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Abstract. We consider the generalized proximal mapping Proxfϕ := (∇f +
∂ϕ)−1 in which f is a Legendre function and ϕ is a proper, lower semicon-
tinuous, convex function on a reflexive Banach space X. Does the sequence
Proxfϕn(ξn) converge weakly or strongly to Prox

f
ϕ(ξ) as the functions ϕn

Mosco-converge to ϕ and the vectors ξn converge to ξ ∈ int dom f∗? Previous
results show that, if the functions ϕn are uniformly bounded from below, then
weak convergence holds when f is strongly coercive or uniformly convex on
bounded sets, with strong convergence resulting from weak convergence when-
ever f is totally convex. We prove that the same is true when f is only coercive
and the sequence {ϕ∗n(ξn)}n∈N is bounded from above. In this context, we

establish some continuity type properties of Proxfϕ.

1. Introduction

In this paper X denotes a real reflexive Banach space with the norm k·k and
X∗ represents the (topological) dual of X whose norm is denoted k·k∗. Let f : X →
(−∞,+∞] be a proper, lower semicontinuous, convex function and let f∗ : X∗ →
(−∞,+∞] be the Fenchel conjugate of f. All over this paper we assume that f is
a Legendre function (see [8, Definition 5.2]).

1.1 Some facts about Legendre functions. Recall that, according to [8,
Theorems 5.4 and 5.6], the function f is Legendre if and only if it satisfies the
following conditions:

(L1) The interior of the domain of f, int dom f, is nonempty, f is differentiable
on int dom f and

(1.1) dom ∂f = int dom f ;

(L2) The interior of the domain of f∗, int dom f∗, is nonempty, f∗ is differen-
tiable on int dom f∗ and

(1.2) dom ∂f∗ = int dom f∗.

2000 Mathematics Subject Classification. Primary: 52A41, 90C48; Secondary: 49K40,
90C31.

Key words and phrases. Legendre function, Mosco convergence for sequences of convex func-
tions, Mosco stability of proximal mappings (relative to a Legendre function), Proximal mapping
(relative to a Legendre function), Totally convex function.

1



2 DAN BUTNARIU, ELENA RESMERITA, AND SHOHAM SABACH

Since X is reflexive we also have (∂f)−1 = ∂f∗ (see [13, p. 83]). This fact,
combined with conditions (L1) and (L2), implies the following equalities which we
use in the sequel:

(1.3) ∇f = (∇f∗)−1,
(1.4) ran∇f = dom ∇f∗ = int dom f∗,

(1.5) ran∇f∗ = dom ∇f = int dom f.

Also, conditions (L1) and (L2) in conjunction with [8, Theorem 5.4] imply that the
functions f and f∗ are strictly convex on the interior of their respective domains.

Several interesting examples of Legendre functions are presented in [7] and [8].
Among them are the functions 1s k·ks with s ∈ (1,∞) when the space X is smooth
and strictly convex and, in particular, when X is a Hilbert space.

1.2 The proximal mapping relative to f. We denote by Ff the set of
proper, lower semicontinuous, convex functions ϕ : X → (−∞,+∞] which satisfy
the conditions that

(1.6) domϕ ∩ int dom f 6= ∅,
and

(1.7) ϕf := inf {ϕ(x) : x ∈ domϕ ∩ dom f} > −∞.

According to [9, Propositions 3.22 and 3.23] (see [17, Lemma 2.1] for another proof
of the same result), for any ϕ ∈ Ff , the operator Proxfϕ : X∗ → 2X given by

(1.8) Proxfϕ(ξ) := argmin
©
ϕ(x) +W f (ξ, x) : x ∈ X

ª
,

where

(1.9) W f (ξ, x) := f(x)− hξ, xi+ f∗(ξ),

is single valued on int dom f∗ and, for any ξ ∈ int dom f∗, it has

(1.10) Proxfϕ(ξ) == (∂ϕ+∇f)−1 (ξ) = [∂ (ϕ+ f)]
−1
(ξ),

and

(1.11) Proxfϕ(ξ) ∈ dom ∂ϕ ∩ int dom f.

