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Abstract

We consider the problem of solving convex differentiable problems with
simple constraints on which the orthogonal projection operator is easy to com-
pute. We devise an improved ellipsoid method that relies on improved deep
cuts exploiting the differentiability property of the objective function as well
as the ability to compute an orthogonal projection onto the feasible set. This
new version of the ellipsoid method does not require two different oracles as the
“standard” ellipsoid method does (i.e., separation and subgradient). The lin-
ear rate of convergence of the objective function values sequence is proven and
several numerical results illustrate the potential advantage of this approach
over the classical ellipsoid method.

1 Introduction

1.1 Short Review of the Ellipsoid Method

Consider the convex problem

(P):
min f (x)
s.t. x ∈ X,
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where f is a convex function over the closed and convex set X. We assume that
the objective function f is subdifferentiable over X and that the problem is solvable
with X∗ being its optimal set and f ∗ being its optimal value. One way to tackle the
general problem (P) is via the celebrated ellipsoid method, which is one of the most
fundamental methods in convex optimization. It was first developed by Yudin and
Nemirovski (1976), and Shor (1977) for general convex optimization problems and
was then came to awareness with the seminal work of Khachiyan [?] showing – using
the ellipsoid method – that linear programming can be solved in a polynomial time.
The ellipsoid method does not require the objective function to be differentiable and
it assumes that two oracles are available: a separation oracle and a subgradient oracle.

To describe the ellipsoid method in more details, we use the following notation. The
ellipsoid with center c ∈ Rn and associated matrix P ∈ Rn×n(P � 0) is given by

E (c,P) ≡
{

x ∈ Rn : (x− c)T P−1 (x− c) ≤ 1
}
.

For a given g, c ∈ Rn such that g 6= 0 and h ∈ R we define the hyperplane

H (g, c, h) ≡
{
x ∈ Rn : gT (x− c) + h = 0

}
and its associated half-space

H− (g, c, h) ≡
{
x ∈ Rn : gT (x− c) + h ≤ 0

}
.

A schematic description of the ellipsoid method is as follows: we begin with an
ellipsoid E (c0,P0) that contains the optimal set X∗. At iteration k, an ellipsoid
E (ck,Pk) is given for which X∗ ⊆ E (ck,Pk). We then find an hyperplane of the
form H (gk, ck, hk) where gk ∈ Rn (gk 6= 0) and hk ≥ 0 such that

X∗ ⊆ H− (gk, ck, hk) ∩ E (ck,Pk) .

The ellipsoid at the next iteration E (ck+1,Pk+1) is defined to be the minimum
volume ellipsoid containing H− (gk, ck, hk) ∩ E (ck,Pk). The schematic algorithm,
which includes the specific update formulas for the minimum volume ellipsoid is now
described in details.
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The Ellipsoid Method

• Initialization. Set c0 = 0 and P0 = R2I.

• General Step (k = 0, 1, 2, . . .)

A. Find gk ∈ Rn (gk 6= 0) and hk ≥ 0 for which

X∗ ⊆ H− (gk, ck, hk) ∩ E (ck,Pk) .

B. ck+1 and Pk+1 are the center and associated matrix of the minimum
volume ellipsoid containing H− (gk, ck, hk)∩E (ck,Pk) and are explicitly
given by the following expressions:

ck+1 = ck −
1 + nαk

1 + n
Pkg̃k

Pk+1 =
n2 (1− α2

k)

n2 − 1

(
Pk −

2 (1 + nαk)

(1 + n) (1 + αk)
Pkg̃kg̃k

TPk

)
where

g̃k =
gk√

gT
k Pkgk

and αk =
hk√

gT
k Pkgk

.

Of course, there are two missing elements in the above description. First, the
choice of R is not given. In the classical ellipsoid method R is any positive number
satisfying X∗ ⊆ E (0, R2I). Second, there is no specification of the way the cutting
hyperplane H (gk, ck, hk) is constructed. In the classical ellipsoid method the cut-
ting parameter is a “neutral” cut, meaning that hk = 0 whereas gk is constructed as
follows: we assume that a separation and a subgradient oracles are given. We call
the separation oracle with input ck. The oracle determines whether ck belongs or
not to X. If ck /∈ X, then the separation oracle generates a separating hyperplane
between ck and X and generates gk 6= 0 for which X∗ ⊆ H− (gk, ck, 0). Otherwise,
if ck ∈ X, then the subgradient oracle provides a vector gk in the subdifferential set
∂f (ck) for which it is easy to show that X∗ ⊆ H− (gk, ck, 0).

