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Abstract. We prove a strong convergence theorem for resolvents of monotone

operators in Banach spaces. These resolvents are associated with totally con-

vex Legendre functions.

1. Introduction

In this paper X denotes a real re�exive Banach space with norm k�k and X�

stands for the (topological) dual of X. Let A : X ! 2X
�
be a monotone operator,

that is, for any x; y 2 dom A, we have

� 2 Ax and � 2 Ay =) h� � �; x� yi � 0:

(Recall that the set dom A = fx 2 X j Ax 6= ?g is called the e¤ective domain of
such an operator A.) A monotone operator A is said to be maximal if the graph

of A is not a proper subset of the graph of any other monotone operator. The

operator A is said to be demiclosed at x 2 dom A if for any sequence f(xn; �n)gn2N
in X �X�,

xn * x

�n 2 Axn; n 2 N
�n ! �

9>=>; =) � 2 Ax:

Let f : X ! (�1;+1] be a proper, lower semicontinuous and convex function,
and let f� : X� ! (�1;+1] be the Fenchel conjugate of f .

A problem of practical interest with which we are concerned in this paper is that

of strong convergence of the resolvents Resf�A(x) of monotone operators A relative

to convex functions f . More precisely, given a monotone operator A : X ! 2X
�
and

a Legendre function f : X ! (�1;+1], the question is whether and under which
conditions lim�!+1Res

f
�A(x) exists and is a zero of the operator A (see Section 2
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for the de�nitions of all relevant concepts). The fact that this indeed happens in

certain circumstances has been known for quite a long time. See [8] for the case
of a maximal monotone operator A in Hilbert space ([24] and [26] for the case of
m-accretive operators in Banach spaces) and, subsequently, [20] for the case of a
maximal monotone operator A in smooth and uniformly convex Banach spaces. In

these papers it is shown that if f = (1=2) k�k2, then Resf�A(x) converges strongly to
a point in A�1 (0�) as �! +1, provided such a point exists. More recently, in [21]
it is claimed that for a maximal monotone operator A and a well-chosen function f

(which is not necessarily (1=2) k�k2), the strong limit lim�!+1Res
f
�A(x) exists and

is a point in A�1 (0�). We show below (see Theorem 1) that lim�!+1Res
f
�A(x)

exists and is exactly the Bregman projection of x relative to f onto A�1 (0�) for

those monotone operators A which are not necessarily maximal monotone, but

instead satisfy a certain range condition which is compatible with the Legendre

function f . Theorem 2 extends this result to the case where A is approximated in

some sense by more regular operators. Our results regarding strong convergence

of resolvents of monotone operators show ways of strongly approximating zeroes of

monotone operators in Banach spaces. Finding, even by approximation, zeroes of

monotone operators is of interest in many �elds. For instance, the minimization of

lower semicontinuous convex functions reduces to �nding zeroes of their subgradi-

ents which are monotone operators. More generally, as Kimura has already pointed

out in [21], �nding strong approximations of zeroes of monotone operators can
be used in the process of solving variational inequalities. The literature contains

several other methods for �nding zeroes of monotone operators. See for example

[1, 5, 6, 9, 11, 12, 13, 14, 18, 22, 30, 31] and the references therein. Many
of them are �xed point methods which calculate �xed points of ResfA. Obviously,

each �xed point of ResfA is, necessarily, a zero of A. An example of such a method

is presented in [28]. Typically, the successful application of these �xed point meth-
ods is guaranteed under conditions on f and A which are not required when one

approximates zeroes of A by Resf�A(x) with large �. Our paper is organized as

follows. The next section is devoted to several preliminary de�nitions and results.

Our main result (Theorem 1) is formulated and proved in section 3. The fourth

section contains three corollaries of our main result. In the �fth and last section

we present an extension of Theorem 1 (Theorem 2) and two related propositions.

2. Preliminaries

2.1. Some facts about Legendre functions. Legendre functions mapping
a general Banach space X into (�1;+1] are de�ned in [3]. According to [3,
Theorems 5.4 and 5.6], since X is re�exive, the function f is Legendre if and only

if it satis�es the following conditions:
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(L1) The interior of the domain of f , int dom f , is nonempty, f is Gâteaux

di¤erentiable on int dom f and

(2.1) domrf = int dom f ;

(L2) The interior of the domain of f�, int dom f�, is nonempty, f� is Gâteaux

di¤erentiable on int dom f� and

(2.2) domrf� = int dom f�:

Since X is re�exive, we always have (@f)�1 = @f� (see [7, p. 83]). This

fact, when combined with conditions (L1) and (L2), implies the following equalities

which we are going to use in the sequel:

(2.3) rf = (rf�)�1;

(2.4) ranrf = domrf� = int dom f�;

(2.5) ranrf� = dom rf = int dom f:

Also, conditions (L1) and (L2) in conjunction with [3, Theorem 5.4] imply that the
functions f and f� are strictly convex on the interior of their respective domains.

