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Abstract

We consider a general class of convex optimization problems in which one seeks to
minimize a strongly convex function over a closed and convex set which is by itself an
optimal set of another convex problem. We introduce a gradient-based method, called
the minimal norm gradient method, for solving this class of problems, and establish the
convergence of the sequence generated by the algorithm as well as a rate of convergence
of the sequence of function values. Several numerical examples are given in order to
illustrate our results.

1 Introduction

1.1 Problem Formulation

Consider the general convex constrained optimization problem given by

(P):
min f (x)
s.t. x ∈ X,

where the following assumptions are made throughout the paper:

• X is a nonempty, closed and convex subset of Rn.

• The objective function f is convex and continuously differentiable over Rn, and its
gradient is Lipschitz with constant L:

‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖ for all x,y ∈ Rn. (1.1)

• The optimal set of (P), denoted by X∗, is nonempty. The optimal value is denoted by
f ∗.

Problem (P) might have multiple optimal solutions, and in this case it is natural to consider
the minimal norm solution problem in which one seeks to find the optimal solution of (P)
with a minimal Euclidean norm:

(Q): min

{
1

2
‖x‖2 : x ∈ X∗

}
.
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We will denote the optimal solution of (Q) by x∗Q. A well-known approach to tackling
problem (Q) is via the celebrated Tikhonov regularization. More precisely, for a given ε > 0,
consider the convex problem defined by

(Qε) : min
{
f (x) +

ε

2
‖x‖2 : x ∈ X

}
.

The above problem is the so-called Tikhonov regularized problem [?]. Let us denote the
unique optimal solution of (Qε) by xε. In [?], Tikhonov showed in the linear case – that is,
when f is a linear function and X is an intersection of halfspaces – that xε → x∗Q as ε→ 0+.
Therefore, for a small enough ε > 0, the vector xε can be considered as an approximation
of the minimal norm solution x∗Q. A stronger result in the linear case showing that for a
small enough ε, xε is in fact exactly the same as x∗Q was established in [?] and was later
on generalized to the more general convex case in [?]. Further generalization for the convex
case without differentiability assumptions can be found in [?] as well as a wealth of relevant
references.

From a practical point of view, the connection just alluded between the minimal norm
solution and the solutions of the Tikhonov regularized problems, does not yield an explicit
algorithm for solving (Q). It is not clear how to choose an appropriate sequence of regulariza-
tion parameters εk → 0+, and how to solve the emerging subproblems. An exception can be
found in the work [?] where it was shown that if an associated optimization problem possess
a Lagrange multiplier, then an explicit expression for an exact regularization parameter (in
terms of the Lagrange multiplier) exists. A different approach for solving (Q) in the linear
case was developed in [?] where it was suggested to invoke a Newton-type method for solving
a reformulation of (Q) as an unconstrained smooth minimization problem.

The main contribution of this paper is the construction and analysis of a new first order
method for solving a generalization of problem (Q), which we call the minimal norm-like so-
lution problem (MNP). Problem (MNP) consists of finding the optimal solution of problem
(P) which minimizes a given strongly convex function ω:

(MNP): min{ω (x) : x ∈ X∗}.

The function ω is assumed to satisfy the following:

• ω is a strongly convex function over Rn with parameter σ > 0.

• ω is a continuously differentiable function.

By the strong convexity of ω, problem (MNP) has a unique solution which will be denoted
by x∗mn.

For simplicity, problem (P) will be called the core problem, problem (MNP) will be called
the outer problem and correspondingly, ω will be called the outer objective function. It is
obvious that problem (Q) is a special case of problem (MNP) with the choice ω (x) ≡ 1

2
‖x‖2.

The so-called prox center of ω is given by

a ≡ argmin
x∈Rn

ω (x) .

We assume without loss of generality that ω (a) = 0. Under this setting we also have

ω(x) ≥ σ

2
‖x− a‖2 for all x ∈ Rn. (1.2)
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1.2 Stage by Stage Solution

It is important to note that the minimal norm-like solution optimization problem (MNP)
can also be formally cast as the following convex optimization problem:

min ω(x)
s.t. f(x) ≤ f ∗,

x ∈ X.
(1.3)

Of course, the optimal value of the core problem f ∗ is not known in advance, which suggests a
solution method that consists of two stages: first find the optimal value of the core problem,
and then solve problem (??). This two-stage solution technique has two main drawbacks.
First, the optimal value f ∗ is often not found exactly but rather up to some tolerance, which
causes the feasible set of the outer problem to be incorrect or even infeasible. Second, even if
it would have been possible to compute f ∗ exactly, problem (??) inherently does not satisfy
Slater’s condition, which means that this two-stage approach will usually run into numerical
problems. We note that the lack of regularity condition for problem (??) implies that known
optimality conditions such as Karush-Kuhn-Tucker are not valid; see for example the work
[?] where different optimality conditions are derived.

It is interesting to note that the minimal norm-like optimization problem is a special case
of the more general class of bilevel programming problems, for more details see the survey
paper [?] and many references therein.