We call Proxfϕ the (generalized) proximal mapping relative to f associated to ϕ.
Denote

(1.12) Envfϕ(ξ) = inf{ϕ(x) +W f (ξ, x) : x ∈ X}.
Then, for each ξ ∈ int dom f∗, the vector Proxfϕ(ξ) is the only vector in X such
that

(1.13) Envfϕ(ξ) = ϕ(Proxfϕ(ξ)) +W f (ξ,Proxfϕ(ξ)).

The notions of proximal mapping relative to f, Proxf· , and of envelope, Env
f
· ,

are natural generalizations of the classical concepts of proximal mapping and enve-
lope originally introduced and studied in Hilbert spaces for f = 1

2 k·k2 by Moreau
[25], [26], [27] and Rockafellar [34], [35] (see [36] for more historical comments on
this topic) and subsequently placed in a more general context in works like [14] and
[29]. To the best of our knowledge, the generalizations defined by (1.8) and (1.12)
go back to Alber’s works [1] and [2].
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1.3 Mosco stability of the proximal mapping: The concept. In this
paper we are concerned with the question whether the operator Proxfϕ is stable
with respect to the Mosco convergence. Precisely, we would like to know whether,
and under which conditions, given the functions ϕn, ϕ : X → (−∞,+∞], (n ∈ N) ,
contained in Ff and such that the sequence {ϕn}n∈N converges in the sense of Mosco
to ϕ, and given a convergent sequence {ξn}n∈N in int dom f∗ with limn→∞ ξn =

ξ ∈ int dom f∗, does the sequence
n
Proxfϕn(ξn)

o
n∈N

converges (weakly or strongly)

to Proxfϕ(ξ)? Recall (see [28, Definition 1.1 and Lemma 1.10]) that the sequence
of functions {ϕn}n∈N is said to be convergent in the sense of Mosco to ϕ (and we
write M-limn→∞ ϕn = ϕ) if the following conditions are satisfied:

(M1) If {xn}n∈N is a weakly convergent sequence inX such that w-limn→∞ xn =

x, and if
©
ϕin
ª
n∈N is a subsequence {ϕn}n∈N , then lim infn→∞ ϕin(xn) ≥ ϕ(x);

(M2) For every u ∈ X there exists a sequence {un}n∈N ⊂ X such that

(1.14) lim
n→∞un = u and lim

n→∞ϕn(un) = ϕ(u).

Stability properties with respect to Mosco convergence of the proximal map-
ping Proxfϕ are already known to hold in various circumstances similar to those
described here. For instance, Theorem 3.26 in [6] implies that if X is a Hilbert
space and f = 1

2 k·k2 , then Proxfϕn(ξ) converges strongly to Proxfϕ(ξ) whenever
M-limn→∞ ϕn = ϕ and ξ ∈ X∗. Generalizations of this result occur in [18], [22],
[23], [32] and they are summarized in [19] as corollaries of Theorem 2.1 there.
Theorem 2.1 of [19] shows that if the Legendre function f is either strongly co-
ercive (i.e., limkxk→∞ f(x)/ kxk = ∞) or uniformly convex on bounded sets (see
[37]), if the functions ϕn, ϕ : X → (−∞,+∞], (n ∈ N) , contained in Ff , are uni-
formly bounded from below and M-limn→∞ ϕn = ϕ, then Proxfϕ is weakly stable
(i.e. Proxfϕ(ξn) converges weakly to Prox

f
ϕ(ξ) whenever {ξn}n∈N ⊂ int dom f∗ has

limn→∞ ξn = ξ ∈ int dom f∗). Moreover, it also results from Theorem 2.1 in [19]
that whenever weak stability of Proxfϕ can be ensured and the Legendre function
f is totally convex, then the convergence of Proxfϕn(ξn) to Prox

f
ϕ(ξ) is strong, that

is, strong stability holds.
Recall (cf. [15]) that the function f is called totally convex if, for each x ∈

int dom f, the modulus of total convexity of f at x which is defined by

νf (x, t) = inf
©
W f (∇f(x), y) : ky − xk = t

ª
is positive whenever t > 0. Total convexity is a common feature of a pletora of
Legendre functions in reflexive Banach spaces. For example, if X is smooth, strictly
convex and has the Kadec-Klee property then all functions 1

s k·ks with s ∈ (1,∞),
are totally convex Legendre functions (cf. [18, Section 2.3]). In particular, this
happens when X is uniformly smooth and uniformly convex as many usual spaces
(like Hilbert spaces, Lebesgue spaces, Sobolev spaces) are.