Several interesting examples of Legendre functions are presented in [2] and [3].
Among them are the functions (1=s) k�ks with s 2 (1;1), where the Banach space
X is smooth and strictly convex and, in particular, a Hilbert space. From now on

we assume that the convex function f : X ! (�1;+1] is Legendre.
2.2 Some facts about totally convex functions. For any x 2 int dom f

and z 2 X we denote by f�(x; z) the right-hand derivative of f at x in the direction

z, that is,

f�(x; z) := lim
t&0

f(x+ tz)� f(x)
t

:

The function Df : dom f � int dom f ! [0;+1), de�ned by

Df (y; x) := f(y)� f(x)� f�(x; y � x);

is called the Bregman distance with respect to f (cf. [16]). If f is a Gâteaux di¤er-
entiable function, then the Bregman distance has the following important property,

called the three point identity : for any x 2 dom f and y; z 2 int dom f ,

(2.6) Df (x; y) +Df (y; z)�Df (x; z) = hrf(z)�rf(y); x� yi :

Recall that, according to [10, Section 1.2, p. 17], the function f is called totally
convex at a point x 2 int dom f if its modulus of total convexity at x, that is, the

function �f : int dom f � [0;+1)! [0;+1] de�ned by

(2.7) �f (x; t) := inf fDf (y; x) j y 2 dom f; ky � xk = tg ;



4 DAN BUTNARIU, SIMEON REICH, AND SHOHAM SABACH

is positive whenever t > 0. The function f is called totally convex when it is totally

convex at every point x 2 int dom f . The following proposition summarizes some

properties of the modulus of total convexity.

Proposition 1 (cf. [10, Propostion 1.2.2, p. 18]). Let f be a proper, convex
and lower semicontinuous function. If x 2 int dom f , then

(i) The domain of �f (x; �) is an interval of the form [0; �f (x)) or [0; �f (x)]

with �f (x) 2 (0;+1].
(ii) If c 2 [1;+1) and t � 0, then �f (x; ct) � c�f (x; t).
(iii) The function �f (x; �) is superadditive, that is, for any s; t 2 [0;+1), we

have �f (x; s+ t) � �f (x; s) + �f (x; t).
(iv) The function �f (x; �) is increasing; it is strictly increasing if and only if f

is totally convex at x.

Another proposition which is very useful in the proof of our main result is the

following one.

Proposition 2 (cf. [29, Proposition 2.2, p. 3]). Let f : X ! (�1;+1] be
a convex function and take x 2 dom f . Then f is totally convex at x if and only
if limn!1Df (yn; x) = 0 implies that limn!1 kyn � xk = 0 for every sequence

fyngn2N � dom f .
2.3 The Resolvent of A relative to f . Let A : X ! 2X

�
be an operator

such that

(2.8) (int domf)
\
(dom A) 6= ?:

The operator

PrtfA := (rf +A)
�1
: X� ! 2X

is called the protoresolvent of A, or, more precisely, the protoresolvent of A relative

to f . This allows us to de�ne the resolvent of A, or, more precisely, the resolvent

of A relative to f , introduced and studied in [4], as the operator ResfA : X ! 2X

given by

ResfA := Prt
f
A � rf:

This operator is single-valued when A is monotone and f is strictly convex on

int dom f . If A = @', where ' is a proper, lower semicontinuous and convex

function, then we denote

Proxf' := Prt
f
@' and proxf' := Res

f
@':

If C is a nonempty, closed and convex subset of X, then the indicator function �C
of C, that is, the function

�C (x) :=

(
0 if x 2 C
+1 if x =2 C

;
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is proper, convex and lower semicontinuous, and therefore @�C exists and is a maxi-

mal monotone operator with domain C. The operator proxf�C is called the Bregman

projection onto C with respect to f (cf. [15]) and we denote it by projf
C
.

We denote the closure of a subset K of X by cl (K). For each x and u in

int dom f , set

H (x; u) = fy 2 cl (domA) : hrf (x)�rf (u) ; y � ui � 0g

and let

H =
\

u2ResfA(x)

H (x; u) :

Proposition 4 Let A : X ! 2X
�
be a monotone mapping which satis�es the

range condition

(2.9) rf(cl (domA)) � ran (rf +A):

Then

FixResfA = H
\
(int dom f) :

If, in addition, cl (domA) is convex, then FixResfA is convex too.

Proof. If y 2 FixResfA, then y = Res
f
A(y) and therefore 0

� 2 A (y), since

y = ResfA(y), y = (rf +A)�1rf (y), rf (y) 2 rf (y)+A (y)() 0� 2 A (y) :

Hence y 2 cl (domA). Take (x; u) 2 graphResfA. Then u 2 (rf +A)
�1rf (x)

and therefore rf (x)�rf (u) 2 A (u). Denote rf (x)�rf (u) by � 2 A (u). The
monotonicity of A implies that

hrf (x)�rf (u) ; y � ui = h� � 0�; y � ui � 0:

Thus y 2 H (x; u) for every (x; u) 2 graphResfA. This means that y 2 H. Con-
versely, take y 2 H \ (int dom f). Then from the range condition (2.9) it follows

that y 2 cl (domA) � domResfA and y 2 \u2ResfA(y)H (y; u). Hence

hrf (y)�rf (u) ; y � ui � 0 for u 2 ResfA(y):

The operator rf is strictly monotone on int dom f because f is strictly convex on
int domf and therefore u = y. That is y = ResfA(y) and y 2 FixRes

f
A.