1.3 Paper Layout

This paper presents a first order method, called the minimal norm gradient method, aimed at
solving the minimal norm-like solution problem (MNP). As opposed to the above mentioned
method, the suggested method is an iterative algorithm that solves problem (MNP) directly
and not “stage by stage” or via a solution of a sequence of related optimization problems.
In Section ?? the required mathematical background on orthogonal projections, gradient
mappings and cutting planes is presented. The minimal norm gradient method is derived
and analyzed in Section ??. At each iteration, the required computations are (i) a gradient
evaluation of the core objective function, (ii) an orthogonal projection onto the feasible set of
the core problem and (iii) a solution of a problem consisting of minimizing the outer objective
function subject to the intersection of two halfspaces. In Section ?? the convergence of the
sequence generated by the method is established along with an O(1/

√
k) convergence of the

sequence of function values (k being the iteration index). Finally, in Section ??, a numerical
example of a portfolio optimization is described as well as a set of test cases arising from
ill-conditioned inverse problems arising from discretizations of Fredholm integral equations
of the first kind.
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2 Mathematical Toolbox

2.1 The Orthogonal Projection

The orthogonal projection operator onto a given closed and convex set S ⊆ Rn is denoted
by

PS (x) ≡ argmin
y∈S

‖x− y‖2 .

The orthogonal projection operator possesses several important properties; two of them
will be useful in our analysis, and are thus recalled here.

• Nonexpansive:

‖PS (x)− PS (y)‖ ≤ ‖x− y‖ for all x,y ∈ Rn.

• Firmly Nonexpansive:

〈PS (x)− PS (y) ,x− y〉 ≥ ‖PS (x)− PS (y)‖2 for all x,y ∈ Rn. (2.1)

In addition, the operator PS is characterized by the following inequality (see, e.g., [?])

〈x− PS (x) ,y − PS (x)〉 ≤ 0 for all x ∈ Rn, y ∈ S. (2.2)

2.2 Bregman Distances

The definition of a Bregman distance associated with a given strictly convex function is given
below.

Definition 2.1 (Bregman distance). Let h : Rn → R be a strictly convex function. The
Bregman distance is the following bifunction

Dh(x,y) := h(x)− h(y)− 〈∇h(y),x− y〉 . (2.3)

Two basic properties of bregman distances are:

• Dh (x,y) ≥ 0 for any x,y ∈ Rn.

• Dh (x,y) = 0 if and only if x = y.

If, in addition, h is strongly convex with parameter σ > 0, then

Dh (x,y) ≥ σ

2
‖x− y‖2 .

In particular, the strongly convex function ω defined in Section ?? whose prox center is a
satisfies:

ω (x) = Dω (x, a) ≥ σ

2
‖x− a‖2 for any x ∈ Rn

and
Dω (x,y) ≥ σ

2
‖x− y‖2 for any x,y ∈ Rn. (2.4)

One of the fundamental identities that will be used in our analysis is the following “three
point identity” which is stated via the terminology used in this paper.
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Lemma 2.1 (Three point identity [?]). Let h : Rn → R be a strongly convex function with
strong convexity parameter σ > 0. Then for any x,y, z ∈ Rn:

Dh (x,y) +Dh (y, z)−Dh (x, z) = 〈x− y,∇h (z)−∇h (y)〉 . (2.5)

2.3 The Gradient Mapping

We define the following two mappings which are essential in our analysis of the proposed
algorithm for solving (MNP).

Definition 2.2. For every M > 0,

(i) the proj-grad mapping is defined by

TM (x) ≡ PX

(
x− 1

M
∇f (x)

)
for all x ∈ Rn.

(ii) the gradient mapping (see also [?]) is defined by

GM (x) ≡M (x− TM (x)) = M

[
x− PX

(
x− 1

M
∇f (x)

)]
.

Remark 2.1 (Unconstrained case). In the unconstrained setting, that is, when X = Rn,
the orthogonal projection is the identity operator and hence

(i) The proj-grad mapping TM is equal to I − 1
M
∇f .

(ii) The gradient mapping GM is equal to ∇f .

It is well known that GM (x) = 0 if and only if x ∈ X∗. Another important and known
property of the gradient mapping is the monotonicity of its norm with respect to M (see [?,
Lemma 2.3.1, p. 236]).

Lemma 2.2. For any x ∈ Rn, the function

g(M) ≡ ‖GM (x)‖ M > 0

is monotonically nondecreasing over (0,∞).

2.4 Cutting Planes

The notion of a cutting plane is a fundamental concept in optimization algorithms such as
the ellipsoid and analytic cutting plane methods. As an illustration, let us first consider
the unconstrained setting in which X = Rn. Given a point x ∈ Rn, the idea is to find a
hyperplane which separates x from X∗. For example, it is well known that for any x ∈ X,
the following inclusion holds:

X∗ ⊆ {z ∈ Rn : 〈∇f (x) ,x− z〉 ≥ 0} .
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The importance of the above result is that it “eliminates” the open halfspace

{z ∈ Rn : 〈∇f (x) ,x− z〉 < 0} .

