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Abstract

In 1937, the 16 years old Hungarian mathematician Endre Weiszfeld, in a seminal paper, devised a

method for solving the Fermat-Weber location problem – a problem whose origins can be traced back

to the 17th century. Weiszfeld’s method stirred up an enormous amount of research in the optimization

and location communities, and is also being discussed and used till these days. In this paper, we review

both the past and the ongoing research on Weiszfed’s method. The existing results are presented in

a self-contained and concise manner – some are derived by new and simplified techniques. We also

establish two new results using modern tools of optimization. First, we establish a non-asymptotic

sublinear rate of convergence of Weiszfeld’s method and, second, using an exact smoothing technique,

we present a modification of the method with a proven better rate of convergence.

Key words: Complexity analysis, Fermat-Weber problem, gradient method, localization theory, Weiszfeld’s

method.
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1 Introduction

One of the most fundamental location problems is the so-called Fermat-Weber problem, which consists of

finding a point that minimizes the sum of its weighted distances to a given finite set of anchor points. The

problem is credited to the well known French mathematician Pierre de Fermat, who at the beginning of

the 17th century posed the following question:

Given three points in a plane, find a fourth point such that the sum of its distances to the three

given points is as small as possible.
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The Italian physicist and mathematician Evangelista Torricelli (mostly known for inventing the barometer)

found a construction method of this point by ruler and compass, and it is therefore also called “the Toricelli

point”; see Figure 1 for an illustration of Torricelli’s construction for the case where the triangle has all

angles less than 120◦.
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Figure 1: Given a (proper) triangle, formed by three points a1, a2 and a3, construct three equilateral

triangles such that each contains one of the edges from the triangle a1a2a3. Then, circumscribe each

equilateral triangle. The unique point of intersection of these three circles is the point, that yields the

minimum distance to the points a1, a2 and a3; it is called “the Torricelli Point” and denoted by x∗.

At the beginning of the 20th century, the German economist Alfred Weber incorporated weights, and

was able to treat facility location problems with more than 3 facilities, and the problem was consequently

called “the Fermat-Weber problem”. Other names for the problem are “the Fermat problem”, “the Weber

problem”, “the Fermat-Toricelli problem”, “the Steiner problem” and many more variants. More details

on the history of the Fermat-Weber problem can be found, for example, in [1], as well as in the survey

papers [2] and the second part of the book [3]. More on the geometric aspects of the Fermat-Weber problem

as well as variations and open problems can be found in [4].

The purpose of this paper is not to present another review on the Fermat-Weber problem, but rather to

focus on a very simple algorithm designed for solving it, suggested in 1937 by the 16 years old Hungarian

mathematician Endre Vaszonyi Weiszfeld [5]. Quite interestingly, as indicated by Weiszfeld himself in [6],

the focus of Weiszfeld’s paper was not to design an algorithm for solving the Fermat-Weber problem, but

rather to prove a mathematical theorem, and in fact the all notion of an “algorithm” was unfamiliar to him,

as he himself indicated in [6]: “the word algorithm was unknown to me and to most mathematicians”. The

theorem itself was not new and was already established by Sturm [7] in 1884. Weiszfeld’s paper provided

three different proofs for this theorem and, in the first proof, he defined a sequence that was supposed to
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converge to the optimal solution of the Fermat-Weber problem.

Weiszfeld’s method stirred up an enormous amount of research and had an impact on researchers from

the optimization, as well as the location fields. The contribution of this paper is threefold. First, we will

review the intriguing story of the algorithm ever since its derivation in 1937 until today and present the

current status of convergence analysis. The presentation is self-contained, so the main convergence results

will be presented with proofs – some of them are new and simplified. Our second contribution is to provide

– using modern tools of optimization – a non-asymptotic sublinear rate of convergence analysis of the

method. Finally, noting that Weiszfeld’s method is essentially a gradient method, our third contribution

will be to present an accelerated version of the method, based on a combination of an exact smoothing

technique and an optimal gradient method; the resulting method is shown to have an improved rate of

convergence.

The paper is organized as follows. The next section is devoted to the description of the problem and of

Weiszfeld’s method. In Section 3, we present the original paper of Weiszfeld and describe what was actually

proven in that seminal paper (monotonicity of the sequence of function values), as well as pinpoint the

critical mistake in the analysis. The method remained mainly unknown until 1962; in Section 4, we describe

several papers, that reinvented the method as well as tell the story of how the original Weiszfeld’s paper was

discovered by Harold Kuhn. In Section 5 we discuss the paper of Kuhn from 1973; we provide a different

and simplified proof of its convergence theorem without requiring the usual assumption of non-collinearity

of the anchors. We also present Kuhn’s example on why the method can potentially “get stuck” at non-

optimal anchor points, and recall his incorrect statement: the number of “bad” starting points (those

leading to anchor points) is denumerable. Beginning from Kuhn’s statement in 1973 on the number of

“bad” starting points, we present in Section 6 the attempts of resolving this issue until its final closure

in 2002. Several modifications of Weiszfeld’s method, in which the only difference is the way the method

operates on anchor points, are presented in Section 7, along with a method to pick the starting point in a

way that ensures avoiding anchor points; a review of more elaborate modifications of the method concludes

the section. Section 8 uses the simplified analysis of the previous sections, as well as modern analysis

of gradient-based methods, to establish a non-asymptotic sublinear rate of convergence of the sequence

of function values generated by Weiszfeld’s method. In Section 9, we develop an accelerated version of

the method, which is based on a combination of an exact smoothing technique, and the employment of

an optimal gradient method leads to an accelerated version with an improved rate of convergence. The

paper ends in Section 10, where the impact of Weiszfeld’s method on other problems, different than the

Fermat-Weber problem, is explored. For the convenience of the reader, Appendix A contains a list of the

most frequent notations used throughout the paper.
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2 Problem Formulation and Weiszfeld’s Method

The Fermat-Weber problem, described verbally at the beginning of the paper, can be formulated mathe-

matically as the problem of seeking x ∈ R
d, that solves

min
x

{
f (x) =

m∑

i=1

ωi ‖x− ai‖
}
, (FW)

where ωi > 0, i = 1, 2, . . . ,m, are given weights and the vectors a1, a2, . . . , am ∈ R
d are given anchors.

To understand the result that Weiszfeld aimed to prove, let us first write down the expression of the

gradient of the objective function of problem (FW):

∇f (x) =

m∑

i=1

ωi
x− ai

‖x− ai‖
, x /∈ A,

where A = {a1, a2, . . . , am} denotes the set of anchors. Note that the gradient is only defined on points

different from the anchors. The theorem that Weiszfeld re-established was the following (see [5, 7]).

Theorem 2.1 (Weiszfeld’s original result). Suppose that the anchors are not collinear. Then,

(a) Problem (FW) has a unique optimal solution.

(b) Let x∗ be the optimal solution of problem (FW). If x∗ /∈ A, then

∇f (x∗) =
m∑

i=1

ωi
x∗ − ai
‖x∗ − ai‖

= 0. (1)

If x∗ = ai, for some i ∈ {1, 2, . . . ,m}, then the following inequality holds

∥∥∥∥∥∥

m∑

j=1,j 6=i

ωj
x∗ − aj
‖x∗ − aj‖

∥∥∥∥∥∥
≤ ωi. (2)

As was noted in the introduction, the theorem was not new and was already established by Sturm [7] in

1884. Some comments about this theorem are required. The anchors a1, a2, . . . , am are said to be collinear

iff they reside on the same line, i.e., there exist y,d ∈ R
d and t1, t2, . . . , tm ∈ R such that ai = y + tid,

i = 1, 2, . . . ,m. In the collinear case, it can be shown that the optimal solution of problem (FW) is

a median of the anchors, meaning that the optimal solution is attained at (at least) one of the anchor

points; see [8] for further details. It is important to note that Weiszfeld did not analyze the weighted

problem, but rather assumed that all the weights are equal to 1. We present the method and results in

the weighted case, whose analysis is almost identical. Nowadays, this theorem seems like an elementary

result, and is a direct consequence of basic convex analysis. Indeed, when the anchors a1, a2, . . . , am

are not collinear, the objective function f is strictly convex and thus the optimal solution is unique [9,
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Theorem 3.4.2]. The optimality condition (1) is just the necessary and sufficient optimality condition

∇f (x∗) = 0 for unconstrained convex minimization problems at points, for which the objective function

is differentiable, and the condition (2) is the necessary and sufficient optimality condition 0 ∈ ∂f (ai) at

points of nondifferentiability. These optimality conditions are satisfied also in the collinear case. More on

the proof of the theorem, as well as extensions to more general settings, can be found in the paper [10] and

in Chapter II of [3].

To present the method, assume that the anchors are not collinear and that x∗ is the unique optimal

solution. We begin by writing explicitly the optimality condition ∇f (x∗) = 0 under the assumption that

x∗ 6∈ A:

∇f (x∗) =
m∑

i=1

ωi
x∗ − ai

‖x∗ − ai‖
= 0.

The next step is to “extract” x∗ (disregarding the dependency in ‖x∗ − ai‖ from x∗, i = 1, 2, . . . ,m) and

to obtain the relation

x∗ =
1∑m

i=1
ωi

‖x∗−ai‖

m∑

i=1

ωiai
‖x∗ − ai‖

(3)

or

x∗ = T (x∗) ,

where the operator T : Rd\A → R
d is defined by

T (x) :=
1∑m

i=1
ωi

‖x−ai‖

m∑

i=1

ωiai
‖x− ai‖

. (4)

We have thus shown that, for any y ∈ R
d\A,

y = T (y) if and only if ∇f (y) = 0. (5)

Weiszfeld’s method is just a fixed point method for solving the relation (3).

Weiszfeld’s Method

Initialization. x0 ∈ R
d\A.