If, in addition, cl (domA) is a convex set, then the convexity of FixResfA follows

from the fact that FixResfA = H \ (int dom f) because H (x; u) is convex for any
(x; u) 2 graphResfA. �

Our new range condition (2.9) is analogous to and weaker than other range

conditions which appear in the literature. This is illustrated by the following ex-

amples.
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If the Banach space X is a Hilbert space H and the function f is (1=2) k�k2,
then our range condition (2.9) becomes the following range condition

cl (domA)) � ran (I +A);

which is well known in semigroup theory (see, for example, [25, 27]).
In [4, Prop. 3.8(iv)(c), p. 604] Bauschke, Borwein and Combettes use the

following range condition

(2.10) ran (rf) � ran (rf +A);

which is a stronger than our range condition (2.9).

If A is a maximal monotone operator, domA � int dom f and A�1 (0�) 6= ?,
then domResfA = X (see [4, Proposition 3.14(ii), p. 606]). Hence ran (rf) �
ran (rf +A). This means that (2.10) holds and therefore (2.9) holds too.

If A is a maximal monotone operator, and rf is bounded on bounded subsets
of X and coercive, then rf +A is surjective, that is, ran (rf +A) = X� (see [17,
Theorem 3.4, p. 163]). Thus our range condition (2.9) certainly holds in this case.

2.4 A special set of functions. By Ff we denote the set of proper, lower
semicontinuous and convex functions ' : X ! (�1;+1] which satisfy the follow-
ing two conditions:

dom'
\
int dom f 6= ?

and

'f := inf f'(x) : x 2 dom' \ dom fg > �1:

With any Legendre function f we associate the function W f : X� �X ! [0;+1]
de�ned by

W f (�; x) = f(x)� h�; xi+ f�(�):

Proposition 5 (cf. [12, Lemma 2.1, p. 2101]). Suppose that ' 2 Ff .
Then for any � 2 int dom f�, there exists a unique global minimizer of the function

'(�)+W f (�; �) which is exactly Proxf'(�). The vector Proxf'(�) belongs to dom @'\
int dom f and we have

Proxf'(�) = (@'+rf)�1(�) = [@ ('+ f)]
�1
(�):

3. A Strong Convergence Theorem for the Resolvent

In this section we give su¢ cient conditions for strong convergence of resolvents

which require neither the maximal monotonicity of A nor any smoothness properties

of the space X.

Theorem 1: Let A : X ! 2X
�
be a demiclosed monotone operator with non-

empty zero set A�1 (0�). Assume that cl (domA), the closure of domA, is convex.
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If f : X ! R is a totally convex and lower semicontinuous Legendre function,

which is bounded on bounded subsets of X, and satis�es the range condition

(3.1) rf(cl (domA)) � ran (rf + �A); 8� > 0;

then, for each x 2 cl (domA), the Bregman projection projfA�1(0�)(x) exists, the

net

(3.2) x� = Res
f
�A(x); � > 0;

is well de�ned, and converges strongly to projfA�1(0�)(x) as �! +1.
Proof. First we note that the net fx�g�>0 given by (3.2) is well de�ned for

any x 2 cl (domA) because

x 2 cl (domA) =) rf(x) 2 rf(cl (domA))

=) rf(x) 2 ran (rf + �A)

=) x 2 domResf�A:

Next, by Proposition 4 and the fact that FixResfA = A�1 (0�) \ (int dom f) =
A�1 (0�) (since in our case int dom f = X), the zero set A�1 (0�) of A is convex.

Since the operator A is demiclosed, the set A�1 (0�) is also closed, because, if

fungn2N is a sequence in A�1 (0�) with u0 = limn!+1 un, then (un; 0�) 2 graphA
for all n 2 N and, therefore, since u0 is also the weak limit of fungn2N, it follows
that it belongs to A�1 (0�). Finally, since A�1 (0�) is nonempty, closed and convex,

the Bregman projection projfA�1(0�)(x) exists. We are now going to establish our

theorem by successively proving the following four claims.

Claim 1: The net fx�g�>0 is bounded.
In order to prove this claim, observe that, by (3.2), for each positive number �,

rf(x) 2 rf(x�)+�A(x�). Hence, for each � > 0, there exists �� 2 Ax� such that

(3.3) rf(x) = rf(x�) + ���:

From the three point identity (2.6), for any y 2 X, we have

Df (x�; x) = Df (y; x)�Df (y; x�) + hrf(x)�rf(x�); y � x�i :

Since A is a monotone operator, for every y 2 A�1 (0�), it follows from (3.3) that

Df (x�; x) � Df (y; x) + h���; y � x�i(3.4)

= Df (y; x)� � h0� � ��; y � x�i

� Df (y; x):

Hence the net fDf (x�; x)g�>0 is bounded by Df (y; x) for any y 2 A�1 (0�). There-
fore the net f�f (x; kx� � xk)g�>0 is bounded by Df (y; x), since from the de�nition
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of the modulus of total convexity (see (2.6)) and from (3.4) we get

(3.5) �f (x; kx� � xk) � Df (x�; x) � Df (y; x):

Since the function f is totally convex, the function �f (x; �) is strictly increasing and
positive on (0;1) (cf. Proposition 1(iv)). It is not di¢ cult to see that this implies
that the net fx�g�>0 is indeed bounded, as claimed.