The same cut is also used in the ellipsoid method where in the nonsmooth case the gradient
is replaced with a subgradient (see, e.g., [?, ?]). Note that x belongs to the cut, that is, to
the hyperplane given by:

H = {z ∈ Rn : 〈∇f (x) ,x− z〉 = 0} ,

which means that H is a so-called neutral cut. In a deep cut, the point x does not belong
to the corresponding hyperplane. Deep cuts are at the core of the minimal norm gradi-
ent method that will be described in the sequel, and in this subsection we describe how to
construct them in several scenarios (specifically, known/unknown Lipschitz constant, con-
strained/unconstrained versions). The halfspaces corresponding to the deep cuts are always
of the form

QM,α,x ≡
{

z ∈ Rn : 〈GM (x) ,x− z〉 ≥ 1

αM
‖GM (x)‖2

}
, (2.6)

where the values of α and M depend on the specific scenario. Of course, in the unconstrained
case, GM (x) ≡ ∇f (x), and (??) reads as

QM,α,x ≡
{

z ∈ Rn : 〈∇f (x) ,x− z〉 ≥ 1

αM
‖∇f (x)‖2

}
.

We will now split the analysis into two scenarios. In the first one, the Lipschitz constant L
is known, while in the second, it is not.

2.4.1 Known Lipschitz Constant

In the unconstrained case (X = Rn), and when the Lipschitz constant L is known, we can
use the following known inequality (see, e.g., [?]):

〈∇f (x)−∇f (y) ,x− y〉 ≥ 1

L
‖∇f (x)−∇f (y)‖2 for every x,y ∈ Rn. (2.7)

By plugging y = x∗ for some x∗ ∈ X∗ in (??) and recalling that ∇f (x∗) = 0, we obtain
that

〈∇f (x) ,x− x∗〉 ≥ 1

L
‖∇f (x)‖2 (2.8)

for every x ∈ Rn and x∗ ∈ X∗. Thus, X∗ ⊆ QL,1,x for any x ∈ Rn.
When X is not the entire space Rn, the generalization of (??) is a bit intricate and in

fact the result we can prove is the slightly “weaker” inclusion X∗ ⊆ QL, 4
3
,x. The result is

based on the following property of the gradient mapping GL which was proven in the thesis
[?] and is given here for the sake of completeness.

Lemma 2.3. The gradient mapping GL satisfies the following relation:

〈GL (x)−GL (y) ,x− y〉 ≥ 3

4L
‖GL (x)−GL (y)‖2 (2.9)

for any x,y ∈ Rn.
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Proof. From (??) it follows that〈
TL (x)− TL (y) ,

(
x− 1

L
∇f (x)

)
−
(

y − 1

L
∇f (y)

)〉
≥ ‖TL (x)− TL (y)‖2 .

Since TL = I − 1
L
GL, we obtain that〈(

x− 1

L
GL (x)

)
−
(

y − 1

L
GL (y)

)
,

(
x− 1

L
∇f (x)

)
−
(

y − 1

L
∇f (y)

)〉
≥
∥∥∥∥(x− 1

L
GL (x)

)
−
(

y − 1

L
GL (y)

)∥∥∥∥2

,

which is equivalent to〈(
x− 1

L
GL (x)

)
−
(

y − 1

L
GL (y)

)
, (GL (x)−∇f (x))− (GL (y)−∇f (y))

〉
≥ 0.

(2.10)

Thence

〈GL (x)−GL (y) ,x− y〉 ≥ 1

L
‖GL (x)−GL (y)‖2 + 〈∇f (x)−∇f (y) ,x− y〉

− 1

L
〈GL (x)−GL (y) ,∇f (x)−∇f (y)〉 .

Now it follows from (??) that

L 〈GL (x)−GL (y) ,x− y〉 ≥ ‖GL (x)−GL (y)‖2 + ‖∇f (x)−∇f (y)‖2

〈GL (x)−GL (y) ,∇f (x)−∇f (y)〉 .

From the Cauchy-Schwarz inequality we get

L 〈GL (x)−GL (y) ,x− y〉 ≥ ‖GL (x)−GL (y)‖2 + ‖∇f (x)−∇f (y)‖2

−‖GL (x)−GL (y) ‖·‖∇f (x)−∇f (y)‖ . (2.11)

By denoting α = ‖GL (x)−GL (y)‖ and β = ‖∇f (x)−∇f (y)‖, the right-hand side of (??)
reads as α2 + β2 − αβ and satisfies:

α2 + β2 − αβ =
3

4
α2 +

(α
2
− β

)2

≥ 3

4
α2,

which combined with (??) yields the inequality

L 〈GL (x)−GL (y) ,x− y〉 ≥ 3

4
‖GL (x)−GL (y)‖2 .

Thus, (??) holds.
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By plugging y = x∗, for some x∗ ∈ X∗ in (??) we obtain that indeed

X∗ ⊆ QL, 4
3
,x.

We summarize the above discussion in the following lemma which describes the deep cuts in
the case when the Lipschitz constant is known.