General Step (k = 0, 1, . . .)

xk+1 = T (xk). (6)

3 The Original Paper of Weiszfeld

Weiszfeld’s paper [5] was originally written in French; an English translation of the paper can be found

in the recent paper [11]. The translation made by Frank Plastria contains, in addition, many interesting

comments and observations. Taking a close look at the algorithm, one apparent fault is the fact that it is



6

actually not well defined. Weiszfeld assumed that the initial vector x0 is different from any anchor point,

that is, x0 /∈ A. However, this is not enough to ensure that the sequence {xk}k≥0 generated by the method

is well defined, since it might happen that a certain iterate xk will belong to the anchor set A, resulting

with a division by zero in the computation of the next iterate xk+1. This situation can occur even if the

optimal solution does not belong to A. This error was recognized later by Kuhn and Kuenne [12] in 1962

(see also the discussion in Section 4).

Putting aside the issue of “getting stuck” at non-optimal anchor points, Weiszfeld was able to prove the

monotonicity of the sequence of function values. We will repeat his arguments, but will use the notation

used by Beck and Teboulle in [13], that will serve us later on in the new analysis of the method. We begin by

providing a different presentation of Weiszfeld’s method. Define the auxiliary function h : Rd×R
d\A → R

by

h (x,y) :=

m∑

i=1

ωi
‖x− ai‖2
‖y − ai‖

, x ∈ R
d,y ∈ R

d\A. (7)

Given an iteration xk, it is not difficult to show that next iterate xk+1 = T (xk) is determined as the

minimizer of the function

sk (x) = h (x,xk) =
m∑

i=1

ωi
‖x− ai‖2
‖xk − ai‖

over R
d. Indeed, sk (·) is a strongly convex function, and its unique minimizer is determined by the

optimality condition

∇sk (x) = 0.

That is,
m∑

i=1

ωi
x− ai

‖xk − ai‖
= 0,

which, after some simple algebraic manipulation, can be seen to be equivalent to the relation x = T (xk).

In other words, what we have shown is that, for any y ∈ R
d\A,

T (y) = argmin
x∈Rd h (x,y) .

We will now recall a technical lemma containing the latter property along with several other properties

connecting the function f and the auxiliary function h, which will be the key in proving the monotonicity

of the sequence of function values (see [13, Lemma 1.1]).

Lemma 3.1 (Properties of the auxiliary function h). The following properties hold.

(i) For any y ∈ R
d\A,

h (y,y) = f (y) .
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(ii) For any x ∈ R
d and all y ∈ R

d\A,

h (x,y) ≥ 2f (x)− f (y) .

(iii) For any y ∈ R
d\A,

T (y) = argmin
x∈Rd h (x,y) .

Proof. (i) Follows by simple substitution.

(ii) First, note that, for every two real numbers a ∈ R and b > 0, the inequality

a2

b
≥ 2a− b

holds true. Therefore, for every i = 1, 2, . . . ,m, we have

‖x− ai‖2
‖y − ai‖

≥ 2 ‖x− ai‖ − ‖y − ai‖ .

Multiplying the latter inequality by ωi and summing over i = 1, 2, . . . ,m, the result follows.

(iii) Follows by the discussion prior to the lemma.

Using Lemma 3.1, we are now able to prove the monotonicity property of the operator T with respect

to f . The proof here relies on the same arguments of Weiszfeld [5] and of Kuhn [14].

Lemma 3.2 (Monotonicity property of T ). For every y ∈ R
d\A, we have

f (T (y)) ≤ f (y) , (8)

and equality holds if and only if T (y) = y.

Proof. From Lemma 3.1(iii), we have that T (y) = argmin
x∈Rd h (x,y), and by the strict convexity of the

function x → h (x,y), one has

h (T (y) ,y) < h (x,y) (9)

for every x 6= T (y). In particular, if T (y) 6= y, then

h (T (y) ,y) < h (y,y) = f (y) , (10)

where the last equality follows from Lemma 3.1(i). Now, from Lemma 3.1(ii), we have

h (T (y) ,y) ≥ 2f (T (y))− f (y) ,

which, combined with (10), establishes the desired strict monotonicity.
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Since the general step of Weiszfeld’s method is defined by xk+1 = T (xk), and since ∇f (x∗) = 0 if and

only if x∗ = T (x∗) (see (5)), we can immediately conclude that, under the condition that the iterates of

Weiszfeld’s method do not belong to the anchor set A, the method is nonincreasing and “gets stuck” only

at optimal points.

Corollary 3.1 (Monotonicity of the sequence of function values). Let {xk}k≥0 be the sequence generated

by Weiszfeld’s method and assume that xk /∈ A for any k ≥ 0. Then, f (xk+1) ≤ f (xk) for any k ≥ 0, and

equality holds if and only if xk is an optimal solution of problem (FW).

4 Reinventing the Wheel

Weiszfeld’s method remained unknown until 1962. One evidence for this is the fact that the algorithm was

rediscovered several times without any knowledge of Weiszfeld’s earlier work. As far as we know, the first

to rediscover the method was Miehle in 1958 [15], who studied an even more general problem, where the

location of several points are to be determined. The paper is formulated in the two-dimensional plane, but

the extension to R
d is obvious. The derivation of the method in [15] is identical to the isolation process

described in Section 1. Miehle, like Weiszfeld, did not treat the situation in which the method reaches an

anchor point.

Four years later, in 1962, Kuhn and Kuenne rediscovered Weiszfeld’s method for solving problem (FW)

in the plane [12]. At the time of the writing of the paper, Kuhn and Kuenne were not aware of Weiszfeld’s

work, but an appendix called “added in proof” was added reading as follows.

[12, p. 33]: Added in proof: In the period between the submission of this paper and its

publication by the journal, the results have been extended and further literature bearing on the

problem has been discovered. We shall sketch the nature of the extensions and list only those

references that bear directly on the material developed in the body of the paper. First of all, the

algorithm of the paper has been considered, independently of the present account, at least three

times. The first published version seems to be that of E. Weiszfeld in the Tohoku Mathematical

Journal...

The story of how the authors were made aware of Weiszfeld’s method is known to us since in 2002, Weiszfeld

(who changed his name to Andrew Vazsonyi) recalled the following story from the 1960.

[6, p. 12]: After reading more, I discovered that a well-known mathematician, Harold W. Kuhn

of Princeton University, had given a talk in Budapest on his discovery of an algorithm to solve

the location problem. After the talk, a former colleague of mine walked to the blackboard and

wrote in big letters: “VAZSONYI.”
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“Who is that?” Kuhn asked.

“The name of the Hungarian mathematician who discovered your algorithm thirty years ago”,

my old friend said. “He lives in the United States but published his revolutionary approach

under the name Weiszfeld.”

In the “Added in proof” section of [12], Kuhn and Kuenne mention that the convergence proof of Weiszfeld

contains an error since the iterates may belong to the anchor set A. They continue to claim that it can

be proven that either xk /∈ A for all k ≥ 0, and convergence to the optimal solution can be guaranteed,

or that the method gets stuck at an anchor point (xk ∈ A for some k ≥ 0). In addition, they hypothesise

that the latter case may only occur in “at most a denumerable number of (starting) points in the convex

hull of A”. Later on, we will return to these claims and check their validity (see Section 6).

Another observation, which appears in Kuhn and Kuenne [12], is that Weiszfeld’s method is, in fact, a

gradient method. Indeed, a simple computation shows that an alternative representation of the operator

T is given by

T (x) = x− 1

L (x)
∇f (x) (x /∈ A), (11)

where the operator L : Rd\A → R++ is defined by

L (x) :=

m∑

i=1

ωi

‖x− ai‖
. (12)

Therefore, Weiszfeld’s method can be written as

xk+1 = xk −
1

L (xk)
∇f (xk) . (13)

One year later, in 1963, unaware of Weiszfeld’s contribution, Cooper [16] also reinvented the method, but

again for the more general problem of multiple locations in R
2. Cooper did not provide a convergence

analysis, but mentioned that in his numerical tests, the method works very well in comparison to other

methods. It seems that after 1963, researchers from the optimization, as well as the location communities,

were very well aware of the method, and Weiszfeld’s original paper [5] got its rightful credit.

5 The Paper of Kuhn from 1973 - The Beginning of a (Correct)

Convergence Analysis

The 1973 paper of Kuhn [14] is a continuation of his joint paper with Kuenne from 1962 [12]. Besides

re-establishing the monotonicity property of the sequence of objective function values (see Corollary 3.1),

he was concerned with two theoretical questions - both mentioned in his “added in proof” section of the

previous paper [12].
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A. Assuming that all the iterates do not belong to the anchor set A, i.e., xk /∈ A for all k ≥ 0, can the

convergence to the optimal solution be proven?

B. Is the number of starting points of the method, for which the method “gets stuck” at non-optimal

anchor points, denumerable?

Kuhn’s answer to both questions was yes. Unfortunately, as we will see later on, the answer to the second

question was wrong. We will now explore in details each of the two theoretical questions A and B.

5.1 The Convergence of the Sequence

The theorem that Kuhn proved in [14] is now recalled.

Theorem 5.1 (Convergence of Weiszfeld’s method). Let {xk}k≥0 be a sequence generated by theWeiszfeld’s

method. If xk /∈ A for all k ≥ 0, then the sequence {xk}k≥0 converges to an optimal solution of problem

(FW).

Kuhn proved this theorem under the assumption that the anchors are not collinear. The assumption

in the statement of Theorem 5.1, namely that the iterates do not belong to the anchor set A, is a bit

problematic since it is not clear how to guarantee that such a condition will hold. Probably the reason

for such an assumption is the empirical observation that the method practically does not “get stuck” at

non-optimal anchor points. The arguments used in [14] for proving Theorem 5.1 are quite lengthy and

technical. We will provide here a different proof, that utilizes the relations between the objective function

f and the auxiliary function h. This approach will be also rather beneficial since it will be the basis for the

rate of convergence analysis, which will be discussed in Section 8. In addition, the proof does not require the

assumption of collinearity of the anchors. Before proving the theorem, we will establish another property

of the objective function f . This result is very similar to the so-called “descent lemma” for continuously

differentiable functions (see, e.g., [17]). However, its validity for the nonsmooth function f is far from being

obvious.

Lemma 5.1 (Descent lemma for the Fermat-Weber objective function). Suppose that y /∈ A. Then,

f (T (y)) ≤ f (y) + 〈∇f(y), T (y) − y〉+ L (y)

2
‖T (y) − y‖2 . (14)

Proof. Note that the function x 7→ h (x,y) is quadratic with associated matrix L (y) I. Therefore, its

second-order taylor expansion around y is exact and can be written as

h (x,y) = h (y,y) + 〈∇xh (y,y) ,x− y〉+ L (y) ‖x− y‖2 .