Observe that, since X is re�exive and fx�g�>0 is bounded, it follows that the
net fx�g�>0 has weak sequential limit points. Observe also that rf is bounded on
bounded subsets of X (see [10, Proposition 1.1.11, p. 16]).

Claim 2: Every weak subsequential limit point of fx�g�>0 as �! +1 belongs

to A�1 (0�).

Let x0 be a weak sequential limit point of fx�g�>0 as �! +1. Then there is
a sequence fx�ngn2N � fx�g�>0 such that �n ! +1 and x�n * x0. From (3.3)

we have that

�� =
rf(x)�rf(x�)

�
; 8� > 0:

The net frf(x�)g�>0 is bounded because rf is bounded on bounded subsets of X
and fx�g�>0 is bounded by Claim 1. Therefore �� ! 0� as �! +1. Hence, from
the demiclosededness of A we have that x0 2 A�1 (0�) because (x�n ; ��n) 2 graphA
for each n 2 N, x�n * x0 and ��n ! 0�. This proves Claim 2.

Now we are going to use this fact in order to establish our next claim.

Claim 3: The net fx�g�>0 has a weak limit which is exactly proj
f
A�1(0�)(x)

as �! +1 .

Let fx�ngn2N converge weakly to x0, where �n ! +1. In order to prove this
claim, we use the weak lower semicontinuity of the function Df (�; x) which follows
from the weak lower semicontinuity of f . This and (3.4) imply that

Df (x0; x) � lim inf
n!+1

Df (x�n ; x) � Df (y; x); 8y 2 A�1 (0�) :

Since y is an arbitrary element of A�1 (0�), this shows that x0 is the minimizer of

Df (�; x) on the closed and convex set A�1 (0�). Note that

Df (y; x) + �A�1(0�)(y) =W
f (rf(x); y) + �A�1(0�)(y);

and by Proposition 5 we know that the minimum of W f (rf(x); y) + �A�1(0�)(y)

is exactly projfA�1(0�)(x). Hence, any weak sequential limit point x0 of fx�g�>0
coincides with projfA�1(0�)(x). This implies that fx�g�>0 itself converges weakly to
projfA�1(0�)(x) as �! +1, as claimed.

Finally, we are going to establish strong convergence of the net fx�g�>0.
Claim 4: The net fx�g�>0 converges strongly to proj

f
A�1(0�)(x) as �! +1.
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In order to prove this claim, we take y = projfA�1(0�)(x) in (3.4). In view of

Claim 3 and the weak lower semicontinuity of Df (�; x), we obtain

Df (proj
f
A�1(0�)(x); x) � lim inf�!+1

Df (x�; x)

� lim sup
�!+1

Df (x�; x) � Df (projfA�1(0�)(x); x):

Hence

(3.6) lim
�!+1

Df (x�; x) = Df (proj
f
A�1(0�)(x); x):

By using again the three point identity (2.6), we deduce that

Df (x�;proj
f
A�1(0�)(x))

=
h
Df (x�; x)�Df (projfA�1(0�)(x); x)

i
+
D
rf(x)�rf(projfA�1(0�)(x)); x� � proj

f
A�1(0�)(x)

E
:

Observe that the quantity between square brackets converges to zero as � ! +1
by (3.6). Also, the inner product on the right-hand side of this equality converges to

zero by Claim 3. This implies that the net
n
Df (x�;proj

f
A�1(0�)(x))

o
�>0

converges

to zero as �! +1. Since f is a totally convex function, this fact and Proposition 2
show that the net fx�g�>0 converges strongly to proj

f
A�1(0�)(x) as �! +1. This

proves Claim 4 and completes the proof of the theorem itself. �

4. Consequences of the Strong Convergence Theorem

An interesting particular instance of Theorem 1 occurs when A is a maximal

monotone operator. In this case �A is also maximal monotone for any � > 0 and,

consequently domResf�A = X (see [4, Proposition 3.14(ii), p.606]). Therefore it
follows that ran (rf) � ran (rf +�A) for any � > 0. This means that (3.1) holds.
Also, from the maximal monotonicity of A it follows that cl (domA) is convex (see

[19, Proposition 2.3.1, p. 327]). Therefore Theorem 1 yields the following corollary.
Corollary 1: Let A : X ! 2X

�
be a maximal monotone operator such that

A�1 (0�) 6= ?. If f : X ! R is a totally convex and lower semicontinuous Legendre
function which is bounded on bounded subsets of X, then, for any x 2 X, the

Bregman projection projfA�1(0�)(x) exists, the following net

x� = Res
f
�A(x); � > 0;

is well de�ned, and converges strongly to projfA�1(0�)(x) as �! +1.
Two other interesting corollaries of Theorem 1 occur when the space X is

smooth and has the Kadec-Klee property, that is,

(4.1) (xn * x and kxnk ! kxk) =) xn ! x:
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In this case the function f(x) = (1=2) kxk2 is Legendre (cf. [3, Lemma 6.2, p.24])
and rf is exactly the duality mapping JX of the space X. If A is also a maximal

monotone mapping, then �A is maximal monotone for any � > 0 and, consequently,

the mapping rf+�A is surjective (cf. [17, Theorem 3.11, p. 166]). Thus the range
condition (3.1) holds. Also, as in Corollary 1, cl (domA) is a convex set. According

to ([13, Proposition 3.2, p. 17]), since X is re�exive, f is totally convex whenever

X has the Kadec-Klee property or, equivalently, X is an E-space. (Recall that a

Banach space X is called an E-space if it is re�exive, strictly convex and has the

Kadec-Klee property.) Therefore Theorem 1 applies in this context and leads us to

the following two results which, in some sense, complement Theorem 1 in [26] (see
also [20]).