Lemma 2.4. For any x ∈ Rn and x∗ ∈ X∗, we have

〈GL (x) ,x− x∗〉 ≥ 3

4L
‖GL (x)‖2 , (2.12)

that is,
X∗ ⊆ QL, 4

3
,x.

If, in addition, X = Rn then

〈∇f (x) ,x− x∗〉 ≥ 1

L
‖∇f (x)‖2 , (2.13)

that is,
X∗ ⊆ QL,1,x.

2.4.2 Unknown Lipschitz Constant

When the Lipschitz constant is not known, the following result is most useful.

Lemma 2.5. Let x ∈ Rn be a vector satisfying the inequality

f (TM (x)) ≤ f (x) + 〈∇f (x) , TM (x)− x〉+
M

2
‖TM (x)− x‖2 . (2.14)

Then, for any x∗ ∈ X∗, the inequality

〈GM (x) ,x− x∗〉 ≥ 1

2M
‖GM (x)‖2 (2.15)

holds true, that is,
X∗ ⊆ QM,2,x.

Proof. Let x∗ ∈ X∗. By (??) it follows that

0 ≤ f (TM (x))−f (x∗) ≤ f (x)−f (x∗)+〈∇f (x) , TM (x)− x〉+M

2
‖TM (x)− x‖2 . (2.16)

Since f is convex, f (x)− f (x∗) ≤ 〈∇f (x) ,x− x∗〉, which combined with (??) yields

0 ≤ 〈∇f (x) , TM (x)− x∗〉+
M

2
‖TM (x)− x‖2 . (2.17)

In addition, by the definition of TM and (??) we have the following inequality:〈
x− 1

M
∇f (x)− TM (x) , TM (x)− x∗

〉
≥ 0.
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Summing the latter inequality multiplied by M with (??) yields the inequality

M 〈x− TM (x) , TM (x)− x∗〉+
M

2
‖TM (x)− x‖2 ≥ 0,

which after some simple algebraic manipulation, can be shown to be equivalent to the desired
result (??).

When M ≥ L, the inequality (??) is satisfied due to the so-called descent lemma, which
is now recalled as it will also be essential in our analysis (see [?]).

Lemma 2.6 (Descent Lemma). Let f : Rn → R be a continuously differentiable function
whose gradient is Lipschitz with constant L. Then for any x,y ∈ Rn,

f (x) ≤ f (y) + 〈∇f (y) ,x− y〉+
L

2
‖x− y‖2 . (2.18)

Remark 2.2. The inequality (??) for M ≥ L is well known, see for example [?].

3 The Minimal Norm Gradient Algorithm

Before describing the algorithm, we require the following notation for the optimal solution
of the problem consisting of minimizing ω over a given closed and convex set S:

Ω (S) ≡ argmin
x∈S

ω (x) . (3.1)

By the optimality condition in problem (??), it follows that

x̃ = Ω (S)⇔ 〈∇ω (x̃) ,x− x̃〉 ≥ 0 for all x ∈ S. (3.2)

When ω (x) = 1
2
‖x− a‖2, then Ω (S) = PS (a).

We are now ready to describe the algorithm in the case when the Lipschitz constant L is
known.

The Minimal Norm Gradient Method (Known Lipschitz Constant)

Input: L - a Lipschitz constant of ∇f .
Initialization: x0 = a.
General Step (k = 1 , 2 , . . . ):

xk = Ω
(
Qk ∩W k

)
,

where

Qk = QL,β,xk−1
,

W k = {z ∈ Rn : 〈∇ω (xk−1) , z− xk−1〉 ≥ 0} ,

and β is equal to 4
3

if X 6= Rn and to 1 if X = Rn.
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When the Lipschitz constant is unknown, then a backtracking procedure should be in-
corporated into the method.

The Minimal Norm Gradient Method (Unknown Lipschitz Constant)

Input: L0 > 0, η > 1.
Initialization: x0 = a.
General Step (k = 1 , 2 , . . . ):

• Find the smallest nonnegative integer number ik such that with L̄ = ηikLk−1

the inequality

f (TL̄ (x)) ≤ f (x) + 〈∇f (x) , TL̄ (x)− x〉+
L̄

2
‖TL̄ (x)− x‖2

is satisfied and set Lk = L̄.

• Set
xk = Ω

(
Qk ∩W k

)
,

where

Qk = QLk,2,xk−1
,

W k = {z ∈ Rn : 〈∇ω (xk−1) , z− xk−1〉 ≥ 0} .

To unify the analysis, in the constant stepsize setting we will artificially define Lk = L
for any k and η = 1. In this notation the definition of the halfspace Qk in both the constant
and backtracking stepsize rules can be described as

Qk = QLk,β,xk−1
, (3.3)

where β is given by

β ≡


4
3

X 6= Rn, known Lipschitz const.
1 X = Rn, known Lipschitz const.
2 unknown Lipschitz const.