Since h (y,y) = f (y) (see Lemma 3.1(i)) and ∇xh (y,y) = 2∇f (y) (simple computation), we have that

h (x,y) = f (y) + 2 〈∇f (y) ,x− y〉+ L (y) ‖x− y‖2 .
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Substituting x = T (y) in the latter identity yields

h (T (y) ,y) = f (y) + 2 〈∇f(y), T (y)− y〉+ L (y) ‖T (y) − y‖2 .

Hence, from Lemma 3.1(ii), we obtain

2f (T (y))− f (y) ≤ f (y) + 2 〈∇f(y), T (y)− y〉+ L (y) ‖T (y) − y‖2 .

Therefore

2f (T (y)) ≤ 2f (y) + 2 〈∇f(y), T (y) − y〉+ L (y) ‖T (y) − y‖2 ,

which readily implies (14).

Remark 5.1. It is interesting to note that, in a way, the latter result mimics known results on continuously

differentiable functions. Suppose that g is a continuously differentiable function over Rd, and assume that

its gradient ∇g is Lipschitz continuous with parameter Lg, meaning that

‖∇g (x)−∇g (y)‖ ≤ Lg ‖x− y‖ , ∀x,y ∈ R
d.

Then, the “descent lemma” for such function states that, for any x,y ∈ R
d:

g (y) ≤ g (x) + 〈∇g (x) ,y − x〉+ Lg

2
‖x− y‖2 .

This is one of the key inequalities used to analyze the convergence properties of gradient-based methods,

see, for example, [13, 18]. Of course, in our case, f is not differentiable, but nonetheless a version of

the descent lemma still holds when x is specifically chosen as T (y), and when L (y) takes the role of the

Lipschitz constant. Note also that as was already mentioned, Weiszfeld’s method is a gradient method with

stepsize 1/L (xk), which is also an indication that L (xk) serves as a substitute for the Lipschitz constant

since the gradient method for finding the minimizer of g is known to converge when the stepsize is chosen

as 1/Lg.

Using the descent lemma for the function f , we can now prove the following lemma, stating an inequality

that will be the basis for the convergence of the sequence, as well as for the rate of convergence analysis

that will be derived in Section 8. Note that we do not require the assumption on the collinearity of the

anchor points, and hence the optimal set is not necessarily a singleton and it will be denoted from now on

by X∗. The optimal value will be denoted by f∗.

Lemma 5.2. Let {xk}k≥0 be a sequence generated by Weiszfeld’s method and assume that xk /∈ A for all

k ≥ 0. Then, for any x ∈ R
d, the following inequality holds

f (xk+1)− f (x) ≤ L (xk)

2

(
‖xk − x‖2 − ‖xk+1 − x‖2

)
. (15)
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Proof. Substituting y = xk in (14) and using the fact that xk+1 = T (xk), we obtain

f (xk+1) ≤ f (xk) + 〈∇f (xk) ,xk+1 − xk〉+
L (xk)

2
‖xk+1 − xk‖2 . (16)

By the gradient inequality we have that f (xk) ≤ f (x)+〈∇f (xk) ,xk − x〉 for any x ∈ R
d, which combined

with (16) yields

f (xk+1) ≤ f (x) + 〈∇f (xk) ,xk − x〉+ 〈∇f (xk) ,xk+1 − xk〉+
L (xk)

2
‖xk+1 − xk‖2

= f (x) + 〈∇f (xk) ,xk+1 − x〉+ L (xk)

2
‖xk+1 − xk‖2

= f (x) + L (xk) 〈xk − xk+1,xk+1 − x〉+ L (xk)

2
‖xk+1 − xk‖2

= f (x) +
L (xk)

2

(
‖xk − x‖2 − ‖xk+1 − x‖2

)
,

where the second equality follows from (13) and the last equality follows from the identity that

2 〈w − v,u− v〉 = ‖w − v‖2 − ‖w− u‖2 + ‖u− v‖2 ,

for any u,v,w ∈ R
d. This completes the proof.

Let {xk}k≥0 be the sequence generated by Weiszfeld’s method with initial point x0. In those cases that

the left-hand side of (15) is nonnegative, that is when f (x) ≤ f (xk) for all k ≥ 0, we get as a direct result

of the latter lemma the so-called Fejér monotonicity of {xk}k≥0 – a result which seems to be unknown in

the literature.

Corollary 5.1 (Fejér monotonicity). Let {xk}k≥0 be a sequence generated by Weiszfeld’s method and

assume that xk /∈ A for all k ≥ 0. Then, for any x ∈ R
d which satisfies f (x) ≤ f (xk) for all k ≥ 0, the

following inequality holds:

‖xk+1 − x‖ ≤ ‖xk − x‖ .

Hence the sequence {xk}k≥0 is bounded.

Proof. Follows directly from (15) along with the fact that f (xk+1) ≥ f (x). The boundedness of the

sequence then readily follows by the fact that ‖xk − x‖ ≤ ‖x0 − x‖ for any k ≥ 0.

The convergence result of Kuhn, namely Theorem 5.1, can now be easily deduced from the Fejér

monotonicity property of the sequence {xk}k≥0.

Proof of Theorem 5.1. We will prove this result in two steps. First, we will prove that {xk}k≥0

converges, and then we will show that its limit point is an optimal solution of problem (FW).

The sequence {xk}k≥0 is bounded by Corollary 5.1. To prove the convergence of {xk}k≥0, it only

remains to show that all converging subsequences have the same limit. Suppose in contradiction that there

exist two subsequences
{
xkj

}
j≥0

and
{
xnj

}
j≥0

converging to different limits x̃ and x, respectively.
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From Corollary 3.1, it follows that f (x̃) ≤ f (xk) for all k ≥ 0, and thus from Corollary 5.1, we get that

the sequence {‖xk − x̃‖}k≥0 is nonincreasing. Since this sequence is also bounded from below, it converges

to some l1 ∈ R. Clearly

lim
k→∞

‖xk − x̃‖ = lim
j→∞

∥∥xkj
− x̃

∥∥ = 0.

However, on the other hand,

lim
k→∞

‖xk − x̃‖ = lim
j→∞

∥∥xnj
− x̃

∥∥ = ‖x− x̃‖ .

Hence l1 = 0 = ‖x− x̃‖, which is obviously a contradiction. This proves that {xk}k≥0 converges.

We denote by x̃ the limit of {xk}k≥0. Now we will prove that x̃ is an optimal solution of problem

(FW). It is clear that, if x̃ /∈ A, then, taking the limit as k → ∞ in the equation xk+1 = T (xk), and using

the continuity of the operator T at non-anchor points, we obtain that x̃ = T (x̃). The optimality of x̃ now

follows immediately from (5). On the other hand, if x̃ ∈ A, then there exists j ∈ {1, 2, . . . ,m} such that

x̃ = aj . From Lemma 3.1(iii) we have

∇xh (xk+1,xk) = 0,

which can be written explicitly as follows:

m∑

i=1

ωi
xk+1 − ai
‖xk − ai‖

= 0.

Thus,
m∑

i=1,i6=j

ωi
xk+1 − ai
‖xk − ai‖

= −ωj
xk+1 − aj
‖xk − aj‖

,

and, after taking the norm on both sides, we get
∥∥∥∥∥∥

m∑

i=1,i6=j

ωi
xk+1 − ai
‖xk − ai‖

∥∥∥∥∥∥
= ωj

‖xk+1 − aj‖
‖xk − aj‖

≤ ωj, (17)

where the inequality follows from the fact that the sequence {‖xk − aj‖}k≥0 is nonincreasing (see Corollary

5.1 using the fact that f (aj) ≤ f (xk) for all k ≥ 0 from Corollary 3.1). Taking the limit in (17) as k → ∞
yields the inequality ∥∥∥∥∥∥

m∑

i=1,i6=j

ωi
x̃− ai
‖x̃− ai‖

∥∥∥∥∥∥
≤ ωj,

which, by Theorem 2.1, shows that x̃ = aj is an optimal solution of (FW).

5.2 “Bad” Starting Points

As was already mentioned, even in the earlier paper of Kuhn and Kuenne [12] from 1962, it was obvious

that Weiszfeld’s method can reach a non-optimal anchor point. This situation is described in the literature
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as “getting stuck”, and starting points of the method leading to this situation are called “bad” starting

points. In his 1973 paper, Kuhn gave an example of such a case, as we recall now.

Example 5.1 (Kuhn’s counterexample). The example is in the 2-dimensional space and the anchors are

a1 = (−2, 0)
T
, a2 = (−1, 0)

T
, a3 = (1, 0)

T
, a4 = (2, 0)

T
, a5 = (0, 1)

T
and a6 = (0,−1)

T
. All the weights

are one. It is easy to see that ∇f (0, 0) = 0, so that the optimal solution of the problem is x∗ = 0. Kuhn

then studied the behavior of the operator T on points on the x-axis given by (x, 0)
T
:

T
(
(x, 0)T

)
=

1
∑6

i=1
1

‖(x,0)T−ai‖

6∑

i=1

ai∥∥∥(x, 0)T − ai

∥∥∥

=




−2

|x+2| +
−1

|x+1| +
1

|x−1| +
2

|x−2|

0





1
|x+2| +

1
|x+1| +

1
|x−1| +

1
|x−2| +

2√
x2+1

:=



g (x)

0



 ,

and then Kuhn found a value α ∈ [0, 2] such that g (α) = 1. This shows that T
(
(α, 0)

T
)
= a3. The plot

of g over the interval [0, 2] can be found in Figure 2, where the solution, which is α = 1.6213 (up to three

digits of accuracy), is described.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α

x

g
(x

)

Figure 2: Kuhn’s construction of a “bad” starting point. T
(
(α, 0)

T
)
= a3, where α is the solution of the

equation g (α) = 1.

Kuhn claimed that the number of “bad” starting points is always denumerable. The key argument used

to show this result is quoted here.
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[14, p. 107]: If we insert T from a vertex ai, we must solve algebraic equations. Thus we

obtain a finite number of x0 such that T (x0) = ai.