Corollary 2: Let X be a smooth Banach space with the Kadec-Klee property

(or equivalently, a smooth E-space) and let A : X ! 2X
�
be a maximal monotone

operator such that A�1 (0�) 6= ?. Then, for any x 2 X, the net

x� = Res
(1=2)k�k2
�A (x); � > 0;

is well de�ned, the Bregman projection proj(1=2)k�k
2

A�1(0�) (x) exists, and fx�g�>0 con-

verges strongly to proj(1=2)k�k
2

A�1(0�) (x) as �! +1.
Corollary 3: Let X be a smooth Banach space with the Kadec-Klee property

(or equivalently, a smooth E-space) and let A : X ! 2X
�
be a maximal monotone

operator such that A�1 (0�) 6= ?. Then, for any � 2 X�, the net

x� = Prt
(1=2)k�k2
�A (�); � > 0;

is well de�ned, the Bregman projection proj(1=2)k�k
2

A�1(0�) (JX�(�)) exists, and fx�g�>0
converges strongly to proj(1=2)k�k

2

A�1(0�) (JX�(�)) as �! +1.
Proof. The operator JX is surjective because X is re�exive. Therefore for any

� 2 X�, there exists x 2 X such that JX(x) = �. It follows from Corollary 2 that

the net fx�g�>0 is well de�ned and converges strongly as �! +1 to

proj
(1=2)k�k2
A�1(0�) (x) = proj

(1=2)k�k2
A�1(0�) (JX�(�)):

5. An Extension of the Strong Convergence Theorem

The next result extends Theorem 1 to the case where A is approximated in

some sense by more regular operators fAngn2N. More precisely, we say that a
sequence fAngn2N of operators from X into 2X

�
approximates A regularly at 0� if

the following two conditions hold:
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(S1) If f(xk; �k)gk2N is a sequence in X �X�, then

xk * x

�k 2 Akxk; k 2 N
�k ! 0�

9>=>; =) 0� 2 Ax:

(S2) For any y in A�1 (0�), there exists a sequence fyngn2N with yn 2 A�1n (0�)

for each n 2 N, such that limn!+1 yn = y.

The notion of regular approximation at 0� is related to the well-known notion

of graph convergence. In fact, in [1, Prop. 3.59, p. 361] Attouch proves that if A
and fAngn2N are maximal monotone operators and the sequence fAngn2N is graph
convergent to A, then condition (S1) holds. In addition, it is clear that condition

(S2) is equivalent to the inclusion A�1 (0�) � LinA
�1
n (0�), where y 2 Lin Cn if

there exists a sequence fyngn2N in X such that limn!+1 yn = y and yn 2 Cn for
all n 2 N.

Theorem 2: Let A;An : X ! 2X
�
, n 2 N, be monotone operators such that

the sequence fAngn2N approximates A regularly at 0�. Let f : X ! R be a totally
convex and Legendre function which is bounded on bounded subsets of X. Assume

that (3.1) holds and the following conditions are satis�ed:

(A) f�ngn2N is a sequence of positive real numbers with limn!+1 �n = +1 such

that

(5.1) rf(cl(domAn)) � ran (rf + �nAn); n 2 N:

(B) The sets A�1 (0�) and A�1n (0�) are nonempty, A�1 (0�) is closed, cl (domA)

is convex, and cl(domA) � \n2Ncl (domAn).
Then, for any x 2 cl (domA), the Bregman projection projfA�1(0�)(x) exists, the

sequence

(5.2) xn = Res
f
�nAn

(x); n 2 N;

is well de�ned and converges strongly to projfA�1(0�)(x) as n! +1.
Proof. The sequence fxngn2N given by (5.2) is well de�ned for any x 2

cl(domA) � \n2Ncl (domAn) because

x 2 \n2Ncl (domAn)) x 2 cl (domAn)

=) rf(x) 2 rf(cl (domAn))

=) rf(x) 2 ran (rf + �nAn) =) x 2 domResf�nAn
:

The set A�1 (0�) is closed and nonempty, and in view of Proposition 4 and the fact

that FixResfA = A�1 (0�) \ (int dom f) = A�1 (0�) (since in our case int dom f =

X), the zero set A�1 (0�) of A is convex. Therefore the Bregman projection

projfA�1(0�)(x) exists.
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Claim 1: The sequence fxngn2N is bounded.