(3.4)

Remark 3.1. By the definition of the backtracking rule it follows that

L0 ≤ Lk ≤ ηL, k = 0, 1, 2, . . . . (3.5)

Therefore, it follows from Lemma ?? that for any x ∈ Rn,

‖GL0 (x)‖ ≤ ‖GLk
(x)‖ ≤ ‖GηL (x)‖ . (3.6)

The following example shows that in the Euclidean setting, the main step has a simple
and explicit formula.
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Example 1. In the Euclidean setting when ω = 1
2
‖·‖2, we have Ω (S) = PS and the

computation of the main step
xk = Ω

(
Qk ∩W k

)
boils down to finding the orthogonal projection onto an intersection of two halfspaces. This
is a simple task, since the orthogonal projection onto the intersection of two halfspaces:

T = {x ∈ Rn : 〈a1,x〉 ≤ b1, 〈a2,x〉 ≤ b2} (a1, a2 ∈ Rn, b1, b2 ∈ R)

is given by the following explicit formula:

PT (x) =


x, α ≤ 0 and β ≤ 0,
x− (β/ν) a2, α ≤ π (β/ν) and β > 0,
x− (α/µ) a1, β ≤ π (α/µ) and α > 0,
x + (α/ρ) (πa2 − νa1) + (β/ρ) (πa1 − µa2) , otherwise,

where here
π = 〈a1, a2〉 , µ = ‖a1‖2 , ν = ‖a2‖2 , ρ = µν − π2

and
α = 〈a1,x〉 − b1 and β = 〈a2,x〉 − b2.

Note that the algorithm is well defined as long as the set Qk ∩W k is nonempty. The
latter property does hold true and we will now show a stronger result stating that in fact
X∗ ⊆ Qk ∩W k for all k.

Lemma 3.1. Let {xk}k≥0 be the sequence generated by the minimal norm gradient method
with either a constant or a backtracking stepsize rule. Then

X∗ ⊆ Qk ∩W k (3.7)

for any k = 1, 2, . . ..

Proof. By Lemmata ?? and ?? it follows that X∗ ⊆ Qk for every k = 1, 2, . . . and we will
now prove by induction on k that X∗ ⊆ W k. Since W 1 = Rn, the claim is trivial for k = 1.
Suppose that the claim holds for k = n, that is, we assume that X∗ ⊆ W n. To prove
that X∗ ⊆ Qn+1 ∩W n+1, let us take u ∈ X∗. Note that X∗ ⊆ Qn ∩W n, and thus, since
xn = Ω (Qn ∩W n), it follows from (??) that

〈∇ω (xn) ,xn − u〉 ≤ 0.

This implies that u ∈ W n+1 and the claim that X∗ ⊆ Qk ∩W k for all k is proven.

Remark 3.2. We note that the minimal norm gradient method requires the computation of
the gradient mapping at each iteration, meaning in particular that the orthogonal projection
onto the set X is computed at each iteration. Therefore, to apply the method, it is assumed
that the set X is “simple” enough so that computing the orthogonal projection onto it is an
easy task.

11



4 Convergence Analysis

Our first claim is that the minimal norm gradient method generates a sequence {xk}k≥0

which converges to x∗mn = Ω (X∗).

Theorem 4.1 (Sequence Convergence). Let {xk}k≥0 be the sequence generated by the min-
imal norm gradient method with either a constant or a backtracking stepsize rule. Then

(i). The sequence {xk}k≥0 is bounded.

(ii). The following inequality holds for any k = 1, 2, . . .:

Dω (xk,xk−1) +Dω (xk−1, a) ≤ Dω (xk, a) . (4.1)

(iii). xk → x∗mn as k →∞.

Proof. (i). Since xk = Ω
(
Qk ∩W k

)
, it follows that for any u ∈ Qk ∩W k, and in particular

for any u ∈ X∗
ω (xk) ≤ ω (u) , (4.2)

which combined with (??) establishes the boundedness of {xk}k≥0.
(ii). By the three point identity (see Lemma ??) we have

Dω (xk,xk−1) +Dω (xk−1, a)−Dω (xk, a) = 〈−∇ω (xk−1) ,xk − xk−1〉 .

By the definition of W k we have xk−1 = Ω
(
W k
)
. In addition, xk ∈ W k, and hence by (??)

it follows that
〈∇ω (xk−1) ,xk − xk−1〉 ≥ 0

and therefore (??) follows.
(iii). Recall that for any x ∈ Rn, we have Dω (x, a) = ω (x). By (??) it follows that the se-
quence {ω(xk)}k≥0 = {Dω (xk, a)}k≥0 is nondecreasing and bounded, and hence limk→∞ ω (xk)
exists. This, together with (??) implies that

lim
k→∞

Dω (xk,xk−1) = 0,

and hence, since Dω (xk,xk−1) ≥ σ
2
‖xk − xk−1‖2, it follows that

lim
k→∞
‖xk − xk−1‖ = 0. (4.3)

Since xk ∈ Qk we have

〈GLk
(xk−1) ,xk−1 − xk〉 ≥

1

βLk
‖GLk

(xk−1)‖2 ,

which by the Cauchy-Schwarz inequality, implies that

1

βLk
‖GLk

(xk−1)‖ ≤ ‖xk−1 − xk‖ .
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Now, from (??) and (??) it follows that

1

ηL
‖GL0 (xk−1)‖ ≤ ‖xk−1 − xk‖ . (4.4)

To show that {xk}k≥0 converges to x∗mn, it is enough to show that any convergent subsequence
converges to x∗mn. Let then {xkn}n≥0 be a convergent subsequence whose limit is w. From
(??) and (??) along with the continuity of GL0 , it follows that GL0 (w) = 0, so that w ∈ X∗.
Finally, we will prove that w = Ω (X∗) = x∗mn. Since xkn = Ω

(
Qkn ∩W kn

)
, it follows by

(??):
〈∇ω (xkn) , z− xkn〉 ≥ 0 for all z ∈ Qkn ∩W kn .