The relevance of the results concerning the Mosco stability of the proximal
mapping with functions f which are not necessarily the square of the norm should
be seen in the larger context of the analysis of generalized variational inequalities
requiring to find x ∈ int dom f such that

(1.15) ∃ ξ ∈ Bx : [h ξ, y − xi ≥ ϕ(x)− ϕ(y), ∀y ∈ dom f ] ,
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where ϕ ∈ Ff and B : X → 2X
∗
is an operator which satisfies some conditions (see,

for instance, [5], [13], [17], [20] and [28] for more details on this topic). Mosco sta-
bility is a tool of ensuring that, in some circumstances, "small" data perturbations
in (1.15) do not essentially alter its solution. The main result in [19], described
above, involving the requirement of uniform boundedness from below of {ϕn}n∈N ,
naturally applies to classical variational inequalities where the function ϕ and its
perturbations ϕn usually are indicator functions of closed convex sets. However, the
uniform boundedness from below of {ϕn}n∈N happens to be a restrictive condition
for the study of some non-classical generalized variational inequalities.

This leads us to the topic of the current paper. Can stability with respect to
Mosco convergence of the proximal mapping be established in conditions which are
different and, hopefully, less demanding than those mentioned above? That uniform
boundedness from below of {ϕn}n∈N (as presumed in [19]) is not a necessary con-
dition for the weak/strong convergence of Proxfϕn(ξ) to Prox

f
ϕ(ξ) can be observed

from [6, Theorem 3.26] which applies in our setting when X is a Hilbert space and
f = 1

2 k·k2. Our main result, Theorem 1 of Section 2 below, proves that weak — and
if f is totally convex then strong — convergence of Proxfϕn(ξn) to Prox

f
ϕ(ξ) as M-

limn→∞ ϕn = ϕ and limn→∞ ξn = ξ can be ensured when {ϕ∗n (ξn)}n∈N is bounded
from above for Legendre functions f which are coercive (i.e., limkxk→∞ f(x) =∞)
and have the property that {f + ϕn}n∈N converges in the sense of Mosco to f +ϕ.
Note that the requirement that {ϕ∗n (ξn)}n∈N is bounded from above is equivalent
to the condition that there exists a real number q such that for all x ∈ X

(1.16) ϕn (x) ≥ hξn, xi− q, ∀n ∈ N.

This requirement does not imply uniform boundedness from below of the sequence
{ϕn}n∈N unless ξn = 0∗ for all n ∈ N. However, if {ϕ∗n(0∗)}n∈N is bounded from
above (i.e., if {ϕn}n∈N is uniformly bonded from below), then the main result in [19]
guarantees the conclusion of Theorem 1 in our current paper without the additional
requirement that {ϕ∗n(ξn)}n∈N should be bounded from above, but provided that
f is better conditioned than we require here.

1.4 An open problem. In view of Theorem 3.66 in [6] which shows that
Mosco convergence of the sequence of proper, lower semicontinuous convex func-
tions {ϕn}n∈N to the proper, lower semicontinuous convex function ϕ implies graph-
ical convergence (see [6, Definition 3.58]) of the sequence of operators {∂ϕn}n∈N
to ∂ϕ, the problem of Mosco stability for the proximal mapping can be seen as
an instance of the following more general problem: Given a sequence of maximal
monotone operators An : X → 2X

∗
, n ∈ N, which converges graphically to some

maximal monotone operator A : X → 2X
∗
, does the sequence of protoresolvents

(∇f +An)
−1 converge in a stable manner to (∇f +A)