Remark 1.1. The classical ellipsoid method generates neutral cuts, but there are
variations in which deep cuts (hk > 0) are used [?, ?]. For instance, in [?] the
authors exploit the fact that the objective function values of the feasible centers are
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not nonincreasing. It is not difficult to see that when ck ∈ X, one can use a cutting
hyperplane of the form H (gk, ck, hk), where gk ∈ ∂f (ck) as before, but with

hk = f (ck)−min {f (cj) : 0 ≤ j ≤ k, ck ∈ X} . (1.1)

When f (ck) is not of the smallest value among the feasible centers at iterations
0, 1, 2, . . . , k, the resulting cut is deep (hk > 0).

The convergence of the ellipsoid method relies on the fact that the volumes of
the generated ellipsoids Ek ≡ E (ck,Pk) are decreasing at a linear rate to zero (more
on that in the sequel). In particular, it is known that (see e.g., [?])

Vol (Ek+1)

Vol (Ek)
= δ

n
2
k

√
1− σk, (1.2)

where

δk =
n2 (1− α2

k)

n2 − 1
, (1.3)

σk =
2 (1 + nαk)

(n+ 1) (1 + αk)
. (1.4)

For the neutral cut setting (αk = hk = 0) the decrease is at least by a factor of
e−1/(2n+2).

1.2 The New Assumptions

Suppose that in addition to the convexity of the objective function and the existence
of the two oracles, we have the following assumption.

Assumption 1. The objective function f : X → R is convex, differentiable and has
a Lipschitz gradient over X:

‖∇f (x)−∇f (y)‖ ≤ L (f) ‖x− y‖ for every x,y ∈ X. (1.5)

In addition, we assume that the orthogonal projection operator defined by

PX (x) := argminy∈X ‖x− y‖2 . (1.6)

is “easy to compute”. Of course, this scenario is more restrictive than the general set-
ting of the ellipsoid method, however there are situations in which such assumptions
are met. The basic question is the following:
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Main question: is there a way to utilize the additional differentiability assumption
of the objective function and computability of the orthogonal projection in order to
improve the ellipsoid method?

The answer of this question is affirmative and will be described in the following
sections.

2 A New Deep Cut Ellipsoid Method

Before describing the deep cuts that will be used in the paper, some important
preliminaries on the gradient mapping are required.

2.1 The Gradient Mapping

We define the following two mappings which are essential in our analysis of the
proposed algorithm.

Definition 1 (Gradient mapping). Let X be a nonempty, closed and convex subset
of Rn and let f : X → R be a differentiable function. For every M > 0, we define

(i) the proj-grad mapping by

TM (x) ≡ PX

(
x− 1

M
∇f (x)

)
for all x ∈ Rn; (2.1)

(ii) the gradient mapping (see also [?]) by

GM (x) ≡M (x− TM (x)) = M

[
x− PX

(
x− 1

M
∇f (x)

)]
. (2.2)

Remark 2.1 (Unconstrained case). In the unconstrained setting, that is, when X =
Rn, the orthogonal projection is the identity operator and hence

(i) the proj-grad mapping TM is equal to I − 1
M
∇f ;

(ii) the gradient mapping GM is equal to ∇f .

It is well known (see e.g., [?]) that GM(x) = 0 if and only if x ∈ X∗.
We now present a useful inequality for convex functions with Lipschitz gradient. The
result was established in [?] for the more general prox-grad operator and it is recalled
here for the specific case of the proj-grad mapping (see [?, Lemma 1.6]).
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Lemma 2.1. Let X be a nonempty, closed and convex subset of Rn and let f : X →
R be a convex differentiable function whose gradient is Lipschitz. Let z ∈ X and
w ∈ Rn. Then if the inequality

f (TM (x)) ≤ f (w) + 〈∇f (w) , TM (w)−w〉+
M

2
‖TM (w)−w‖2 (2.3)

holds for a positive number M , then

f (TM (w))− f (z) ≤ 〈GM (w) ,w − z〉 − 1

2M
‖GM (w)‖2 . (2.4)

Remark 2.2. By the descent lemma (see [?, Proposition A.24]), property (2.3) is
satisfied when M ≥ L (f), which implies that in those cases the inequality (2.4) holds
true.

2.2 The Deep Cut

The deep cut that will be used relies on the following technical lemma.