Since X∗ ⊆ Qkn ∩W kn (see Lemma ??), we obtain that

〈∇ω (xkn) , z− xkn〉 ≥ 0 for all z ∈ X∗.

Taking the limit as n→∞, and using the continuity of ∇ω, we get

〈∇ω (w) , z−w〉 ≥ 0 for all z ∈ X∗.

Therefore, it follows from (??) that w = Ω (X∗) = x∗mn, and the result is proven.

The next result shows that in the unconstrained case (X = Rn), the function values of
the sequence generated by the minimal norm gradient method, {f (xk)}, converges with a

rate of O
(

1/
√
k
)

(k being the iteration index) to the optimal value of the core problem. In

the constrained case, the value f (xk) is by no means a measure of the quality of the iterate
xk as it is not necessarily feasible. Instead, we will show that the rate of convergence of
the function values of the feasible sequence TLk

(xk) (which in any case is computed by the

algorithm), is also O
(

1/
√
k
)

. We also note that since the minimal norm gradient method

is non-monotone, the convergence results are with respect to the minimal function value
obtained until iteration k.

Theorem 4.2 (Rate of Convergence). Let {xk}k≥0 be the sequence generated by the minimal
norm gradient method with either a constant or backtracking stepsize rules. Then for every
k ≥ 1, one has

min
1≤n≤k

f (TLn (xn))− f ∗ ≤ βηL ‖a− x∗mn‖
2

√
k

, (4.5)

where β is given in (??). If X = Rn, then in addition

min
1≤n≤k

f (xn)− f ∗ ≤ βηL ‖a− x∗mn‖
2

√
k

. (4.6)

Proof. Let n be a nonnegative integer. Since xn+1 ∈ Qn+1, we have by the Cauchy-Schwarz
inequality:∥∥GLn+1 (xn)

∥∥2 ≤ βLn+1

〈
GLn+1 (xn) ,xn − xn+1

〉
≤ βLn+1

∥∥GLn+1 (xn)
∥∥ ‖xn − xn+1‖ .
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Therefore, ∥∥GLn+1 (xn)
∥∥ ≤ βLn+1 ‖xn − xn+1‖ . (4.7)

Squaring (??) and summing over n = 1, 2, . . . , k, one obtains

k∑
n=1

∥∥GLn+1 (xn)
∥∥2 ≤ β2L2

n+1

N∑
n=1

‖xn+1 − xn‖2 ≤ β2η2L2

N∑
n=1

‖xn+1 − xn‖2 . (4.8)

Taking into account (??) and (??), then from (??) we get

k∑
n=1

∥∥GLn+1 (xn)
∥∥2 ≤ β2η2L2

k∑
n=1

‖xn+1 − xn‖2

≤ 2β2η2L2

σ

k∑
n=1

Dω (xn+1,xn)

≤ 2β2η2L2

σ

k∑
n=1

(Dω (xn+1, a)−Dω (xn, a))

=
2β2η2L2

σ
Dω (xk+1, a) =

2β2η2L2

σ
ω (xk+1)

≤ 2β2η2L2

σ
ω (x∗mn) . (4.9)

From the definition of Ln,

f (TLn (xn))− f ∗ ≤ f (xn)− f ∗ + 〈∇f (xn) , TLn (xn)− xn〉+
Ln
2
‖TLn (xn)− xn‖2 . (4.10)

Since the function f is convex, it follows that f (xn)− f ∗ ≤ 〈∇f (xn) ,xn − x∗mn〉, which
combined with (??) yields

f (TLn (xn))− f ∗ ≤ 〈∇f (xn) , TLn (xn)− x∗mn〉+
Ln
2
‖TLn (xn)− xn‖2 . (4.11)

By the characterization of the projection operator given in (??) with x = xn− 1
Ln
∇f (xn)

and y = x∗mn, we have that〈
xn −

1

Ln
∇f (xn)− TLn (xn) ,x∗mn − TLn (xn)