−1
? In other words, the ques-

tion is whether the weak/strong limit of (∇f +An)
−1 (ξn) is exactly (∇f +A)−1 (ξ)

when {ξn}n∈N converges to ξ and An converges graphically to A. In the case of a
Hilbert space X provided with the function f = 1

2 k·k2 , strong pointwise conver-
gence of (∇f +An)

−1 to (∇f +A)−1 results from [6, Theorem 3.60]. Does this
also happen in not necessarily hilbertian Banach spaces X provided with a totally
convex Legendre function f? Theorem 1 proved in this paper, as well as the main
result in [19], give sufficient conditions in this sense for the case of operators An
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and A which are maximal cyclically monotone (i.e., subgradients of lower semi-
continuous convex functions). Whether it is possible to extrapolate those results
to arbitrary maximal monotone operators An and A (which are not necessarily
cyclically monotone), is an interesting question whose answer we do not know. An
affirmative answer to this question could help analyze the convergence behavior un-
der data perturbations of algorithms for determining zeros of monotone operators
based on Eckstein [21] type of generalized resolvents whose convergence theories
were developed along the last decade in [3], [4], [9], [10], [11], [12] (see also the
references of these works).

2. A stability theorem for the proximal mapping

In this section we establish a set of sufficient conditions for Mosco stability of
the proximal mapping Proxfϕ. Analyzing our Mosco stability theorem for Proxfϕ,
given below, one should observe that conditions (A) and (B) are only needed for
ensuring that {f + ϕn}n∈N converges in the sense of Mosco to f + ϕ when M-
limn→∞ ϕn = ϕ. Alternative conditions for this to happen can be derived from [24,
Theorem 5] and [30, Theorem 30(h)] and they can be used as replacements of (A)
and (B) (see also Corollary 2 in the next section).

Theorem 1. Suppose that the Legendre function f is coercive and {ϕn}n∈N
and ϕ are functions contained in Ff such that M-limn→∞ ϕn = ϕ. If any of the
following conditions is satisfied

(A) The function f has open domain;
(B) The function f |dom f , the restriction of f to its domain, is continuous and
domϕn ⊆ dom f , (n ∈ N);
and if {ξn}n∈N is a convergent sequence contained in int dom f∗ such that
{ϕ∗n(ξn)}n∈N is bounded from above and ξ := limn→∞ ξn ∈ int dom f∗, then

(2.1) w- lim
n→∞ Prox

f
ϕn
(ξn) = Proxfϕ(ξ)

and

(2.2) lim
n→∞ Env

f
ϕn
(ξn) = Envfϕ(ξ).

Moreover, if the function f is also totally convex, then the convergence in (2.1) is
strong, that is,

(2.3) lim
n→∞Prox

f
ϕn
(ξn) = Proxfϕ(ξ).

Proof. Denote

(2.4) x̂ = Proxfϕ(ξ) and x̂n = Prox
f
ϕn
(ξn).

By (1.13) we have that, for each x ∈ X,

(2.5) ϕn(x̂n) +W f (ξn, x̂n) ≤ ϕn(x) +W f (ξn, x), ∀n ∈ N.
Hence, by (1.9) we have

hξn, x̂ni− (ϕn(x̂n) + f(x̂n)) ≥ hξn, xi− (ϕn(x) + f(x)) , ∀n ∈ N,
whenever x ∈ X. Taking the supremum upon x ∈ X in this inequality we get

hξn, x̂ni− (ϕn(x̂n) + f(x̂n)) ≥ (ϕn + f)∗ (ξn)
≥ hξn, x̂ni− (ϕn(x̂n) + f(x̂n)) ,
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for each n ∈ N and this implies
(2.6) hξn, x̂ni− (ϕn(x̂n) + f(x̂n)) = (ϕn + f)∗ (ξn), ∀n ∈ N.
Now we are going to establish the following fact which may be well-known but we
do not have a specific reference for it:

Claim 1: The sequence {f + ϕn}n∈N converges in the sense of Mosco to f+ϕ.
In order to prove this claim we verify conditions (M1) and (M2) given above.