In order to prove this claim, observe that, by (5.2), for each positive integer n,

rf(x) 2 rf(xn) + �nA(xn). Hence, for each n 2 N, there exists �n 2 Anxn such
that

(5.3) rf(x) = rf(xn) + �n�n:

By Condition (S2), given any y 2 A�1 (0�), there exists a sequence fyngn2N such
that yn 2 A�1n (0�) for each n 2 N and limn!+1 yn = y. Therefore, from the three

point identity (2.6), it follows that for each n 2 N, we have

(5.4) Df (xn; x) = Df (yn; x)�Df (yn; xn) + hrf(x)�rf(xn); yn � xni :

Since An is a monotone operator, taking into account (5.3) and (5.4) for any n 2 N,
we obtain

Df (xn; x) = Df (yn; x)�Df (yn; xn) + hrf(x)�rf(xn); yn � xni(5.5)

� Df (yn; x) + h�n�n; yn � xni

= Df (yn; x)� �n h0� � �n; yn � xni

� Df (yn; x):

The function Df (�; x) is continuous on X because it is lower semicontinuous and

convex with domain X. Thus the sequence fDf (yn; x)gn2N converges to Df (y; x).
Hence the sequence fDf (xn; x)gn2N is also bounded (see (5.5)). It follows that the
sequence f�f (x; kxn � xk)gn2N is bounded too. Indeed, using the de�nition of the
modulus of total convexity (see (2.7)) and (5.5), we obtain that

(5.6) �f (x; kxn � xk) � Df (xn; x) � Df (yn; x); 8n 2 N:

The function f is totally convex and therefore the function �f (x; �) is strictly in-
creasing and positive on (0;1) (cf. Proposition 1(iv)). As in the case of Claim 1 in
the proof of Theorem 1, it is not di¢ cult to see that this implies that the sequence

fxngn2N is indeed bounded, as claimed.
Observe that, sinceX is re�exive and fxngn2N is bounded, the sequence fxngn2N

has weak subsequential limit points. Recall also that rf is bounded on bounded
subsets of X (see [10, Proposition 1.1.11, p. 16]).

Claim 2: Every weak subsequential limit point of fxngn2N belongs to A�1 (0�).
In order to prove this claim, we take a subsequence fxnkgk2N of fxngn2N which

converges weakly to some �x 2 X. From (5.3) it follows that

�n =
rf(x)�rf(xn)

�n
:
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The sequence frf(xn)gn2N is bounded because rf is bounded on bounded subsets
of X and fxngn2N is bounded by Claim 1. Therefore, �n ! 0�. Since �nk 2 Ankxnk
and xnk * �x, an application of Condition (S1) implies that �x 2 A�1 (0�). This
proves Claim 2.

Claim 3: The sequence fxngn2N has a weak limit which is exactly proj
f
A�1(0�)(x)

as n! +1.
Let fxnkgk2N be a subsequence of fxngn2N which converges weakly to �x. In

order to prove this claim, we invoke the weak lower semicontinuity of the function

Df (�; x) which is a consequence of the weak lower semicontinuity of f . This and
(5.5) imply that

Df (�x; x) � lim inf
k!+1

Df (xnk ; x) � lim inf
k!+1

Df (ynk ; x) = Df (y; x); y 2 A�1 (0�) :

Since y is an arbitrary element of A�1 (0�), this shows that �x is the minimizer of

Df (�; x) on the closed and convex set A�1 (0�). Note that

Df (y; x) + �A�1(0�)(y) =W
f (rf(x); y) + �A�1(0�)(y);

and by Proposition 4 we know that the minimum of W f (rf(x); �) + �A�1(0�)(�) is
exactly projfA�1(0�)(x). Hence, any weak subsequential limit point �x of fxngn2N co-
incides with projfA�1(0�)(x). This implies that the sequence fxngn2N itself converges
weakly to projfA�1(0�)(x) as n! +1, as claimed.

Claim 4: The sequence fxngn2N converges strongly to proj
f
A�1(0�)(x) as n!

+1.
In order to prove this claim, take fyngn2N to be a sequence with yn 2 A�1n (0�)

for each n 2 N such that limn!+1 yn = proj
f
A�1(0�)(x). Such a sequence exists by

Condition (S2). From Claim 3, (5.5) and the weak lower semicontinuity of Df (�; x),
we get

Df (proj
f
A�1(0�)(x); x) � lim infn!+1

Df (xn; x)

� lim sup
n!+1

Df (xn; x) � lim sup
n!+1

Df (yn; x)

= Df (proj
f
A�1(0�)(x); x):

Hence

(5.7) lim
n!+1

Df (xn; x) = Df (proj
f
A�1(0�)(x); x):
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Using again the three point identity (2.6), we infer that

Df (xn;proj
f
A�1(0�)(x))

=
h
Df (xn; x)�Df (projfA�1(0�)(x); x)

i
+
D
rf(x)�rf(projfA�1(0�)(x)); xn � proj

f
A�1(0�)(x)

E
:

Observe that the quantity between square brackets converges to zero by (5.7). Also,

the inner product on the right-hand side of this equality converges to zero by Claim

3. This implies that the sequence
n
Df (xn;proj

f
A�1(0�)(x))

o
n2N

also converges to

zero as n ! +1. Since f is totally convex, an application of Proposition 2 shows
that the sequence fxngn2N itself converges strongly to proj

f
A�1(0�)(x) as n! +1.

