.04, 1.26] 0.22 [0.01, 1.78] 1.77 1.0058

1/x3 1.2 [1.08, 1.26] 0.18 [0.83, 7.97] 7.14 1.2252

x3 1.4 [1.07, 1.23] 0.16 [0.11, 1.59] 1.48 1.3713

x5 2.2 [1.10, 1.20] 0.10 [0.28, 1.40] 1.12 2.2369

tan x 2.8 [1.11, 1.19] 0.08 [0.03, 1.34] 1.31 2.7729

Table 4: Numerical experiments for f(x) = 8 log x− x = φ′(x) = 0.

5.3 A polynomial example

Consider the problem of minimizing the polynomial function, φ(x) = x4/4 + x2/2 − 3x + 1. Then

φ′(x) = x3 + x − 3 = f(x) and φ′′(x) = 3 x2 + 1 = f ′(x). The problem has the unique solution,

x∗ = 1.213411662762230 (correct to 15 decimal places).

Table 5 provides insight as to which generalized Newton methods can be favored in this case.

Clearly the method with s = x3, which is the highest power term in the polynomial in f , yields

the “best” behaviour in terms of small λ and robustness. The generalized Newton method with

s(x) = ex and s(x) = sinh x looks favourable over the classical Newton’s method, because of a



A Generalized Newton method by R. S. Burachik, C. Y. Kaya, & S. Sabach 23

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

0

2

4

6

8

10

12

x

Figure 3: The graph of φ(x) = x4/4 + x2/2 − 3x+ 1.

smaller λ, for finding the solution in a small neighbourhood of the solution.

Starting far from the solution, say at x0 = 10, while Newton’s method takes 11 iterations to

converge, the generalized Newton method with s(x) = x3 takes 7 iterations; on the other hand, the

method with s(x) = ex and s(x) = sinh x does not yield a solution. Further away with x0 = 100,

while Newton’s method takes 16 iterations, the method with s(x) = x3 still takes 7 iterations.

Robustness of the method with s(x) = x3 is evident from the length of interval, 108, for finding the

solution in at most 10 iterations.
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Interval Int. length Interval Int. length

s(x) λ for N ≤ 5 for N ≤ 5 for N ≤ 10 for N ≤ 10 λ∗

x3 0.15 [0.71, 2.05] 1.34 [0.01, 108 ] 108 0.1521

ex 0.17 [0.72, 2.32] 2.60 [−3.46, 4.67] 8.13 0.1720

sinh x 0.25 [0.87, 2.38] 1.51 [−4.95, 5.14] 10.09 0.2531

x 0.67 [1.06, 1.39] 0.33 [−4.50, 9.18] 13.68 0.6720

x5 0.98 [1.09, 1.32] 0.23 [0.02, 1.86] 1.84 0.9763

log x 1.1 [1.12, 1.33] 0.21 [0.58, 5.82] 6.40 1.0841

arctan x 1.2 [1.12, 1.32] 0.20 [0.61, 4.87] 4.26 1.1628

1/x 1.5 [1.14, 1.29] 0.15 [0.79, 4.40] 5.19 1.4961

tan x 2.0 [1.15, 1.26] 0.11 [−1.23, 1.43] 2.66 2.0060

1/x3 2.3 [1.17, 1.27] 0.10 [0.97, 3.17] 4.14 2.3202

Table 5: Numerical experiments for f(x) = x3 + x− 3 = φ′(x) = 0.

6 Discussion and Conclusion

We have introduced a new generalized Newton method with quadratic convergence for solving

univariate equations. The method is given by a single iteration formula with a general function s

to choose in the formula. The only theoretical requirement on s is that it has to be continuously

differentiable once, Lipschitz, and also that s′(x∗) �= 0, which are the same requirements as those on

f . We practically require s−1(y) to be computed easily, or cheaply, for a given y. In this sense, the

range of choices for s is vast. In the numerical experiments, it has been observed that an s chosen

to be “similar” to the “dominating” functional term in f seems to result in a faster (i.e. a smaller

asymptotic constant, λ) and a more robust behaviour of the generalized method.

Future work should include a more comprehensive investigation as to which choices of s would

yield a better behaviour of the generalized method. For the case when f and s are both twice
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continuously differentiable, the expression (25) derived in this paper for λ can perhaps be used

(over an interval containing a solution) to find out a priori which choice of s would work better for

the generalized method.

As a line of further research, we aim to study an extension of Kantorovich’s sufficient condition

for the convergence of the classical Newton’s method [24] to our setting of the generalized Newton

method. Our analysis also opens the way to developing an extension of our method for nonlinear

systems of equations in n variables.
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