Lemma 2.2 (Deep cut property). Let M be a positive number and assume that
x ∈ Rn is a vector satisfying the inequality

f (TM (x)) ≤ f (x) + 〈∇f (x) , TM (x)− x〉+
M

2
‖TM (x)− x‖2 . (2.5)

Then, for any x∗ ∈ X∗, the inequality

〈GM (x) ,x− x∗〉 ≥ 1

2M
‖GM (x)‖2 (2.6)

holds true, that is

X∗ ⊆ QM,x ≡
{

z ∈ Rn : 〈GM (x) ,x− z〉 ≥ 1

2M
‖GM (x)‖2

}
.

Proof: Invoke Lemma 2.1 with z = x∗ and w = x and obtain that

f (TM (x))− f (x∗) ≤ 〈GM (x) ,x− x∗〉 − 1

2M
‖GM (x)‖2 .

The result (2.6) then follows by noting that the optimality of x∗ yields f (TM (x)) ≥
f (x∗).

Remark 2.3. As in Remark 2.2, by the descent lemma, the inequality (2.5) is
satisfied for all M ≥ L (f) and in those cases the inclusion X∗ ⊆ QM,x holds true.
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2.3 The Improved Deep Cut Ellipsoid (IDCE) Method

The deep cut ellipsoid method that we will consider is using the cutting hyperplane
described in Lemma 2.2. In its most basic form, at iteration k, the corresponding
half-space would be:{

x ∈ Rn :
〈
GL(f) (ck) ,x− ck

〉
+

1

2L(f)

∥∥GL(f) (ck)
∥∥2 ≤ 0

}
.

Note that as opposed to the classical ellipsoid method, there is only one option for
a cutting plane, and there is no need to consider different cases (e.g., according to
whether the center is feasible or not). If the Lipschitz constant L(f) was known,
then we could have defined the deep cut method by employing the ellipsoid method
with step A described by:

gk = GL(f) (ck)

hk =
1

2L(f)

∥∥GL(f) (ck)
∥∥2
.

The improved deep cut method (IDCE) that we consider below has two addi-
tional features: first, it does not assume any knowledge on the Lipschitz constant by
incorporating a backtracking procedure for estimating the constant and in addition,
similarly to the deep cut technique described in Remark 1.1, it utilizes the knowledge
on the best function value obtained so far.

7



The IDCE method
Input: L−1 - an initial estimate on the Lipschitz constant. η > 1.
Employ the ellipsoid method with R chosen to satisfy X∗ ⊆ E(0, (R/2)2I) and
with the following step A:

A.1. Find the smallest nonnegative integer such that with L̄ = ηikLk−1 the
inequality

f (TL̄ (ck)) ≤ f (ck) + 〈∇f (ck) , TL̄ (ck)− ck〉+
L̄

2
‖TL̄ (ck)− ck‖2 (2.7)

is satisfied.
Set Lk = L̄.

A.2. Compute gk and hk as follows:

gk = GLk
(ck) , (2.8)

hk =
1

2Lk

‖GLk
(ck)‖2 + f (TLk

(ck))− `k, (2.9)

where `k = min
{
f
(
TLj

(cj)
)

: 0 ≤ j ≤ k
}

.

Note that if L−1 is an upper bound on the Lipschitz constant L(f), then Step A.1 is
redundant and we have Lk ≡ L−1. Also, as opposed to the classical ellipsoid method,
we assume here that X∗ ⊆ E(0, (R/2)2I) and not that X∗ ⊆ E(0, R2I).

An interesting question that arises here is: what is the sequence generated by the
method?. In the classical ellipsoid method, the generated sequence is essentially the
subsequence of centers which are feasible. This is in fact a problematic issue, since
it implies the assumption that the feasible set has a nonempty interior, otherwise
practically none of the centers will be feasible. In the setting of this paper, we
will see that it is quite natural to define the sequence generated by the method
as the sequence {TLk

(ck)}∞k=0, which is obviously feasible and its evaluation is not
an additional computational burden since these proj-grad expressions are anyway
required for employing the IDCE method. In addition, the nonemptiness of the
interior of the feasible set is no more required.
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3 Complexity Analysis of the IDCE Method

3.1 Decrease of Volumes

Our ultimate goal is to estimate the convergence of the function values f(TLk
(ck))

to the optimal value. As in the classical ellipsoid method, the analysis relies on the
volume decrease property (1.2), which by the definitions of δm and σm (equations
(1.3) and (1.4), respectively) yields

Vol (Em+1)

Vol (Em)
= δ

n
2
m

√
1− σm =

(
n2

n2 − 1

)n
2 (

1− α2
m

)n
2

√
1− 2 (1 + nαm)

(n+ 1) (1 + αm)
.