However, this argument is incorrect, as will be explained in the following section.

6 Counting the “Bad” Starting Points

The flaw in Kuhn’s argument is that, actually, algebraic system of equations can have a continuum number

of solutions. This was shown by Chandrasekaran and Tamir in their 1989 paper [19], where the following

counterexample to Kuhn’s claim in R
3 was given.

Example 6.1 (Chandrasekaran and Tamir’s counterexample to Kuhn). Consider the problem in R
3 with

anchors a1 = (1, 0, 0)
T
, a2 = (−1, 0, 0)

T
, a3 = (0, 0, 0)

T
, a4 = (0, 2, 0)

T
and a5 = (0,−2, 0)

T
. Let

ω1 = ω2 = ω3 = ω5 = 1 and ω4 = 3. Consider the point a3, which is not optimal since

f (a3) = 10 > f (0, 1, 0) = 7 + 2
√
2.

To show that the algebraic system T (x) = a3 has an infinite number of solutions, consider the points of

the form x = (0, y, z)
T
. Then, T (x) = a3 is equivalent to the system

3a4
‖x− a4‖

+
a5

‖x− a5‖
= 0.

That is,
1√

(y − 2)
2
+ z2

(0, 6, 0)
T
+

1√
(y + 2)

2
+ z2

(0,−2, 0)
T
= (0, 0, 0)

T
,

which is the same as

36 (y + 2)
2
+ 36z2 − 4

(
(y − 2)

2
+ z2

)
= 0.

After some simple algebraic manipulation, we conclude that all the points on the circle (y + 2.5)
2
+z2 = 2.25

solve the system T (x) = a3.

The latter example is special in the sense that the anchors, although not collinear, reside in a lower

dimensional affine subspace. Chandrasekaran and Tamir conjectured that such a situation is the only one

in which a continuum of “bad” starting points can occur.

[19, p. 295]: ”In view of the above examples we conjecture that, if the non-collinearity is replaced

by the stronger assumption that the convex hull of the points a1, a2, . . . , am is of full dimension,

then the algebraic system T (x) = ai has a finite number of solutions for i = 1, 2, . . . ,m. Phrased

differently, the conjecture is that, for each i = 1, 2, . . . ,m, there is a finite number of solutions

to T (x) = ai in the minimal affine set containing the points a1, a2, . . . , am.”
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To write it explicitly, the first conjecture of Chandrasekaran and Tamir is formulated as follows.

Conjecture 6.1 (Chandrasekaran and Tamir conjecture). When the affine hull of the anchor set A is the

entire space R
d, the number of solutions of the system T (x) = ai, for any i = 1, 2, . . . ,m, is finite, and

hence there is a denumerable number of “bad” starting points.

As quoted above, Chandrasekaran and Tamir also had a more general conjecture that the number of

“bad” starting points is denumerable when the starting point is restricted a priori to be in the affine hull of

the anchor set A. Conjecture 6.1 was resolved in 1995 by Brimberg [20]. More precisely, Brimberg proved

the following result (written in this paper’s terminology).

Theorem 6.1 (cf. [20, Theorem 1, p. 75]). The set of starting points x0, which will terminate the sequence

generated by Weiszfeld’s method at some anchor point ai, i = 1, 2, . . . ,m, after a finite number of iterations

is denumerable if the affine hull of A is Rd.

At this point, one would think that the issue of “counting” the number of bad starting points was

resolved. However, Brimberg also claimed that, in fact, the number of “bad” starting points is denumerable

if and only if the affine hull of A is R
d. The “only if” claim is not part of Chandrasekaran and Tamir’s

conjecture. Later on, in 2002, Cánovas, Cañavate and Maŕın showed in [21] that the “only if” claim is not

correct by providing two counterexamples. We will present the first counterexample which shows a setting

in which the number of “bad” starting points is denumerable (in fact zero), even though the affine hull of

A is not the entire space R
d.

Example 6.2 (Counterexample to Brimberg’s “only if” part). Consider the unweighted Fermat-Weber

problem with m = n = 3 given by the anchors a1 = (1, 0, 0)
T
, a2 = (0, 1, 0)

T
and a3 = (0, 0, 0). Note that

a1, a2 and a3 are the extreme points of conv(A), and that, for any x /∈ A,

T (x) =
1

∑3
i=1

1
‖x−ai‖

3∑

i=1

1

‖x− ai‖
ai.

Hence, T (x) is a convex combination of a1, a2 and a3 with positive coefficients. However, this means that

T (x) cannot be equal to any of the extreme points, that is, to an anchor point. Therefore, the system

T (x) = ai has no solutions for any i = 1, 2, 3, and in this case Weiszfeld’s method is well defined for any

starting point which is not in A.

7 Bypassing the Anchor Points - Modifying the Method

7.1 The Modified Weiszfeld’s Method

Since the issue of bumping into anchor points is an important issue in the convergence analysis of the

method, these instances should be treated. In this section, we will begin by reviewing a modification of the
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method in which the problem of reaching an anchor point is treated in a “surgical” manner. Specifically,

the class of methods that we consider coincides with Weiszfeld’s method when the current iterate xk, for

some k ≥ 0, is not an anchor point; and when the iterate is equal to some ai, then the next iterate will

be equal to ai if ai is optimal, and equal to another point, with a smaller function value when ai is not

optimal. To test the optimality of the anchor points, we are required to define the following quantities (see

the optimality conditions in Theorem 2.1):

Rj :=

m∑

i=1,i6=j

ωi
aj − ai
‖ai − aj‖

, j = 1, 2, . . . ,m.

The anchor point aj , j = 1, 2, . . . ,m, is optimal if and only if

‖Rj‖ ≤ wj .

The general scheme for the modified approach can be written as follows.

Modified Weiszfeld’s Method

Initialization. x0 ∈ R
d.

General Step (k = 0, 1, . . .)

xk+1 = T̃ (xk) =





T (xk) , xk /∈ A,

aj , xk = aj (1 ≤ j ≤ m) and ‖Rj‖ ≤ ωj

S (aj) , xk = aj (1 ≤ j ≤ m) and ‖Rj‖ > ωj .

(18)

The new operator T̃ coincides with the usual Weiszfeld’s operator T at non-anchor points. At non-

optimal anchor points, another operator, which is denoted by S, is invoked. The question that arises is of

course how to define the operator S on a specific non-optimal anchor point aj , j = 1, 2, . . . ,m. However,

at this point, we will just require that, for a non-optimal anchor point aj , the point S (aj) will have a

smaller function value than aj . Under this condition, based on Kuhn’s convergence result (see Theorem

5.1), we can prove convergence of the sequence generated by the modified Weiszfeld’s method. Note that

we do not require the assumption of non-collinearity, that is always assumed in the literature.

Theorem 7.1 (Convergence of the modified Weiszfeld’s method). Let {xk}k≥0 be a sequence generated

by the modified Weiszfeld’s method. Assume that f (S (aj)) < f (aj) for any aj ∈ A for which ‖Rj‖ > ωj .

Then, the sequence {xk}k≥0 converges to an optimal solution of problem (FW).

Proof. There are two options. Either the sequence “gets stuck” at a fixed point of the method, i.e., at

a point x̃ for which T̃ (x̃) = x̃. If x̃ /∈ A, then by (5), it follows that ∇f (x̃) = 0, and hence the method

converges to an optimal solution x̃. If x̃ = aj for some j ∈ {1, 2, . . . ,m}, then, since S (aj) 6= aj if aj is not
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optimal, it follows that aj must be optimal, and we conclude that once again the sequence generated by the

method converges to an optimal solution x̃. The second option is when the sequence does not get stuck at

a fixed point. In this case, the sequence generated by the method is strictly monotone: f (xk+1) < f (xk)

for all k ≥ 0 (this follows from Corollary 3.1 and the assumption that f (S (aj)) < f (aj) for any aj ∈ A
for which ‖Rj‖ > ωj). Therefore, the iterates are different from each other and thus, since there are only

a finite number of anchor points, it follows that there exists a positive integer K such that xk /∈ A for all

k ≥ K. The sequence {xk}k≥K is the sequence generated by Weiszfeld’s method with initial point xK ,

and since none of its elements is in A, it follows from Theorem 5.1 that it converges to an optimal solution

of problem (FW).

Note that since, in practice, Weiszfeld’s method does not actually reach anchor points, the modified

method is actually the same as Weiszfeld’s method for all practical purposes.

7.2 Choosing the Operator S

The most natural way to define S on an anchor point aj , j = 1, 2, . . . ,m, is to find a descent direction

of f at aj , and take a step along this direction. To find such a descent direction, note that the objective

function f can be written as

f (x) = ωj ‖x− aj‖+ fj (x) ,

where

fj (x) :=

m∑

i=1,i6=j

ωi ‖x− ai‖ .

Therefore, taking a direction d ∈ R
d satisfying ‖d‖ = 1, we can define the function

α (t) = f (aj + td) = ωjt ‖d‖ + fj (aj + td) = ωjt+ fj (aj + td) .

The directional derivative of f at aj in the direction of d is given by (note that fj is differentiable at aj):

f ′ (aj ;d) = α′ (0) = ωj + f ′
j (aj ;d) = ωj + 〈∇fj (aj) ,d〉 .

The smallest directional derivative is attained at d = dj , where dj = −∇fj (aj) / ‖∇fj (aj)‖, which is the

steepest descent direction. Since ∇fj (aj) = Rj , we can summarize by writing that the steepest descent

direction of f at aj is

dj = − Rj

‖Rj‖
.

In all of the papers that deal with this slightly modified Weiszfeld’s method, the operator S is chosen as

S (aj) = aj + tjdj ,
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where tj is some well chosen stepsize. Several choices of the stepsize were discussed in the literature.