To this end, let {xn}n∈N be a weakly convergent sequence in X and let x be its
weak limit. Then

lim inf
n→∞ (f + ϕn) (xn) ≥ lim inf

n→∞ f(xn) + lim inf
n→∞ ϕn(xn) ≥ f(x) + ϕ(x).

where the last inequality holds because f is convex and lower semicontinuous (and,
hence, weakly lower semicontinuous) and because, by hypothesis, the sequence
{ϕn}n∈N converges in the sense of Mosco to ϕ (and, hence, it satisfies (M1)). Con-
sequently, the sequence {f + ϕn}n∈N and the function f + ϕ satisfy (M1). Now,
in order to verify (M2), let u ∈ X. Let {un}n∈N be a sequence in X such that
(1.14) holds (a sequence like that exists because M-limn→∞ ϕn = ϕ). In view of
the validity of (M1), it is sufficient to prove that

(2.7) lim sup
n→∞

(f(un) + ϕn(un)) ≤ f(u) + ϕ(u).

We distinguish the following possible situations.
Case 1: If u /∈ dom f, then

lim sup
n→∞

(f(un) + ϕn(un)) ≤ lim sup
n→∞

f(un) + lim sup
n→∞

ϕn(un)(2.8)

≤ ∞ = f(u) + ϕ(u),

that is, (2.7) holds.
Case 2: Suppose that u ∈ dom f. If u ∈ int dom f , then there exists a positive

integer n0 such that un ∈ int dom f for all n ≥ n0. Taking into account that, being
lower semicontinuous, f is continuous on int dom f, this implies

lim sup
n→∞

(f + ϕn)(un) ≤ lim sup
n→∞

f(un) + lim sup
n→∞

ϕn(un)(2.9)

= lim
n→∞ f(un) + lim

n→∞ϕn(un) = f(u) + ϕ(u),

showing that (M2) holds in this situation. Hence, if condition (A) is satisfied, then
(2.7) is true in all possible cases. Also, if (B) is satisfied, then (2.7) is true whenever
u is not an element of the boundary of dom f . Now, assume that condition (B) is
satisfied and u is a boundary point of dom f . In this situation, if there are infinitely
many vectors un such that un /∈ dom f, then

lim sup
n→∞

f(un) =∞ = lim sup
n→∞

ϕn(un),

because, by (B), if un /∈ dom f, then un /∈ domϕn. Hence, according to (1.14),
we deduce that ϕ(u) = lim supn→∞ ϕn(un) = ∞ and, thus, (2.8) is true and, by
consequence, (2.7) is also true. If all but finitely many vectors un are contained in
dom f, then

lim sup
n→∞

f(un) = lim
n→∞ f(un) = f(u),
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because of the continuity of f |dom f . By (1.14) this implies (2.9) and, thus, (2.7)
is true in this situation too. Hence, when (B) holds, condition (M2) is satisfied in
all possible situations. This proves Claim 1.

Now we are going to establish the following fact:
Claim 2: The sequence {x̂n}n∈N defined by (2.4) is bounded.
In order to prove this claim, suppose by contradiction that the sequence {x̂n}n∈N

is not bounded. Then there exists a subsequence {x̂kn}n∈N of {x̂n}n∈N such that
limn→∞ kx̂knk = +∞. Since, by hypothesis, the function f is coercive, we deduce
that

(2.10) lim
n→∞ f(x̂kn) = +∞.

According to (2.6), we have

(2.11) f(x̂kn) +
¡
ϕkn + f

¢∗
(ξkn) = hξ, x̂kni− ϕkn(x̂kn) ≤ ϕ∗kn(ξkn), ∀n ∈ N.

Theorem 3.18 in [6, p. 295] guarantees that, if ψ and ψn, n ∈ N, are proper,
lower semicontinuous convex functions on X and M-limn→∞ ψn = ψ, then we
have M-limn→∞ ψ∗n = ψ∗. This fact, combined with Claim 1 which shows that
M-limn→∞ (ϕn + f) = ϕ+ f, implies that

M − lim
n→∞ (ϕn + f)∗ = (ϕ+ f)∗ .