〉
≤ 0,

which combined with (??) gives

f (TLn (xn))− f ∗ ≤ Ln 〈xn − TLn (xn) , TLn (xn)− x∗mn〉+
Ln
2
‖TLn (xn)− xn‖2

= 〈GLn (xn) , TLn (xn)− x∗mn〉+
1

2Ln
‖GLn( xn )‖2

= 〈GLn (xn) , TLn (xn)− xn〉+ 〈GLn(xn),xn − x∗mn〉+
1

2Ln
‖GLn (xn)‖2

= 〈GLn (xn) ,xn − x∗mn〉 −
1

2Ln
‖GLn (xn)‖2

≤ 〈GLn (xn) ,xn − x∗mn〉
≤ ‖GLn (xn)‖ · ‖xn − x∗mn‖ .
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Squaring the above inequality and summing over n = 1, . . . , k, we get

k∑
n=1

(f (TLn (xn))− f ∗)2 ≤
k∑

n=1

‖GLn (xn)‖2 · ‖xn − x∗mn‖
2 . (4.12)

Now, from the three point identity (see Lemma ??), we obtain that

Dω (x∗mn,xn) +Dω (xn, a)−Dω (x∗mn, a) = −〈∇ω (xn) ,x∗mn − xn〉 ≤ 0

and hence
Dω (x∗mn,xn) ≤ Dω (x∗mn, a) = ω (x∗mn) ,

so that

‖xn − x∗mn‖
2 ≤ 2ω (x∗mn)

σ
. (4.13)

Combining (??) and (??) along with (??) we get that

k∑
n=1

(f (TLn (xn))− f ∗)2 ≤ 2ω (x∗mn)

σ

k∑
n=1

‖GLn (xn)‖2 ≤ 4β2η2L2

σ2
ω (x∗mn)2

from which we obtain that

k min
n=1,2,...,k

(f (TLn (xn))− f ∗)2 ≤ 4β2η2L2

σ2
ω (x∗mn)2 ,

proving the result (??). The result (??) in the case when X = Rn is established by following
the same line of proof along with the observation that due to the convexity of f

f (xn)− f ∗ ≤ ‖∇f (xn)‖ · ‖xn − x∗mn‖ = ‖GLn (xn)‖ · ‖xn − x∗mn‖ .

5 Numerical Examples

5.1 Markowitz Portfolio Optimization Model

Consider the Markowitz portfolio optimization problem [?]. Suppose that we are given N
assets numbered 1, 2, . . . , N for which a vector of expected returns µ ∈ RN and a positive
semidefinite covariance matrix Σ ∈ RN×N are known. In the Markowitz portfolio optimiza-
tion problem we seek to find a minimum variance portfolio subject to the constraint that
the expected return is greater or equal to a certain predefined minimal value r0:

min wTΣw

s.t.
∑N

i=1wi = 1,
wTµ ≥ r0,
w ≥ 0.

(5.1)
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The decision variables vector w describes the allocation of the given resource to the different
assets. When the covariance matrix is rank deficient (that is, positive semidefinite but not
positive definite), the optimal solution is not unique, and a natural issue in this scenario is to
find one portfolio among all the optimal portfolios that is “best” with respect to an objective
function different than the portfolio variance. This is, of course, a minimal norm-like solution
optimization problem. We note that the situation in which the covariance matrix is rank
deficient is quite common since the covariance matrix is usually estimated from the past
trading price data and when the number of sampled periods is smaller than the number
of assets, the covariance matrix is surely rank deficient. As a specific example, consider
the portfolio optimization problem given by (??), where the expected returns vector µ and
convariance matrix Σ are both estimated from real data on 8 types of assets (N = 8): US 3
month treasury bills, US government long bonds, SP 500, Wilshire 500, NASDAQ composite,
corporate bond index, EAFE and Gold. The yearly returns are from 1973 to 1994. The data
can be found at http://www.princeton.edu/ rvdb/ampl/nlmodels/markowitz/ and we have used
the data between the years 1974 and 1977 in order to estimate µ and Σ which are given
below:

µ = (1.0630, 1.0633, 1.0670, 1.0853, 1.0882, 1.0778, 1.0820, 1.1605)T

Σ =


0.0002 −0.0005 −0.0028 −0.0032 −0.0039 −0.0007 −0.0024 0.0048
−0.0005 0.0061 0.0132 0.0136 0.0126 0.0049 −0.0003 −0.0154
−0.0028 0.0132 0.0837 0.0866 0.0810 0.0196 0.0544 −0.1159
−0.0032 0.0136 0.0866 0.0904 0.0868 0.0203 0.0587 −0.1227
−0.0039 0.0126 0.0810 0.0868 0.0904 0.0192 0.0620 −0.1232
−0.0007 0.0049 0.0196 0.0203 0.0192 0.0054 0.0090 −0.0261
−0.0024 −0.0003 0.0544 0.0587 0.0620 0.0090 0.0619 −0.0900
0.0048 −0.0154 −0.1159 −0.1227 −0.1232 −0.0261 −0.0900 0.1725

.
The sampled covariance matrix was computed via the following known formula for an unbi-
ased estimator of the covariance matrix:

Σ :=
1

T − 1
R

(
IT −

1

T
11T

)
RT .

Here T = 4 (number of periods) and R is the 8× 4 matrix containing the assets’ returns for
each of the 4 years. The rank of the matrix Σ is at most 4, thus it is rank deficient. We have
chosen the minimal return as r0 = 1.05. In this case the portfolio problem (??) has multiple
optimal solution, and we therefore consider problem (??) as the core problem and introduce
a second objective function for the outer problem. Here we choose

ω (x) =
1

2
‖x− a‖2 .