Ostresh [8] (1978) considered the following stepsize

tj = tO := c
‖Rj‖ − ωj

L (aj)
, [Ostresh [8]]

where c ∈ [1, 2], and the definition of the operator L (originally given in (12)) is extended to include also

anchor points:

L (x) =






∑m
i=1

ωi

‖x−ai‖ , x /∈ A,
∑

i=1,i6=j
ωi

‖aj−ai‖ , x = aj (1 ≤ j ≤ m) .
(19)

A totally different analysis of Vardi and Zhang [22] (2001) results with the stepsize

tj = tV Z :=
‖Rj‖ − ωj

L (aj)
, [Vardi and Zhang [22]]

meaning that this is the stepsize of Ostresh with c = 1. The following different stepsize was considered by

Rautenbach et. al. [23] (2004),

tj = tR := min

{
sj
2
,
‖Rj‖ − ωj

4L (aj)

}
, [Rautenbach et. al. [23]]

where sj := min {‖aj − ai‖ : i 6= j, 1 ≤ i ≤ m}. Obviously, the largest step is the one given by Ostresh

when c is taken to be 2, and the smallest step is the one given by Rautenbach. We will now give a proof

that, indeed, the stepsize given by Vardi and Zhang results with a decrease in the function value. We

also give an explicit expression for a lower bound on the amount of decrease resulting from taking the

Vardi-Zhang stepsize. This new result will be important later on in establishing the complexity results of

the method (see Section 8). The technical and lengthy proof of the lemma can be found in Appendix B.

Lemma 7.1. Suppose that aj , for some j ∈ {1, 2, . . . ,m}, is not an optimal solution of problem (FW),

meaning that ‖Rj‖ > ωj . Then

f (aj)− f (aj + tjdj) ≥
(‖Rj‖ − ωj)

2

2L (aj)
,

where tj = tV Z = (‖Rj‖ − ωj) /L (aj).

7.3 Choosing the Starting Point

The modified method was devised in order to relax the assumption that xk /∈ A for all k ≥ 0 in Kuhn’s

convergence result. However, we can use the operator S to carefully pick a starting point that will guarantee

that the iterates will not coincide with anchor points. The simple procedure for choosing the starting point,

which we call “the SP method”, is now described.
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The SP method

(a) Let

p ∈ argmin {f (ai) : 1 ≤ i ≤ m} .

(b) If ap is optimal (easily checked by verifying that ‖Rp‖ ≤ ωp), then the output is ap with an

indication that it is the optimal solution. Otherwise, if ap is not optimal, the output is the point

S (ap).

The important property of the SP method is that, if there is no optimal anchor point, then the output

of the method is a starting point x0 which satisfies

f (x0) < min {f (a1) , f (a2) , . . . , f (am)} .

The latter inequality, along with the monotonicity property of the sequence of function values (see Corollary

3.1) implies that xk /∈ A for all k ≥ 0, and hence the convergence of the sequence to an optimal solution

is assured by Theorem 5.1. We summarize this discussion in the following corollary. The underlying

assumption is that there are no optimal anchor points (otherwise, the SP method will produce the optimal

solution). In addition, under this assumption the anchors are necessarily not collinear, implying that the

optimal solution is unique.

Corollary 7.1. Suppose that there is no optimal anchor point for problem (FW). Let {xk}k≥0 be the

sequence generated by Weiszfeld’s method with starting point x0 produced by the SP method. Then,

xk /∈ A for all k ≥ 0 and xk → x∗ as k → ∞.

7.4 Further Modifications of Weiszfeld’s Method

Aside of the rather local modifications of Weiszfeld’s method mentioned in the previous subsections, many

more modifications were suggested in the literature. In the 1978 paper [8], Ostresh suggested to accelerate

the Weiszfeld’s method by using the following idea. Let λ ∈ [1, 2] and consider the operator

Tλ (y) = y + λ (T (y)− y) .

Ostresh proved the convergence of the modified method defined by xk+1 = Tλ (xk) for any choice of

λ ∈ [1, 2], and under a suitable treatment of the anchor points. The use of a stepsize can also be found

in [24] (1984). In [25] (1992), Drezner uses an adaptive method in order to choose a different λ at each

iteration, so that the method reads as xk+1 = Tλk
(xk) . Another acceleration technique was proposed by

Drezner in [26] (1995), where Steffensen’s method, which is a general acceleration scheme for fixed point

method, was tested numerically against Weiszfeld’s method with several stepsize strategies for choosing λ.
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Deviating from the main focus of this paper, which is Weiszfel’d method, we note that the Fermat-

Weber problem can also be solved by more sophisticated methods than Weiszfeld’s method. For example,

Calamai and Conn [27] and Overton [28] solved the more general problem of minimizing a sum of norms of

affine functions by Newton methods combined with an active set approach. In addition, the problem can

be recast as a second order cone programming and solved via interior point methods [29, 30]. A specially

devised primal-dual interior point method for the minimization of the sum of Euclidean norms was analyzed

by Andersen el. at. in [31].

There are, of course, many variations of Weiszfeld’s method when the problem to be solved is not the

Fermat-Weber problem, but this will be the subject of Section 10.

8 Rate of Convergence of Weiszfeld’s Method

Local and asymptotic rate of convergence of Weiszfeld’s method was discussed in the 1974 paper of Katz [32].

However, there does not seem to be a global non-asymptotic rate of convergence analysis of Weiszfeld’s

method in the literature. The main objective of this section is to derive such rate of convergence, but

before, we would like to recall several related results on global non-asymptotic rate of convergence for

gradient-based methods. This type of results are usually of the form

f (xk)− f∗ ≤ C

kθ
,

where C, θ > 0 are constants. For example, for nonsmooth convex problems we can employ, under some

unrestrictive conditions, the subgradient method to solve problem (FW). This will result with a rate of

convergence of O
(
1/

√
k
)

(that is, θ = 1/2), see e.g., [18, 33]. In this case, since the method is not

monotone, the bound is on min
n=1,2,...,k

f (xn)−f∗, rather than on f (xk)−f∗. If the problem is smooth, then

the gradient method can be employed and the convergence rate will accelerate to O (1/k) (corresponding

to θ = 1). Another option is to use an “optimal” gradient method, which uses the memory of the last two

iterations. These methods have a rate of convergence of O
(
1/k2

)
(corresponding to θ = 2). For a wealth

of fundamental results on these issues, see for instance, [13, 18, 34, 35].

In principal, since problem (FW) is nonsmooth, and since Weiszfeld’s method is a type of gradient

method, it seems logical to assume that only the inferior O
(
1/

√
k
)
can be established. However, as we

shall see, when choosing the starting point carefully, we can actually prove a rate of convergence of O (1/k)

even though the problem is nonsmooth. Later on, we will even show that, by modifying the method, we

can establish the fast O
(
1/k2

)
rate of convergence.

Throughout this section, we assume that the starting point is chosen according to the SP method with
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the Vardi-Zhang stepsize strategy. That is,

x0 = ap + tpdp, (20)

where

p ∈ argmin{f (ai) : 1 ≤ i ≤ m} , (21)

and

dp = − Rp

‖Rp‖
, tp =

‖Rp‖ − ωp

L (ap)
. (22)

The only assumption on the data is that there is no optimal anchor point. Otherwise, the SP method will

produce an optimal solution. Note also that, in this setting, the anchors are necessarily not collinear and

hence there exists a unique optimal solution x∗. Note that in the premise of the following theorem, which

will be the basis for the main convergence analysis, we assume that the sequence {L (xk)}k≥0 is upper

bounded. Later on, in Lemma 8.2, we will show the validity of this assumption, as well as find an explicit

expression for the upper bound.

Theorem 8.1 (Sublinear rate of convergence of Weiszfeld’s method). Let {xk}k≥0 be the sequence gen-

erated by Weiszfeld’s method with x0 chosen by (20)-(22). Then, for any k ≥ 0, we have

f (xk)− f∗ ≤ L̄

2k
‖x0 − x∗‖2 , (23)

where L̄ is an upper bound of the sequence {L (xk)}k≥0.

Proof. From (15) with k = n, we have

f (xn+1)− f∗ ≤ L (xn)

2

(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2

)
.

Therefore, by the Fejér monotonicity of the sequence {xk}k≥0 (see Corollary 5.1) and the boundedness of

the sequence {L (xk)}k≥0, we get

f (xn+1)− f∗ ≤ L̄

2

(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2

)
.

Summing this inequality over n = 0, . . . , k − 1 gives

k−1∑

n=0

(f (xn+1)− f∗) ≤ L̄

2

k−1∑

n=0

(
‖xn − x∗‖2 − ‖xn+1 − x∗‖2

)

=
L̄

2

(
‖x0 − x∗‖2 − ‖xn − x∗‖2

)

≤ L̄

2
‖x0 − x∗‖2 .
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Since the sequence {f (xk)}k≥0 is nonincreasing (see Corollary 3.1) we have

k (f (xk)− f∗) ≤
k−1∑

n=0

(f (xn+1)− f∗) ≤ L̄

2
‖x0 − x∗‖2 ,

that is,

f (xk)− f∗ ≤ L̄

2k
‖x0 − x∗‖2 .

This proves the desired result.

All that is left is to find an explicit upper bound of the sequence {L (xk)}k≥0. For that, we will use

the following result, which establishes a lower bound on the distance between the anchor points to those

points with smaller function values than f (x0), where x0 is chosen by (20)-(22).

Lemma 8.1 (Lower bound on ‖ai − x‖). Let x0 be chosen by (20)-(22). Then, for any i = 1, 2, . . . ,m

and any x satisfying f (x) ≤ f (x0), the inequality

‖x− ai‖ ≥ f (ai)− f (x0)

ω

holds with ω =
∑m

i=1 ωi.

Proof. From the fact that f (x) ≤ f (x0), the convexity of f and the Cauchy-Schwarz inequality it follows,

for any i = 1, 2, . . . ,m and any x, that

f (ai)− f (x0) ≤ f (ai)− f (x) ≤ 〈vi, ai − x〉 ≤ ‖vi‖ ‖ai − x‖ , (24)

where vi ∈ ∂f (ai). Note that the subdifferential set ∂f (ai) can be written as

∂f (ai) =






m∑

j=1,j 6=i

ωj
ai − aj
‖ai − aj‖

+ ωizi : ‖zi‖ ≤ 1




 .

Therefore, there exists z̃i such that ‖z̃i‖ ≤ 1 and

vi =
m∑

j=1,j 6=i

ωj
ai − aj

‖ai − aj‖
+ ωiz̃i.