This proves Claim 4 and completes the proof of the theorem itself. �
The following two propositions show that Conditions (S1) and (S2) are in some

sense necessary (if f is Fréchet di¤erentiable) for the conclusions of Theorem 2 to

hold (cf. [21]).
Proposition 6: Let A;An : X ! 2X

�
, n 2 N, be monotone operators. Let

f : X ! R be a Fréchet di¤erentiable and totally convex Legendre function which is
bounded on bounded subsets of X. Assume that (3.1) holds and the following two

conditions are satis�ed:

(A) For each � > 0 and n 2 N,

ran (rf) � ran (rf + �An):

(B) The sets A�1 (0�) and A�1n (0�) are nonempty, A�1 (0�) is closed and cl (domA)

is convex.

Suppose that, for any x 2 X and any sequence f�ngn2N with limn!+1 �n = +1,
the sequence

n
Resf�nAn

(x)
o
n2N

converges strongly to projfA�1(0�)(x) as n ! +1.
Then Condition (S1) holds.

Proof. Note �rst that projfA�1(0�)(x) is well de�ned for any x 2 X because

A�1 (0�) is convex by Proposition 4. Suppose that f�kgk2N is a sequence in X�

which converges strongly to 0� and fxkgk2N is a sequence in X which converges

weakly to some x such that �k 2 Akxk for all k 2 N. Let f�kgk2N be a sequence of
positive real numbers such that �k ! +1 as k ! +1 and f�k�kgk2N converges
strongly to 0�. Set yk = Res

f
�kAk

(x) for k 2 N. Since

rf(x)�rf(yk)
�k

2 Akyk

for each k 2 N, it follows from the monotonicity of Ak that�
rf(x)�rf(yk)

�k
� �k; yk � xk

�
� 0; k 2 N;
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which is equivalent to

hrf(x)�rf(yk)� �k�k; yk � xki � 0; k 2 N:

Letting k ! +1, we obtain thatD
rf(x)�rf(projfA�1(0�)(x));proj

f
A�1(0�)(x)� x

E
� 0

because rf is norn-to-norm continuous by [23, Propostion 2.8, p. 19]. Using the
strict monotonicity of rf , we see that x = projfA�1(0�)(x) and hence x 2 A

�1 (0�).

This shows that Condition (S1) holds, as asserted. �
Proposition 7: Let A;An : X ! 2X

�
, n 2 N, be monotone operators. Let

f : X ! R be a totally convex Legendre function which is bounded on bounded

subsets of X. Assume that (3.1) holds and the following two conditions are satis�ed:

(A) For each � > 0 and n 2 N,

rf(cl(domAn)) � ran (rf + �An):

(B) The sets A�1 (0�) and A�1n (0�) are nonempty and closed, cl (domA) is convex,

and cl(domA) � \n2Ncl (domAn).
Suppose that, for any x 2 cl(domA) and any sequence f�ngn2N with limn!+1 �n =

+1, the sequence
n
Resf�nAn

(x)
o
n2N

converges strongly to projfA�1(0�)(x) as n !
+1. Then Condition (S2) holds.

Proof. Note �rst that projfA�1(0�)(x) and proj
f

A�1
n (0�)

(x) are well de�ned for

any x 2 X and n 2 N because A�1 (0�) and A�1n (0�) are convex by Proposition 4.

Let y 2 A�1 (0�) and n 2 N. By Theorem 1, there exists kn 2 N such that �kn > n
and 


Resf�knAn

(y)� projf
A�1
n (0�)

(y)



 < 1

n
:

Let zn = Res
f
�knAn

(y) for each n 2 N. Since

d
�
zn; A

�1
n (0�)

�
�



zn � projfA�1

n (0�)
(y)



 < 1

n
;

it follows that the sequence
�
d
�
zn; A

�1
n (0�)

�	
n2N converges to 0 as n! +1. On

the other hand, from the assumption of the proposition, fzngn2N converges strongly
to projfA�1(0�)(y) = y. Therefore we have

lim
n!+1

d
�
y;A�1n (0�)

�
� lim

n!+1
ky � znk+ lim

n!+1
d
�
zn; A

�1
n (0�)

�
= 0:

So for each n 2 N, there exist yn 2 A�1n (0�) such that the sequence fyngn2N
converges strongly to y. Hence Condition (S2) holds, as asserted. �



16 DAN BUTNARIU, SIMEON REICH, AND SHOHAM SABACH

6. Acknowledgements
The second author was partially supported by the Israel Science Foundation

(Grant 647/07), by the Fund for the Promotion of Research at the Technion, and by

the Technion President�s Research Fund. The very detailed and useful comments

of the referee are gratefully acknowledged.

References

[1] Attouch, H.: Variational Convergence for Functions and Operators, Pitman, Boston, 1984.

[2] Bauschke, H. H. and Borwein, J. M.: Legendre functions and the method of random Bregman

projections, J. Convex Anal. 4 (1997), 27�67.

[3] Bauschke, H. H., Borwein, J. M. and Combettes, P. L.: Essential smoothness, essential strict

convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math. 3 (2001),

615�647.

[4] Bauschke, H. H., Borwein, J.M. and Combettes, P. L.: Bregman monotone optimization

algorithms, SIAM J. Control Optim. 42 (2003), 596�636.