Therefore,
M − lim

n→∞
¡
ϕkn + f

¢∗
= (ϕ+ f)∗ .

This implies (using (M1) applied to the convergent sequence
©
ξkn
ª
n∈N in X

∗) that

(2.12) lim inf
n→∞

¡
ϕkn + f

¢∗
(ξkn) ≥ (ϕ+ f)

∗
(ξ).

By (2.4) and (1.8) we have that

(2.13) ϕ(x̂) +W f (ξ, x̂) ≤ ϕ(x) +W f (ξ, x), ∀x ∈ X.

By the definition of the Fenchel conjugate, (2.13) and (1.9) one deduces that

(ϕ+ f)
∗
(ξ) ≥ hξ, x̂i− (ϕ (x̂) + f (x̂))

≥ hξ, xi− (ϕ (x) + f (x)) , ∀x ∈ X.

Taking the supremum upon x ∈ X in this inequality we deduce

(2.14) (ϕ+ f)
∗
(ξ) = hξ, x̂i− (ϕ (x̂) + f (x̂)).

By (1.11) we have that

x̂ ∈ dom ∂ϕ ∩ dom f ⊆ domϕ ∩ dom f,

showing that ϕ (x̂) + f (x̂) is finite. Hence, by (2.14), (ϕ+ f)
∗
(ξ) is finite too.

Thus, by (2.12),

(2.15) lim inf
n→∞

¡
ϕkn + f

¢∗
(ξkn) > −∞.

Taking lim inf as n→∞ on both sides of (2.11) we deduce that

lim
n→∞ f(x̂kn) + lim inf

n→∞
¡
ϕkn + f

¢∗
(ξkn) ≤ lim inf

n→∞ ϕ∗kn(ξkn).

This, (2.10) and (2.15) imply that lim inf
n→∞ ϕ∗kn(ξkn) = +∞, that is, limn→∞ ϕ∗kn(ξkn) =

+∞, which contradicts the boundedness of {ϕ∗n(ξn)}n∈N . So, the proof of Claim 2
is complete.
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The sequence {x̂n}n∈N being bounded in the reflexive space X, has weak cluster
points. The claim we prove below shows that {x̂n}n∈N is weakly convergent to x̂
and, consequently, formula (2.1) holds.

Claim 3: The only weak cluster point of {x̂n}n∈N is x̂.
In order to prove Claim 3 let v be a weak cluster point of {x̂n}n∈N and let

{x̂in}n∈N be a subsequence of {x̂n}n∈N such that w-limn→∞ x̂in = v. Let u be any
vector in dom f∩ domϕ. Since M-limn→∞ ϕn = ϕ, there exists a sequence {un}n∈N
in X such that

(2.16) lim
n→∞un = u and lim

n→∞ϕn(un) = ϕ(u).

The function f being convex and lower semicontinuous is also weakly lower semi-
continuous. The sequences

©
f∗(ξin)

ª
n∈N and

©
ξin , x̂in

®ª
n∈N converge to f∗(ξ)

and hξ, vi, respectively. Consequently, we have
(2.17) lim inf

n→∞ W f (ξin , x̂in) ≥ lim inf
n→∞ f (x̂in) + lim inf

n→∞
£
f∗(ξin)−


ξin , x̂in

®¤
≥ f (v)− hξ, vi+ f∗(ξ) =W f (ξ, v).

Due to the Mosco convergence of {ϕn}n∈N (and, hence, of
©
ϕin
ª
n∈N) to ϕ, to (2.17),

and to (2.5) we deduce that

(2.18) ϕ(v) +W f (ξ, v) ≤

lim inf
n→∞ ϕin(x̂in) + lim inf

n→∞ W f (ξin , x̂in)

≤ lim inf
n→∞ Envfϕin

(ξin) ≤ lim sup
n→∞

Envfϕin
(ξin)

≤ lim sup
n→∞

©
ϕin(uin) +W f (ξin , uin)

ª
= ϕ(u) +W f (ξ, u).