After some simple algebra we have that

Vol (Em+1)

Vol (Em)
=

(
1 +

1

n2 − 1

)n−1
2
(

1− 1

n+ 1

)(
1− α2

m

)n
2

√
1− αm

1 + αm

.

Since 1 + x ≤ ex for any x ∈ R we obtain

Vol (Em+1)

Vol (Em)
≤ e

n−1

2(n2−1) · e−
1

n+1

(
1− α2

m

)n
2

√
1− αm

1 + αm

= e
−1

2(n+1)
(
1− α2

m

)n
2

√
1− αm

1 + αm

,

and therefore

Vol (Em) ≤ e
−1

2(n+1)
(
1− α2

m−1

)n
2 Vol (Em−1) ≤ · · · ≤ e

−m
2(n+1)

m−1∏
j=0

(
1− α2

j

)n
2 Vol (E0) .

(3.1)
By denoting

jm ∈ argmin{αk : k = 0, 1, . . . ,m− 1} (3.2)

we obtain that (3.1) implies the following soon to be useful result.

Lemma 3.1. Let {Em}∞m=0 be the sequence of ellipsoids generated by the IDCE
method. Then

Vol (Em) ≤ e
−m

2(n+1)
(
1− α2

jm

)nm
2 Vol (E0) ,

where the index jm is defined in (3.2).
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3.2 Complexity Bound

The following result establishes the linear convergence rate of the function values of
the sequence generated by the IDCE method.

Theorem 3.1. Let {ck}∞k=0 be the sequence of ellipsoid centers generated by the

IDCE method and let ε < L(f)R
2

2
. Then for any m satisfying

m > n (n+ 1) ln

(
2L(f)R2

ε

)
(3.3)

we have
min

k=0,...,m
f (TLk

(ck))− f ∗ ≤ ε.

Proof: Assume that m satisfies (3.3). By (2.7), we have that

f (TLk
(ck)) ≤ f (ck) + 〈∇f (ck) , TLk

(ck)− ck〉+
Lk

2
‖TLk

(ck)− ck‖2 . (3.4)

For any x ∈ Rn, using the fact that TLk
(ck) ∈ X, we obtain from Lemma 2.1 that

f (TLk
(ck)) ≤ f

(
TL(f) (x)

)
+
〈
gk, ck − TL(f) (x)

〉
− 1

2Lk

‖gk‖2 . (3.5)

For our deep-cut it is known that at iteration k we only discard points y ∈ Rn which
satisfy

〈gk, ck − y〉 < 1

2Lk

‖gk‖2 + f (TLk
(ck))− `k.

Therefore, we discard in particular all points x ∈ Rn which satisfy〈
gk, ck − TL(f) (x)

〉
<

1

2Lk

‖gk‖2 + f (TLk
(ck))− `k.

Combining the latter with (3.5) we get that at iteration k we discard only points
x ∈ Rn which satisfy f

(
TL(f) (x)

)
> `k. Suppose now that for a given ε > 0 we

have `m > f ∗+ε. Therefore, under this assumption, it follows that during the IDCE
method we only discard points satisfying f

(
TL(f) (x)

)
> f ∗ + ε, which combined

with the fact that the initial ellipsoid is the sphere E(0, R2I) implies that{
x ∈ Rn : f

(
TL(f) (x)

)
≤ f ∗ + ε

}
∩ E(0, R2I) ⊆ Em. (3.6)
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Let x∗ ∈ X∗. Taking w = x ∈ Rn and z = x∗ ∈ X∗ in (2.4) we have

f
(
TL(f) (x)

)
≤ f (x∗) +

〈
GL(f) (x) ,x− x∗

〉
− 1

2L (f)

∥∥GL(f) (x)
∥∥2

(3.7)

≤ f (x∗) +
∥∥GL(f) (x)

∥∥ ‖x− x∗‖ .

From Lemma 2.2 we obtain that∥∥GL(f) (x)
∥∥2 ≤ 2L (f)

〈
GL(f) (x) ,x− x∗

〉
≤ 2L(f)

∥∥GL(f) (x)
∥∥ ‖x− x∗‖ .

Thus, ∥∥GL(f) (x)
∥∥ ≤ 2L (f) ‖x− x∗‖ ,

which combined with (3.7) yields

f
(
TL(f) (x)

)
≤ f (x∗) + 2L (f) ‖x− x∗‖2 .

