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Abstract

We present and study a new variational inequality problem, which
we call the Common Solutions to Variational Inequalities Problem
(CSVIP). This problem consists of �nding common solutions to a sys-
tem of unrelated variational inequalities corresponding to multi-valued
mappings in Hilbert space. We present an iterative procedure for solv-
ing this problem and establish its strong convergence. Relations with
other problems of solving systems of variational inequalities, both old
and new, are discussed as well.
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1 Introduction

In this paper we present a new variational inequality problem which we term
the Common Solutions to Variational Inequalities Problem (CSVIP). This
problem is formulated as follows.

Problem 1.1 Let H be a real Hilbert space. Let there be given, for each
i = 1; 2; : : : ; N , a multi-valued mapping Ai : H ! 2H and a nonempty, closed
and convex subset Ki � H, with

TN
i=1Ki 6= ;. The CSVIP is to �nd a point

x� 2
TN
i=1Ki such that, for each i = 1; 2; : : : ; N; there exists u�i 2 Ai(x�)

satisfying
hu�i ; x� x�i � 0 for all x 2 Ki, i = 1; 2; : : : ; N: (1.1)

Obviously, if N = 1 then the problem is nothing but the well-known Vari-
ational Inequality Problem (VIP), �rst introduced (with a single-valued map-
ping) by Hartman and Stampacchia in 1966 (see [16]). The motivation for
de�ning and studying such CSVIPs with N > 1 stems from the simple obser-
vation that if we choose allAi = 0, then the problem reduces to that of �nding
a point x� 2

TN
i=1Ki in the nonempty intersection of a �nite family of closed

and convex sets, which is the well-known Convex Feasibility Problem (CFP).
If the sets Ki are the �xed point sets of a family of operators Ti : H ! H,
then the CFP is the Common Fixed Point Problem (CFPP). These prob-
lems have been intensively studied over the past decades both theoretically
(existence, uniqueness, properties, etc. of solutions) and algorithmically (de-
vising iterative procedures which generate sequences that converge, �nitely
or asymptotically, to a solution). The CSVIP (in Euclidean space Rn

and with single-valued mappings fi : Rn ! Rn; i = 1; 2; : : : ; N) was
also considered in [9, Subsection 7.2]. In [9, Subsection 7.2] we
transformed the CSVIP into a Constrained Variational Inequality
Problem in an appropriate product space, i.e.,

�nd a point x� 2K \� such that hF (x�);x� x�i � 0 (1.2)

for all x = (x1; x2; : : : ; xN) 2K; (1.3)

where K := �Ni=1Ki, the diagonal set in RNn

� := fx 2 RNn j x=(a; a; : : : ; a); a 2 Rng (1.4)

and F : RNn ! RNn is de�ned by
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F
�
(x1; x2; : : : ; xN)

�
= (f1(x

1); : : : ; fN(x
N)); (1.5)

where xi 2 Rn for all i = 1; 2; : : : ; N: So, problem (1.2) can be solved
by [9, Algorithm 4.4]. In this paper besides extending this problem
to the multi-valued case, we present an algorithm that does not
require the translation to a product space.
Since the phrase �system of variational inequalities�has been extensively

used in the literature for many di¤erent problems, as can be seen from the
cases mentioned in Subsection 1.1 below, it seems natural to call our new
problem the Common Solutions to Variational Inequalities Problem.
The signi�cance of studying the CSVIP lies in the fact that besides its en-

abling a uni�ed treatment of such well-known problems as the CFP and the
CFPP, the CSVIP also opens a path to a variety of new �common point prob-
lems�that are created from various special cases of the VIP. For an excellent
treatise on variational inequality problems in �nite-dimensional spaces, see
the two-volume book by Facchinei and Pang [12]. The books by Konnov [21]
and Patriksson [27] contain extensive studies of VIPs including applications,
algorithms and numerical results. For a wide range of applications of VIPs,
see, e.g., the book by Kinderlehrer and Stampacchia [22]. The importance of
VIPs stems from the fact that several fundamental problems in Optimization
Theory can be formulated as VIPs, as the following few examples show.

Example 1.2 Constrained minimization. Let K � H be a nonempty,
closed and convex subset and let g : H ! H be a continuously di¤erentiable
single-valued mapping which is convex on K. Then x� is a minimizer of g
over K if and only if x� solves the VIP

hrg(x�); x� x�i � 0 for all x 2 K; (1.6)

where rg is the gradient of g (see, e.g., [5, Proposition 3.1, p. 210]). When
g is not di¤erentiable, we get the VIP

hu�; x� x�i � 0 for all x 2 K; (1.7)

where u� 2 @g(x�) and @g is the multi-valued subdi¤erential of g (see, e.g.,
[15, Chapter 4, Subsection 3.5]).