Since u was arbitrarily chosen in dom f ∩ domϕ, it follows that v = x̂ and this
proves Claim 3.

Now we are in position to show that (2.2) is also true. If we prove that, then the
strong convergence of {x̂n}n∈N to x̂ (i.e., (2.3)) when f is also totally convex results
from [19, Theorem 2.1] and the proof of our theorem is complete. For proving (2.2)
observe that, according to (1.11), the vector x̂ belongs to int dom f ∩ domϕ and,
therefore, there exists a sequence {un}n∈N in X such that (2.16) holds for u = x̂.
Since the sequence {x̂n}n∈N converges weakly to v = x̂, the inequalities and equality
in (2.18) remain true when v is replaced by x̂ and in is replaced by n. Therefore,
taking into account (1.13) and (2.4), we deduce

Envfϕ(ξ) = ϕ(x̂) +W f (ξ, x̂)

≤ lim inf
n→∞ Envfϕn(ξn) ≤ lim sup

n→∞
Envfϕn(ξn)

= ϕ(x̂) +W f (ξ, x̂)

and this implies (2.2). ¤
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3. Consequences of the stability theorem

The following result shows that Theorem 1 applies to any constant sequence
ξn = ξ ∈ ran∂ϕ∩ int dom f∗ since, for any such vector ξ, the sequence {ϕ∗n(ξ)}n∈N
is bounded from above.

Corollary 1. Suppose that the Legendre function f is coercive and {ϕn}n∈N
and ϕ are functions contained in Ff such that M-limn→∞ ϕn = ϕ. If any of the
conditions (A) or (B) of Theorem 1 is satisfied, and if ξ ∈ ran ∂ϕ ∩ int dom f∗,
then

(3.1) w- lim
n→∞ Prox

f
ϕn
(ξ) = Proxfϕ(ξ)

and

(3.2) lim
n→∞ Env

f
ϕn
(ξ) = Envfϕ(ξ).

Moreover, if the function f is also totally convex, then the convergence in (3.1) is
strong.

Proof. According to Theorem 1, it is sufficient to show that if ξ ∈ ran ∂ϕ,
then the sequence {ϕ∗n(ξ)}n∈N is bounded from above. To this end, let x̄ ∈ X be
such that ξ ∈ ∂ϕ(x̄). Then, by the convexity of ϕ, we have

ϕ(x)− ϕ(x̄) ≥ hξ, x− x̄i , ∀x ∈ X,

showing that

(3.3) ϕ(x) ≥ hξ, xi− q, ∀x ∈ X,

where q = hξ, x̄i − ϕ(x̄) is a real number because x̄ ∈ dom ∂ϕ ⊆ domϕ. By the
hypothesis that M-limn→∞ ϕn = ϕ combined with (3.3) we deduce (see (M1)) that
for any x ∈ X

q ≥ hξ, xi− ϕ(x) ≥ hξ, xi− lim inf
n→∞ ϕn(x) = lim sup

n→∞
[hξ, xi− ϕn(x)] .

Hence,

q ≥ sup
x∈X

lim sup
n→∞

[hξ, xi− ϕn(x)] = lim sup
n→∞

sup
x∈X

[hξ, xi− ϕn(x)] = lim sup
n→∞

ϕ∗n(ξ),

showing that the sequence {ϕ∗n(ξ)}n∈N is bounded from above. ¤
It is meaningful to note that, if the Banach space X has finite dimension, then

conditions (A) and (B) involved in Theorem 1 can be replaced by the requirement
that

(3.4) int domϕ 6= ∅.
To see that, note that conditions (A) and (B) are only used in the proof of Theorem
1 in order to ensure validity of Claim 1. Clearly, if (3.4) holds, then we also have
that 0 ∈ int (domϕ− dom f) . Now, according to [24, Theorem 5], if dim X <∞,
if 0 ∈ int (domϕ− dom f) and if M-limn→∞ ϕn = ϕ, then M-limn→∞(f + ϕn) =
f + ϕ, that is, Claim 1 is satisfied. Hence, we deduce the following result:

Corollary 2. Suppose that dimX <∞ and that the Legendre function f is co-
ercive. If {ϕn}n∈N and ϕ are functions contained in Ff such that M-limn→∞ ϕn =
ϕ and (3.4) holds, and if {ξn}n∈N is a convergent sequence contained in int dom f∗

such that {ϕ∗n(ξn)}n∈N is bounded from above and ξ := limn→∞ ξn ∈ int dom f∗,
then (2.1) and (2.2) are true.
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Combining [33, Theorem 1 and Proposition 1] with (1.6), (1.10) and (1.11) one
can see that the operator Proxfϕ(·) with ϕ ∈ Ff is maximal monotone and norm to
weak continuous on int dom f∗. In other words, even if the function f is not coercive
and even if none of the conditions (A) and (B) is satisfied, the equality (2.1) holds
for any constant sequence ϕn = ϕ ∈ Ff and for any sequence {ξn}n∈N which is
contained and converges in int dom f∗. A careful analysis of the proof of Theorem 1
shows that we have already proved that (2.1) implies (2.2). Also, carefully analyzing
the proof of Theorem 1 one can observe that, if ϕn = ϕ ∈ Ff for all n ∈ N, then
the conditions (A) and (B) are superfluous (because in this case the conclusion of
Claim 1 remains true even if these conditions do not hold). These remarks lead us
to the following result:

Corollary 3. If the Legendre function f is coercive and totally convex and if
ϕ ∈ Ff , then the following statements are true:

(i) If B is a nonempty and bounded subset dom ∂ϕ, then Proxfϕ(·) is norm to
norm continuous on ∂ϕ(B) ∩ int dom f∗;

(ii) If ϕ∗ is bounded from above on bounded subsets of int dom f∗ ∩ ran ∂ϕ,
then Proxfϕ(·) is norm to norm continuous on ran∂ϕ ∩ int dom f∗.

Proof. (i) Suppose that {ξn}n∈N and ξ are contained in ∂ϕ(B) ∩ int dom f∗

and satisfy limn→∞ ξn = ξ. Then, for each n ∈ N, there exists a vector x̄n ∈ B such
that ξn ∈ ∂ϕ(x̄n). By the convexity of ϕ we deduce that for any x ∈ X

ϕ(x)− ϕ(x̄n) ≥ hξn, x− x̄ni , ∀n ∈ N.
Hence, for any x ∈ X

ϕ(x) ≥ hξn, xi− hξn, x̄ni+ ϕ(x̄n)(3.5)

≥ hξn, xi− kξnk∗ kx̄nk+ ϕ(x̄n),

where the sequence {kξnk∗ kx̄nk}n∈N is bounded because both sequences {kξnk∗}n∈N
and {kx̄nk}n∈N are bounded, and the sequence {ϕ(x̄n)}n∈N is bounded from below
because {x̄n}k∈N is contained in domϕ ∩ int dom f and (1.7) holds. These facts,
combined with (3.5) show that there exists a real number q such that for any x ∈ X

ϕ(x) ≥ hξn, xi− q, ∀n ∈ N.
In other words, the constant sequence ϕn = ϕ satisfies (1.16) and, thus, the sequence
{ϕ∗(ξn)}n∈N is bounded from above. Applying Theorem 1 to the constant sequence
ϕn = ϕ and taking into account the remarks preceding this Corollary, we deduce
that (2.3) holds in this case, i.e., Proxfϕ(·) is norm to norm continuous on ∂ϕ(B)∩
int dom f∗.

(ii) Suppose that {ξn}n∈N and ξ are contained in int dom f∗∩ ran ∂ϕ and satisfy
limn→∞ ξn = ξ. Then the sequence {ϕ∗(ξn)}n∈N is bounded from above because
{ξn}n∈N is bounded as being convergent. Application of Theorem 1 shows that
(2.3) holds in this case too. ¤
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