Suppose that we wish to invest as much as possible in gold. Then we can choose a =
(0, 0, 0, 0, 0, 0, 0, 1)T and in this case the minimal norm gradient method gives the solution

(0.0000, 0.0000, 0.0995, 0.1421, 0.2323, 0.0000, 0.1261, 0.3999)T .

If we wish a portfolio which is as dispersed as possible, then we can choose

a = (1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8)T ,

and in this case the algorithm produces the following optimal solution:

(0.1531, 0.1214, 0.0457, 0.0545, 0.1004, 0.1227, 0.1558, 0.2466)T ,

which is very much different from the first optimal solution. Note that in the second optimal
solution the investment in gold is much smaller and that the allocation of the resources is
indeed much more scattered.
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5.2 Solution of Integral Equations

The minimal norm-like solution can be considered as a type of regularized solution of the core
problem. In this section we illustrate this stabilization effect of the minimal norm solution on
ill-conditioned inverse problems arising from discretizations of Fredholm integral equations
of the first kind. The tested problems were taken from the “regularization tools” package;
see [?] for a complete description. We begin by looking at the famous Phillips problem [?]
of estimating a function f(t) that solves the integral equation∫ 6

−6

k(s− t)f(t) = g(s),

where

k(t) =

{
1 + cos

(
πt
3

)
|t| < 3,

0 else

and

g(s) = (6− |s|)
(

1 +
1

2
cos
(πs

3

))
+

9

2π
sin

(
π|s|

3

)
.

Using Galkerin method with orthonormal basis functions, the system is discretized and re-
duces to a linear system of the form AxT = bT. The system and its solution are implemented
in the function phillips(n) from [?]. In this example we choose n = 1000, so that the num-
ber of decision variables is 1000. The observed right-hand side vector is given by

b = bT + σ ·w, (5.2)

where σ = 0.02 and each component of w is generated from a standard normal distribution.
The core problem we consider is the least squares problem

min
x
‖Ax− b‖2. (5.3)

The matrix A has zero eigenvalues and thus the core problem consists of multiple optimal
solutions. The outer objective function is chosen as

ω(x) = xTQx,

where Q = LTL + I and L approximates the first-derivative operator implemented in the
function get get_l(1000,1) from [?]. In addition to the solution obtained by the minimal
norm gradient method, we will consider several solutions of the corresponding Tikhonov
problem:

xλ = argmin
x

{
‖Ax− b‖2 + λxtQx

}
,

where λ is chosen by either the L-curve strategy [?] or the GCV (short for “generalized
cross validation”) [?] criterion. In addition, we also consider λ = 10−3 as a “representative”
of small values of λ. The result are shown in Figure ??. Clearly, the result produced by
the minimal norm gradient method is of a significantly better quality than the other three
alternatives. The choice λ = 10−3 was proven to be extremely poor while the L-curve
also gave a rather poor reconstruction. The choice of regularization parameter dictated
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Figure 1: Results of different regularization techniques for the inverse Phillips problem.

by the GCV strategy gave a reasonable reconstruction, but obviously worse than the one
generated by the minimal norm gradient method. To illustrate the attractiveness of the
minimal norm solution over different choices of Tikhonov solutions for a large amount of
runs, we performed Monte-Carlo simulations on three different inverse problems from the
“regularization” toolbox: phillips, baart and foxgood. For each of these inverse problems –
like in the Phillips example, we generated the corresponding exact linear system AxT = bT;
noise was added to the righthand side as in (??) for three different choices of standard
deviation: σ = 10−1, 10−2, 10−3. The core problem problem is the least squares problem (??)
and the outer objective function is ω(x) = xTQx. Table ?? describes the average of the
squared error residual ‖xT− x̂‖2 over 100 realizations of w where x̂ is the solution obtained
by one of the four examined methods. The best results in each row are marked by boldface.
Clearly, the minimal gradient method is competitive to the L-curve and GCV approaches
and is better in the majority of cases.
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Problem σ Squared Estimation Error
MNGM L-CURVE GCV λ = 10−3

phillips 10−3 1.06e-2 8.30 1.3e-2 5.83
phillips 10−2 1.22e-1 3.69 1.86e-1 5.83e+2
phillips 10−1 1.68 2.52 3.94 5.82e+4

baart 10−3 3.63e-2 4.14e-2 2.07e-2 4.26e-2
baart 10−2 3.82e-2 3.09e-2 2.14e-2 1.18
baart 10−1 4.30e-2 3.69e-2 6.92e-2 1.03e+2

foxgood 10−3 6.02e-3 7.5e-2 8.65e-3 7.04e-1
foxgood 10−2 8.61e-2 9.42e-2 1.77e-1 9.01
foxgood 10−1 5.71e-1 5.19e-1 3.88e-1 9.23e+2

Table 1: Comparison between the different regularization techniques on 100 realizations of
the error vector.
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