[5] Bauschke, H. H., Combettes, P. L. and Reich, S.: The asymptotic behavior of the composition

of two resolvents, Nonlinear Anal. 60 (2005), 283�301.

[6] Bauschke, H. H., Matou�ková, E. and Reich, S.: Projection and proximal point methods:

convergence results and counterexamples, Nonlinear Anal. 56 (2004), 715�738.

[7] Bonnans, J. F. and Shapiro, A.: Perturbation analysis of optimization problems, Springer

Verlag, New York, 2000.

[8] Bruck, R. E.: A strongly convergent iterative solution of 0 2 U(x) for a maximal monotone
operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114�126.

[9] Bruck, R. E. and Reich, S.: Nonexpansive projections and resolvents of accretive operators

in Banach spaces, Houston J. Math. 3 (1977), 459�470.

[10] Butnariu, D. and Iusem, A. N.: Totally convex functions for �xed points computation and

in�nite dimensional optimization, Kluwer Academic Publishers, Dordrecht, 2000.

[11] Butnariu, D., Iusem, A. N. and Z¼alinescu, C.: On uniform convexity, total convexity and

convergence of the proximal point and outer Bregman projection algorithms in Banach spaces,

J. Convex Anal. 10 (2003) 35�61.

[12] Butnariu, D. and Kassay, G.: A proximal-projection method for �nding zeroes of set-valued

operators, SIAM J. Control Optim. 47 (2008), 2096�2136.

[13] Butnariu, D. and Resmerita, E.: Bregman distances, totally convex functions and a method

for solving operator equations in Banach spaces, Abstr. Appl. Anal. 2006, Art. ID 84919,

1�39.

[14] Butnariu, D. and Resmerita, E.: Mosco stability of proximal operators in re�exive Banach

spaces, J. Nonlinear Convex Anal. 8 (2007), 1�10.

[15] Bregman, L. M.: The relaxation method of �nding the common point of convex sets and

its application to the solution of problems in convex programming. USSR Computational

Mathematics and Mathematical Physics. 7 (1967), 200�217.

[16] Censor, Y. and Lent, A.: An iterative row-action method for interval convex programming.

J. Optim. Theory Appl. 34, 3 (1981), 321�353.

[17] Cioranescu, I.: Geometry of Banach spaces, duality mappings and nonlinear problems. Kluwer

Academic Publishers, Dordrecht, 1990.



STRONG CONVERGENCE OF RESOLVENTS 17

[18] Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with application

to convex programming, Math. Oper. Res. 18 (1993), 202�226.

[19] S. Hu and N. S. Papageorgiou.: Handbook of multivalued analysis, vol. I: theory, Kluwer

Academic Publishers, Dordrecht, 1997.

[20] Kido, K.: Strong convergence of resolvents of monotone operators in Banach spaces, Proc.

Amer. Math.Soc. 103 (1988), 755�758.

[21] Kimura, Y.: A characterization of strong convergence for a sequence of resolvents of maximal

monotone operators, Proceedings of the Seventh International Conference on Fixed Point

Theory and its Applications, Yokohama Publ., Yokohama, 2006, 149�159.

[22] Nevanlinna, O. and Reich, S.: Strong convergence of contraction semigroups and of iterative

methods for accretive operators in Banach spaces, Israel J. Math. 32 (1979), 44�58.

[23] Phelps, R. R.: Convex functions, monotone operators, and di¤erentiability, 2nd Edition,

Springer Verlag, Berlin, 1993.

[24] Reich, S.: Approximating zeros of accretive operators, Proc. Amer. Math. Soc. 51 (1975),

381�384.

[25] Reich, S.: Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal.

36 (1980), 147�168.

[26] Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces,

J. Math. Anal. Appl. 75 (1980), 287�292.

[27] Reich, S.: Convergence and approximation of nonlinear semigroups, J. Math. Anal. Appl. 76

(1980), 77�83.

[28] Reich, S.: A weak convergence theorem for the alternating method with Bregman distances.

Theory and Applications of Nonlinear Operators, Marcel Dekker, New York, 1996, 313-318.

[29] Resmerita, E.: On total convexity, Bregman projections and stability in Banach spaces, J.

Convex Anal. 11 (2004), 1�16.

[30] Rockafellar, R. T.: Monotone operators and the proximal point algorithm. SIAM J. Control

Optim. 14 (1976), 877�898.

[31] Rockafellar, R. T.: Augmented Lagrangians and applications of the proximal point algorithm

in convex programming. Math. Oper. Res. 1 (1976), 97�116.

[32] Rockafellar, R. T. and Wets, R. J. -B.: Variational analysis, Springer Verlag, Berlin, 1998.

Dan Butnariu: Department of Mathematics, University of Haifa, 31905 Haifa, Israel

E-mail address : dbutnaru@math.haifa.ac.il

Simeon Reich: Department of Mathematics, The Technion � Israel Institute of

Technology, 32000 Haifa, Israel

E-mail address : sreich@tx.technion.ac.il

Shoham Sabach: Department of Mathematics, The Technion � Israel Institute of

Technology, 32000 Haifa, Israel

E-mail address : ssabach@tx.technion.ac.il