Hence, from the triangle inequality we get

‖vi‖ =

∥∥∥∥∥∥

m∑

j=1,j 6=i

ωj
ai − aj
‖ai − aj‖

+ ωiz̃i

∥∥∥∥∥∥
≤

m∑

j=1,j 6=i

ωj

∥∥∥∥
ai − aj
‖ai − aj‖

∥∥∥∥+ ωi ‖z̃i‖ ≤
m∑

i=1

ωi = ω,

which combined with (24), yields the inequality

f (ai)− f (x0) ≤ ω ‖ai − x‖ .

The desired result now follows by dividing the last inequality by ω.

We can now find an upper bound of the sequence {L (xk)}k≥0. This is done in next lemma.
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Lemma 8.2 (Upper bound of the sequence {L (xk)}k≥0). Let {xk}k≥0 be the sequence generated by

Weiszfeld’s method with x0 chosen by (20)-(22). Then, for any k ≥ 0, we have

L (xk) ≤
2L (ap)ω

2

(‖Rp‖ − ωp)
2 , (25)

where ω =
∑m

i=1 ωi.

Proof. By the monotonicity of the sequence {f (xk)}k≥0 (see Corollary 3.1) it follows that f (xk) ≤ f (x0)

for all k ≥ 0. Therefore, from Lemma 8.1 it follows that for any i ∈ {1, 2, . . . ,m}, we have

1

‖xk − ai‖
≤ ω

f (ai)− f (x0)
.

Since f (x0) < f (ap) ≤ f (ai) for all 1 ≤ i ≤ m, we deduce that

1

‖xk − ai‖
≤ ω

f (ap)− f (x0)
.

Thus,

L (xk) =

m∑

i=1

ωi

‖xk − ai‖
≤

m∑

i=1

ωωi

f (ap)− f (x0)
=

ω2

f (ap)− f (x0)
,

which, along with Lemma 7.1, implies the desired result.

Combining Theorem 8.1 and Lemma 8.2, we finally obtain the following rate of convergence result of

Weiszfeld’s method.

Theorem 8.2 (Sublinear rate of convergence of the Weiszfeld’s method - Explicit version). Let {xk}k≥0

be the sequence generated by Weiszfeld’s method with x0 chosen by (20)-(22). Then, for any k ≥ 0, we

have

f (xk)− f∗ ≤ M

2k
‖x0 − x∗‖2 , (26)

where M = 2L (ap)ω
2/ (‖Rp‖ − ωp)

2
.

9 Acceleration via Optimal Schemes

The question that now arises is whether we can find an acceleration of Weiszfeld’s method with a better

theoretical rate of convergence than that of the original Weiszfeld’s method. Recall that, in Section 8, we

showed that Weiszfeld’s method with a specific choice of a starting point converges in terms of function

values to the optimal value in a rate of O (1/k). The natural idea is now to use an accelerated gradient-

based scheme in order to assure convergence with the faster rate of O
(
1/k2

)
. Unfortunately, accelerated

schemes such as Nesterov’s optimal method [35] and FISTA [34] are not monotone, meaning that the

sequence of function values is not necessarily nonincreasing. This causes a genuine theoretical difficulty
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to employ the accelerated schemes on the Fermat-Weber problem, since the monotonicity was a crucial

argument in showing that Weiszfeld’s method does not get stuck in anchor points.

We are therefore led to consider an additional and different idea. Instead of bypassing the anchor points,

which are the points of nondifferentiability, we will simply eliminate them, by using the idea of smoothing.

Given a minimization problem

min
{
q (x) : x ∈ R

d
}
, (M)

where the objective function q is nonsmooth, the idea of smoothing is to replace the objective with a

smooth approximation qµ and solve the problem

min
{
qµ (x) : x ∈ R

d
}
, (Mµ)

where µ is the so-called “smoothing parameter”, that controls the level of smoothness and the proximity of

the approximation qµ to q. A more precise definition can be found, for example, in [36]. Some earlier works

on smoothing techniques are [37–40]. The more recent works [36, 41] show that complexity results can be

obtained by employing a fast gradient-based method with a rate of O
(
1/k2

)
on the smooth counterpart

(Mµ). In these works, the smooth problem (Mµ) is not equivalent to the original problem (M), but serves

only as an approximation. The complexity result states that, by employing a fast gradient-based method

on the smooth problem with a special choice of the smoothing parameter, an ε-optimal solution can be

obtained after O (1/ε) iterations, which corresponds to a method with an O (1/k) rate of convergence. This

result is not impressive in the context of the Fermat-Weber problem, for which we have already shown in

Section 8 that Weiszfeld’s method, with a specially chosen starting point, shares this rate of convergence.

The challenge is therefore to present a method with an O
(
1/k2

)
rate of convergence. For that, we present

here an exact smoothing scheme, in which the original problem (FW) is replaced by a different problem

that is equivalent to problem (FW) in the sense that its minimizer is exactly the same as the minimizer of

the original problem.

We assume that there is no optimal anchor point (otherwise, as usual, it is trivial to find it). In this

case, anchors are necessarily not collinear, implying that the objective function is strictly convex and there

exists a unique optimizer x∗.

We begin by combining two simple but essential results. First, from Lemma 8.1 we can find a lower

bound on the distance of x∗ from each of the anchor points:

‖x∗ − ai‖ ≥ f (ai)− f (w)

ω
, ∀i ∈ {1, 2, . . . ,m} , (27)
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where w chosen in the same way as the starting point (20)-(22) is picked. More precisely, we take

w = ap + tpdp, (28)

where

p ∈ argmin{f (ai) : 1 ≤ i ≤ m} , (29)

and

dp = − Rp

‖Rp‖
, tp =

‖Rp‖ − ωp

L (ap)
. (30)

Second, we can find a smooth function upper bounding the norm function that coincides with the norm

function outside a specified ball. Indeed, let us denote the norm function by g (x) := ‖x‖ and let r > 0.

Then, we define the following function, which we refer to as a smooth approximation

gr (x) =





‖x‖ , ‖x‖ ≥ r,

‖x‖2

2r + r
2 , ‖x‖ < r.

The smooth approximation function gr enjoys two essential properties: (i) it is continuously differentiable

with Lipschitz gradient with constant 1/r and (ii) it is an upper bound on g.

Lemma 9.1 (Properties of gr). Let r > 0. Then

(i) gr (x) ≥ g (x) for any x ∈ R
d.

(ii) gr is continuously differentiable and its gradient is Lipschitz continuous with constant 1/r.

Proof. (i) Clearly from the definition of gr that we have to show the result only when ‖x‖ < r. Indeed,

in this case we have the following identity

gr (x)− g (x) =
‖x‖2
2r

+
r

2
− ‖x‖ =

( ‖x‖√
2r

−
√

r

2

)2

.

Hence gr (x) ≥ g (x) for any x ∈ R
d.

(ii) First, we will write the gradient of gr:

∇gr (x) =





x

‖x‖ , ‖x‖ ≥ r

x

r , ‖x‖ < r.

Thus, clearly that gr is continuously differentiable. In order to prove the Lipschitz continuity of ∇gr, we

will use the fact that ∇gr can be written as

∇gr =
1

r
PB,

where PB is the orthogonal projection operator onto the closed and convex ball B =
{
x ∈ R

d : ‖x‖ ≤ r
}
.

We can now use the fact the orthogonal projection operator PB is nonexpansive, meaning that it is Lipschitz

continuous with constant 1 (see [17, Proposition 2.1.3(c), p. 201]). This proves the desired result.
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Remark 9.1. The function gr is closely related to the so-called Huber function [42], given by

Hr (x) =





‖x‖ − r
2 , ‖x‖ ≥ r,

‖x‖2

2r , ‖x‖ < r.

In fact, gr (x)+
r
2 = Hr (x). We can deduce part (ii) of Lemma 9.1 from the known properties of the Huber

function (see, e.g., [36, 41]), but we have chosen to provide a self-contained proof. In addition, since the

Huber function is convex, the convexity of gr follows.

Now, motivated by the inequalities (27), we will define the following smooth approximation of the

Fermat-Weber objective function

fs (x) :=

m∑

i=1

ωigbi (x− ai) ,

where

bi =
f (ai)− f (w)

ω
, i = 1, 2, . . . ,m.

Now we have the following lemma stating that fs is an exact convex smoothing counterpart of f .

Lemma 9.2 (Properties of the exact smoothing function fs). Let w be defined by (28)-(30). The following

properties hold:

(i) fs is convex over Rd.

(ii) fs (x) ≥ f (x) for any x ∈ R
d.

(iii) The optimal solution of the problem

min
x∈Rd

fs (x)

is x∗ - the optimal solution of problem (FW).

(iv) fs is continuously differentiable and its gradient is Lipschitz continuous with constant

Ls = ω

m∑

i=1

ωi

f (ai)− f (w)
.

Moreover, the Lipschitz constant Ls can be bounded from above by

Ls ≤
2L (ap)ω

2

(‖Rp‖ − ωp)
2 .

Proof. (i) Follows by the fact that fs is the weighted sum of the convex functions gbi , i = 1, 2, . . . ,m.

(ii) First, from Lemma 9.1(i), it follows that gbi (x) ≥ g (x) (= ‖x‖) for all x ∈ R
d. Hence, for any

x ∈ R
d:

fs (x) =
m∑

i=1

ωigbi (x− ai) ≥
m∑

i=1

ωig (x− ai) =
m∑

i=1

ωi ‖x− ai‖ = f (x) .
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(iii) From (27), the inequality ‖x∗ − ai‖ ≥ bi holds for any 1 ≤ i ≤ m and hence gbi (x
∗ − ai) =

‖x∗ − ai‖ for any 1 ≤ i ≤ m. Consequently,

fs (x
∗) =

m∑

i=1

ωigbi (x
∗ − ai) =

m∑

i=1

ωi ‖x∗ − ai‖ = f (x∗) .

Let x ∈ R
d be different from than x∗. Since x∗ is the strict global minimum of f over Rd, it follows that

f (x∗) < f (x). Hence,

fs (x
∗) = f (x∗) < f (x) ≤ fs (x) ,

where the last inequality follows from part (ii). We therefore conclude that x∗ is also the unique minimizer

of fs over Rd.