If ‖x− x∗‖ ≤
√

ε
2L(f)

, then we get that

f
(
TL(f) (x)

)
≤ f (x∗) + 2L (f) ‖x− x∗‖2 ≤ f (x∗) + ε.

Hence, by (3.6),
B ∩ E(0, R2I) ⊆ Em, (3.8)

where

B :=

{
x ∈ Rn : ‖x− x∗‖ ≤

√
ε

2L (f)

}
.

By the definition of R, we have ‖x∗‖ ≤ R
2

. In addition, it follows that any x ∈ B
satisfies satisfies ‖x‖ ≤ ‖x∗‖ + ‖x − x∗‖ ≤ R

2
+ R

2
= R, so that B ⊆ E(0, R2I) and

therefore the inclusion (3.8) reads as

B ⊆ Em.

Therefore Vol (B) ≤ Vol (Em), and we have from Lemma 3.1 (vn is the volume of the
unit-ball in Rn):

Vol (B) = vn

(√
ε

2L (f)

)n

≤ Vol (Em) ≤ e−
m

2(n+1) (1− αjm)
mn
2 vnR

n.

Thence (√
ε

2L (f)

)n

≤ e
−m

2(n+1) (1− αjm)
mn
2 Rn.
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Thus,

ε ≤ 2L (f)R2
[
e

−1
(n(n+1))

]m
(1− αjm)m ,

which combined with the fact that 0 ≤ αjm ≤ 1 yields

ε ≤ 2L (f)R2
[
e

−1
(n(n+1))

]m
.

The latter inequality is equivalent to m ≤ n (n+ 1) ln
(

2L(f)R2

ε

)
, which is a contra-

diction to (3.3), thus showing the desired result `m − f ∗ ≤ ε.

4 Numerical Results

In this section we present several numerical results which illustrate the advantage of
the IDCE method over the following three methods:

• The classical ellipsoid method (CE).

• The deep-cut ellipsoid method developed in [?] (DCE).

• The projected gradient method (PG) with a constant stepsize (chosen to be
1/L(f)) [?].

We will test the four methods on the bound-constrained quadratic problem:

(P):
min xTAx
s.t. x ∈ X,

where A is a positive definite n × n matrix and X = [−1, 1]n. The unique optimal
solution is obviously x = 0. Figure 1 describes the progress of the minimal objective
function value for n = 7 with A being randomly chosen. It is clear from the figure
that in this example after 100 iterations, all the three other methods reach the unique
optimal solution with an accuracy of no more than 10−3 and the IDCE method
reaches the unique solution approximation of 10−4. The IDCE method reaches an
10−3-optimal solution after only 45 iterations.

We repeated this experiment with n = 9 and a randomly generated A and the
results are shown in Figure 2. The results here are similar to the previous example,
but here the three other methods behave even more poorly – they do not reach much
more than approximately 10−1 accuracy.

We made more extensive set of tests in which we solved 100 problems – each
corresponding to a realization of the positive definite n×n matrix A for n = 5, . . . , 10
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Figure 1: The minimal objective function value for the first 100 iterations of the four
methods (7× 7 example)

matrix. In Table 1, For each i, and for each choice of an algorithm, we indicate how
many problems (out of the 100) reached an ε-optimal solution for ε = 10−3, 10−5, 10−6

after 100 iterations.
For the moderate accuracy ε = 10−3, the IDCE is usually slightly better than

the other ellipsoid variants CE and DCE, but the PG method is a bit better for
i = 8, 9, 10. For the greater accuracies ε = 10−5, 10−6 it is clear that the IDCE
method significantly outperforms CE and DCE and is better than PG for the smaller
dimensions.

References

13



0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

number of iteration

m
in

im
al

 v
al

ue

basic ellipsoid
gradient projection
deep cut ellipsoid
DCE

Figure 2: The minimal objective function value for the first 100 iterations of the four
methods (9× 9 example)

n 10−3 10−5 10−6

CE DCE IDCE PG CE DCE IDCE PG CE DCE IDCE PG

5 100 100 100 87 62 51 100 72 9 7 100 68

6 99 99 99 91 30 36 99 79 1 5 95 73

7 100 100 99 96 12 15 99 85 0 0 73 84

8 97 95 96 100 12 20 96 95 2 3 44 92

9 88 89 91 98 9 9 83 92 0 2 26 92

10 86 90 93 100 9 3 74 98 0 1 20 98

Table 1: Number of problems (out of 100) for which an ε-optimal solution is reached
after 100 iterations.
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