(iv) For each 1 ≤ i ≤ m, by Lemma 9.1(ii) it follows that gbi is continuously differentiable with

gradient which is Lipschitz with constant 1/bi. Therefore, by its definition, the function fs is continuously

differentiable with gradient which is Lipschitz continuous with constant

m∑

i=1

ωi

bi
= ω

m∑

i=1

ωi

f (ai)− f (w)
.

Since f (ai) ≥ f (ap) for all 1 ≤ i ≤ m (follows from (29)), we can estimate the Lipschitz constant by

ω

m∑

i=1

ωi

f (ai)− f (w)
≤ ω

m∑

i=1

ωi

f (ap)− f (w)
=

ω2

f (ap)− f (w)
≤ 2L (ap)ω

2

(‖Rp‖ − ωp)
2 ,

where the last inequality follows from Lemma 7.1.

The effect of the smoothing operation is illustrated in Figure 3.

Now we know that the nonsmooth Fermat-Weber problem can be replaced by the smooth counterpart

min
x∈Rd

fs (x) , (FWs)

which has the same optimal solution. We can invoke one of the optimal gradient-based methods for solving

smooth convex optimization problems. One of the simplest option is Nesterov’s method from 1983 [35].

We begin by explicitly writing the accelerated method with a constant stepsize version.
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Figure 3: The left image describes the contour lines of the unweighted Fermat-Weber function with anchors

a1 = (1, 2)
T
, a2 = (2, 1)

T
and a3 = (5, 5)

T
. The anchors are denoted by the filled squares, while the empty

square stands for the optimal solution. In the right image, the contour lines of a smoothed function are

given. Here we have chosen to replace each of the norm functions g (x) = ‖x‖ by the smooth counterpart

g1/2 (x).
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Fast Weiszfeld Method (constant stepsize)

Initialization. y1 = x0 ∈ R
d and t1 = 1.

General Step (k = 1, 2, . . .) Compute

xk = yk −
1

Ls
∇fs (yk) ,

tk+1 =
1 +

√
1 + 4t2k
2

,

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1) .

A possible drawback of this basic fast scheme is that the Lipschitz constant Ls can be too conservative

(i.e., large). We therefore also consider a version with a backtracking stepsize rule. This version was

considered in the context of the more general composite model [34].

Fast Weiszfeld Method (backtracking stepsize)

Initialization. L0 > 0, some η > 1, and x0 ∈ R
d. Set y1 = x0 and t1 = 1.

General Step (k = 1, 2, . . .) Find the smallest non-negative integer ik such that, with L̄ =

ηikLk−1,

fs

(
yk − 1

L̄
∇fs (yk)

)
≤ fs (yk)−

1

2L̄
‖∇fs (yk)‖2 .

Set Lk = ηikLk−1 and compute

xk = yk −
1

Lk
∇fs (yk) ,

tk+1 =
1 +

√
1 + 4t2k
2

,

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1) .

The following convergence result for both the constant stepsize scheme as well as the backtracking

version was proved in [34].

Theorem 9.1 (Convergence of the fast Weiszfeld method). Let {xk}k≥0 and {yk}k≥0 be two sequences

which are generated by one of the fast Weiszfeld method. Then, for any k ≥ 1, we have

fs (xk)− f∗ ≤ 2αLs ‖x0 − x∗‖2

(k + 1)
2 ,

where α = 1 for the constant stepsize setting and α = η for the backtracking stepsize setting.

Since fs (x) ≥ f (x) for any x ∈ R
d, we can immediately conclude an O

(
1/k2

)
rate of convergence

result of the original objective function to the optimal value.
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Corollary 9.1 (Convergence of the fast Weiszfeld’s method - original function values). Let {xk}k≥0 and

{yk}k≥0 be two sequences which are generated by one of the fast Weiszfeld method. Then, for any k ≥ 1,

we have

f (xk)− f∗ ≤ 2αLs ‖x0 − x∗‖2

(k + 1)
2 ,

where α = 1 for the constant stepsize setting and α = η for the backtracking stepsize setting.

10 Extensions, Open Questions and Perspectives

Weiszfeld’s method had an impact on the development of many numerical methods for solving various

problems, and its influence was not restricted to the Fermat-Weber problem. Perhaps the most natural

generalization of the Fermat-Weber problem (and Weiszfeld’s method as well) is to the problem of multifa-

cility location. In fact, one of the first papers, that dealt with Weiszfeld’s method (without knowing it...),

was Miehle’s paper from 1958 [15], where he considered a problem of finding the locations of two points in

R
2. The general multi-facility location problem was considered by Radó in [43] (1988), where the problem

was formulated as

min

n∑

j=1

m∑

i=1

wji ‖xj − ai‖+
n∑

j=1

n∑

ℓ=1

vjℓ ‖xj − xℓ‖ .

Here, a1, a2, . . . , am ∈ R
d are the fixed anchors and x1,x2, . . . ,xn ∈ R

d are the n locations that we seek to

find. The non-negative numbers wji and vjk are given weights. Radó considered the following generalization

of Weiszfeld’s method. To construct the (k + 1)-th iterate from the k-th iterate, like in Weiszfeld’s method,

each of the norm expressions ‖x‖ is replaced by the term ‖x‖2 /
∥∥xk

∥∥. That is, at the k-th iteration the

following minimization problem is solved:

min
x1,x2,...,xn

n∑

j=1

m∑

i=1

wji
‖xj − ai‖2∥∥xk

i − aj
∥∥ +

n∑

j=1

n∑

ℓ=1

vjℓ
‖xj − xℓ‖2∥∥xk

j − xk
ℓ

∥∥ .

The solution to the above convex problem, which is next iterate xk+1
1 ,xk+1

2 , . . . ,xk+1
n , is attained at its

unique stationary point, which is the solution of following linear system of equations:

m∑

i=1

wji
xj − ai∥∥xk
i − aj

∥∥ +

n∑

j=1

n∑

ℓ=1

vjℓ
xj − xℓ∥∥xk
j − xk

ℓ

∥∥ = 0, j = 1, 2, . . . , n.

Some convergence properties of this generalized Weiszfeld’s method were studied in [43]. Another type of

a multi-facility location problem, that involves also clustering, was considered by Iyigun and Ben-Israel

in [44] (2010), and also by Teboulle in [45] (2007). The authors constructed a generalization of Weiszfeld’s

method, and found several properties such as monotonicity; of course, since the problem is nonconvex, it

does not seem possible to construct a method that is guaranteed to converge to the global optimal solution.

Another type of generalizations of the Fermat-Weber problem leading to corresponding generalizations
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of Weiszfeld’s method is concerned with replacing the Euclidean norm in the objective function by another

norm. For example, in [46] (2010) Katz and Vogl considered a Weiszfeld method, which solves a version

of the Fermat-Weber problem in which the Euclidean norms are replaced with weighted Euclidean norms.

Cooper extended Weiszfeld method in [47] (1968) to consider a Fermat-Weber type problem in which the

objective is to minimize a weighted sum of powers of the Euclidean norms:

min
x∈Rd

n∑

i=1

ωi ‖x− ai‖K ,

where K > 0. Of course, the problem is convex only when K ≥ 1. This extension of the problem was

also studied by Chen in [24] (1984). An extension of both the Fermat-Weber problem and the Weiszfeld’s

method for p-norms was considered by Morris in [48] (1981).

We would also like to point out a known generalization of the Fermat-Weber problem, which was suggested

by Erdős in [49] for the case when m = d + 1 and when a1, a2, . . . , ad+1 are affinely independent. The

problem Erdős considered takes the form

min

∑d+1
i=1 ‖x− ai‖∑d+1
i=1 dist(x, Fi)

,

where F1, F2, . . . , Fd+1 are the (d−1)-dimensional facets of the simplex conv{a1, a2, . . . , ad+1}. As opposed
to the Fermat-Weber problem, this generalization is a nonconvex problem, and is therefore in principal

difficult to solve.

A totally different location problem, in which Weiszfeld-type ideas were used, is the source localization

problem. In this problem we are given measurements of the distances of a source in an unknown location

x from the m anchors:

‖x− ai‖ ≈ di, i = 1, 2, . . . ,m.

One formulation of the problem consists in finding the x resulting with the minimum sum of squared errors:

min
x∈Rd

m∑

i=1

(‖x− ai‖ − di)
2
. (SL)

Despite its apparent resemblance to Fermat-Weber, problem (SL) is quite different in the sense that it is

a difficult nonconvex problem. One of the methods studied by Beck et al in [50] (2008) uses the idea of

Weiszfeld to replace the norm terms of the form ‖x− ai‖ with the expressions ‖x− ai‖2 / ‖xk − ai‖, thus
resulting with the following iterative scheme:

xk+1 ∈ argmin
x∈Rd

m∑

i=1

(
‖x− ai‖2
‖xk − ai‖

− di

)2

.

The convergence of this scheme (to stationary points) was studied in [50]. An open question in this context

is whether this approach can be extended to the more general sensor network localization problem where



33

we are given a sensor network with m anchors and n sensors. The locations of the anchors are given

by the known vectors a1, a2, . . . , am ∈ R
d; the locations of the n sensors are decision variables vectors

x1,x2, . . . ,xn ∈ R
d. We assume that we are given noisy measurements of some of the distances between

pairs of sensors and between pairs of sensors and anchors:

‖xj − xt‖ ≈ djt, (j, t) ∈ N , (31)

‖xj − ai‖ ≈ wji, (j, i) ∈ M, (32)

where

N ⊆ {(j, t) : j 6= t, j, t = 1, 2, . . . , n} ,

M ⊆ {(j, i) : i = 1, 2, . . . ,m, j = 1, 2, . . . , n} ,

are the subsets of pairs of indices corresponding to the sensor/sensor and anchor/sensor distance measure-

ments. We assume that, if (j, t) ∈ N for some j 6= t, then (t, j) /∈ N . A possible modelling of the problem

(see e.g., Biswas et al [51]) is via the minimization problem:

min
x1,x2,...,xn



f (x1,x2, . . . ,xn) ≡

∑

(j,t)∈M
(‖xj − xt‖ − djt)

2
+

∑

(j,i)∈N
(‖xj − ai‖ − wji)

2



 . (SNL)

Problem (SNL) is a nonconvex problem, and hence finding its global optimal solution is generally speaking

a difficult task. The question that arises is whether the Weiszfeld-type techniques used in [50] can be used

to construct an efficient solution method. Obviously, since the problem is nonconvex, the main objective

from a theoretical point of view is to prove convergence or rate of convergence to a stationary point.

We also note that the iteratively reweighted least squares method, which is one of the most popular

optimization algorithms for solving a wide variety of problems involving norms, is essentially based on

ideas from Weiszfeld’s method. As an illustration of the method, consider the problem of robust regression

which consists of solving the l1-norm problem

min
x∈Rd

{
‖Ax− b‖1 =

m∑

i=1

∣∣aTi x− bi
∣∣
}
,

where A ∈ R
m×n, b ∈ R

m and aT1 , a
T
2 , . . . , a

T
m are the rows of the matrix A. At each iteration, the absolute

values
∣∣aTi x− bi

∣∣ are replaced by
(
aTi x− bi

)2
/
∣∣aTi xk − bi

∣∣, and the (k + 1)-th is determined from the k-th

iteration by the update formulas:

xk+1 ∈ argmin

{
m∑

i=1

(
aTi x− bi

)2
∣∣aTi xk − bi

∣∣

}
.

This scheme was studied in the context of various types of models, and the literature of this method covers

hundreds of paper that were written in the past 60 years; the list of references [52–57] is just a very small
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representative sample of works dealing with various applications and theoretical properties.

We end this section by recalling that the the Fermat-Weber problem is associated with what is considered

to be the oldest example of constrained extremum problems duality in the literature (see the paper of

Kuhn [58] for a historical account). Here we consider the original problem of Fermat with three points in

the plane, and without weights. The primal and dual problems are:

• Primal. Fermat-Weber problem: given three points in the plane, a1, a2, a3, find a point x ∈ R
2

minimizing the sum of distances to a1, a2, a3.

• Dual. Find the equilateral triangle with maximal altitude circumscribing the triangle with vertices

a1, a2, a3.

The optimal values of the two problems are actually the same, that is, the altitude of the largest equilateral

triangle circumscribing the given triangle is equal to the sum of the distances of the Fermat-Torricelli

point from the three vertices. This duality is also called Fasbender’s duality since it was discovered by

Fasbender [59] in 1846. As was pointed out in [58], this duality is essentially equivalent to Lagrangian

duality. For the general Fermat-Weber problem (FW), the Lagrangian dual problem is given by

max
u1,...,um∈Rd

{
m∑

i=1

aTi ui :
m∑

i=1

ui = 0, ‖uj‖ ≤ ωj, j = 1, 2 . . . ,m

}
. (D)

For the original Fermat-Torricelli problem (m = 3, ωi = 1, n = 2), when all the angles are smaller than

120◦, the relation between the optimal dual variables (u1,u2,u3) and the primal variables vector (x) is

given by ui =
ai−x

‖ai−x‖ . In addition, the i-th side of the largest circumscribing equilateral triangle passes

through ai and is perpendicular to ui. An interesting line of research will be to understand the Weiszfield’s

method from the point of view duality. Thus, it will be interesting to derive a dual form of Weiszfeld’s

method, and to find generalizations of this dual method that are able to cope with models different than

(D).

11 Conclusions

In this paper we reviewed the intriguing story of Weiszfeld’s method beginning from its development in

1937. All the convergence results were presented in a self-contained manner, and some of the proofs are

new and simplified. Two new results were derived: the first is a non-asymptotic rate of convergence of

the sequence of function values generated by Weiszfeld’s method, and the second is an acceleration of the

method based on an exact smoothed formulation and an optimal gradient-based method.
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Appendix A: Notations

Following is a list of notations that are used throughout the paper.

• A = {a1, a2, . . . , am} - the set of anchors.

• ω1, ω2, . . . , ωm - given positive weights.

• ω =
∑m

i=1 ωi - sum of weights.

• f (x) =
∑m

i=1 ωi ‖x− ai‖ - the Fermat-Weber objective function.

• x∗ – an optimal solution of the Fermat-Weber problem. If the anchors are not collinear, then x∗ is

the unique optimal solution.

• X∗ - the optimal solution set of the Fermat-Weber problem. When the anchors are not collinear, X∗

is the singleton {x∗} .

• f∗ - the optimal value of the Fermat-Weber problem.

• T (x) = 1∑
m
i=1

ωi

‖x−ai‖

∑m
i=1

ωiai

‖x−ai‖ - the operator defining Weiszfeld’s method.

• h (x,y) :=
∑m

i=1 ωi
‖x−ai‖2

‖y−ai‖ - an auxiliary function used to analyze Weiszfeld’s method.

• L (x) =
∑m

i=1
ωi

‖x−ai‖ - serves as a kind of “Lipschitz” constant and the operator T can be written as

taking a gradient step with stepsize 1/L (x): T (x) = x− 1/L (x)∇f (x).

• Rj =
∑m

i=1,i6=j ωi (aj − ai) / ‖ai − aj‖, j = 1, 2, . . . ,m. An important property related to Rj is that

aj is optimal if and only if ‖Rj‖ ≤ wj .

• dj = −Rj/ ‖Rj‖ - the steepest descent direction of f at aj .

Appendix B: Proof of Lemma 7.1

Let x := aj + tjdj . Then, from the definition of x, we have that dj = (1/tj) (x− aj) and hence

− 1

tj
‖x− aj‖2 =

1

tj
‖x− aj‖2 − 2

〈
x− aj ,

x− aj
tj

〉

=
1

tj
‖x− aj‖2 − 2 〈x− aj ,dj〉

=
1

tj
‖x− aj‖2 − 2

〈
x− aj ,−

Rj

‖Rj‖

〉

=
1

tj
‖x− aj‖2 +

2

‖Rj‖
〈x− aj ,Rj〉 . (33)
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Now, we will expand the first term of the right-hand side of (33)

1

tj
‖x− aj‖2 =

L (aj)

‖Rj‖ − ωj
‖x− aj‖2

=
1

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi

‖aj − ai‖



 ‖x− aj‖2

=
1

‖Rj‖ − ωj

m∑

i=1,i6=j

ωi
‖x− aj‖2
‖aj − ai‖

=
1

‖Rj‖ − ωj

m∑

i=1,i6=j

ωi

(
‖x− ai‖2
‖aj − ai‖

+ 2
〈x− ai, ai − aj〉

‖aj − ai‖
+

‖ai − aj‖2
‖aj − ai‖

)

=
1

‖Rj‖ − ωj

m∑

i=1,i6=j

ωi

(
‖x− ai‖2
‖aj − ai‖

+ 2
〈x− ai, ai − aj〉

‖aj − ai‖
+ ‖aj − ai‖

)
.

The middle term can be also written as follows

2
〈x− ai, ai − aj〉

‖aj − ai‖
= 2

〈x− aj , ai − aj〉
‖aj − ai‖

+ 2
〈aj − ai, ai − aj〉

‖aj − ai‖

= 2
〈x− aj , ai − aj〉

‖aj − ai‖
− 2 ‖aj − ai‖ .

Thus, from the definition of Rj , we have

1

tj
‖x− aj‖2 =

1

‖Rj‖ − ωj

m∑

i=1,i6=j

ωi

(
‖x− ai‖2
‖aj − ai‖

+ 2
〈x− aj , ai − aj〉

‖aj − ai‖
− ‖aj − ai‖

)

=
1

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi
‖x− ai‖2
‖aj − ai‖

+ 2

〈
x− aj ,

m∑

i=1,i6=j

ωi
ai − aj
‖aj − ai‖

〉
− f (aj)




=
1

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi
‖x− ai‖2
‖aj − ai‖

− 2 〈x− aj ,Rj〉 − f (aj)


 .

Note that, by the fact that a2

b ≥ 2a− b for any a ∈ R and b ∈ R++ we have

‖x− ai‖2
‖aj − ai‖

≥ 2 ‖x− ai‖ − ‖aj − ai‖ .

Thence

1

tj
‖x− aj‖2 ≥ 1

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi (2 ‖x− ai‖ − ‖aj − ai‖)− 2 〈x− aj ,Rj〉 − f (aj)





=
1

‖Rj‖ − ωj



2
m∑

i=1,i6=j

ωi ‖x− ai‖ − 2 〈x− aj ,Rj〉 − 2f (aj)





=
2

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi ‖x− ai‖ − 〈x− aj ,Rj〉 − f (aj)


 .
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Plugging the last inequality in (33) yields

− 1

tj
‖x− aj‖2 =

1

tj
‖x− aj‖2 +

2

‖Rj‖
〈x− aj ,Rj〉

≥ 2

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi ‖x− ai‖ − 〈x− aj ,Rj〉 − f (aj)


+

2

‖Rj‖
〈x− aj ,Rj〉

=
2

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi ‖x− ai‖ − f (aj)


−

(
2

‖Rj‖ − ωj
− 2

‖Rj‖

)
〈x− aj ,Rj〉

=
2

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi ‖x− ai‖ − f (aj)


− 2ωj

‖Rj‖ (‖Rj‖ − ωj)
〈x− aj ,Rj〉

=
2

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi ‖x− ai‖ − f (aj)


+

2ωj

‖Rj‖ − ωj
〈x− aj ,dj〉

=
2

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi ‖x− ai‖ − f (aj) + ωj 〈x− aj ,dj〉




=
2

‖Rj‖ − ωj




m∑

i=1,i6=j

ωi ‖x− ai‖ − f (aj) + ωj ‖x− aj‖




=
2

‖Rj‖ − ωj
(f (x)− f (aj)) ,

where the second equality from below follows from the fact that 1 = ‖dj‖ = ‖x− aj‖ /tj. Hence,

f (aj)− f (x) ≥ ‖Rj‖ − ωj

2tj
‖x− aj‖2 = tj

‖Rj‖ − ωj

2
=

(‖Rj‖ − ωj)
2

2L (aj)
,

where the first equality follows from the fact that ‖x− aj‖ = tj and the last equality follows from the

definition of tj .
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