Example 1.3 When the Hilbert space H is Rn and the set K is Rn+, then
the VIP obtained from (1.1) with N = 1 is equivalent to the nonlinear
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complementarity problem: �nd a point x� 2 Rn+ and a point u� 2 A(x�)
such that u� 2 Rn+ and hu�; x�i = 0.
Indeed, let H be Rn and K = Rn+: So, if x� solves (1.1) with N = 1 and

A : Rn ! 2R
n
; then there exists x� 2 Rn+ such that u� 2 A(x�) satis�es

hu�; x� x�i � 0 for all x 2 Rn+: (1.8)

So, in particular, if we take x = 0 we obtain hu�; x�i � 0 and if we take
x = 2x� we obtain hu�; x�i � 0. Combining the above two inequalities, we
see that hu�; x�i = 0. As a consequence, this yields

hu�; xi � 0 for all x 2 Rn+ (1.9)

and hence u� 2 Rn+. Conversely, if x� solves the nonlinear complementarity
problem, then hu�; x� x�i = hu�; xi � 0 for all x 2 Rn+ (since u� 2 Rn+),
which means that x�solves (1.1) with N = 1:

Example 1.4 When the set K is the whole space H, then the VIP obtained
from (1.1) with N = 1 is equivalent to the problem of �nding zeros of a
mapping A, i.e., to �nd an element x� 2 H such that 0 2 A(x�).

Example 1.5 Let H1 and H2 be two real Hilbert spaces, and let K1 and
K2 be two convex subsets of H1 and H2, respectively. Given a single-valued
mapping g : H1 � H2 ! R, the Saddle-Point Problem is to �nd a point
(u�1; u

�
2) 2 K1 �K2 such that

g(u�1; u2) � g(u�1; u�2) � g(u1; u�2) for all (u1; u2) 2 K1 �K2: (1.10)

This problem can be written as the VIP of �nding (u�1; u
�
2) 2 K1 �K2 such

that��
rgu1(u�1; u�2)
�rgu2(u�1; u�2)

�
;

�
u1
u2

�
�
�
u�1
u�2

��
� 0 for all (u1; u2) 2 K1 �K2: (1.11)

Our main goal in this paper is to present an iterative procedure for solving
CSVIPs and prove its strong convergence. Our algorithm, besides generating
a sequence which strongly converges to a solution, also solves the, so called,
Best Approximation Problem (BAP), which consists of �nding the nearest
point projection of a point onto the (unknown) intersection of N closed and
convex subsets (see, e.g., [7] and the references therein). More precisely, our
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algorithm generates a sequence which converges strongly to the nearest point
projection of the starting point onto the solution set of the CSVIP.
The paper is organized as follows. In Subsection 1.1 we describe the

connections between our work and some earlier papers and in Section 2 we
list several known facts about functions, operators and mappings that we
need in the sequel. In Section 3 we present our algorithm for solving the
CSVIP and prove its strong convergence through a sequence of Claims. In
Section 4 we present �ve special cases of the CSVIP.

1.1 Relation with previous work

Several variants of systems of variational inequalities appeared during the
last decades. We present some of them in detail and show their connection
to the CSVIP.

1. Konnov [20] considers the following system of variational inequalities.
Let K � Rn be a nonempty, closed and convex set and let Ai : K !
2R

n
, i = 1; 2; : : : ; N , be N multi-valued mappings. The problem is to

�nd a point x� 2 K such that for each i = 1; 2; : : : ; N; there exists
u�i 2 Ai(x�) satisfying

hu�i ; x� x�i � 0 for all x 2 K, i = 1; 2; : : : ; N . (1.12)

This means that Konnov solves a CSVIP with H = Rn and Ki = K
for all i = 1; 2; : : : ; N .

2. Ansari and Yao [1] studied the following system of variational inequal-
ities. Let I be an index set and for each i 2 I, let Xi be a Hausdor¤
topological vector space with its topological dual X�

i . Let Ki, i 2 I, be
nonempty, closed and convex subsets of Xi. Let K =

QN
i=1Ki and let

Ai : K ! X�
i , i = 1; 2; : : : ; N , be single-valued mappings (see also [26]

for more details). Ansari and Yao then consider the problem of �nding
a point x� 2 K such that

hAi(x�); x� x�i � 0 for all x 2 Ki; i = 1; 2; : : : ; N: (1.13)

3. Kassay and Kolumbán [19] solve another system of two variational in-
equalities. Let X and Y be two re�exive real Banach spaces and let
K1 � X and K2 � Y be nonempty, closed and convex sets. Denote
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by X� and Y � the dual spaces of X and Y , respectively. Consider two
multi-valued mappings A1 : K1 �K2 ! 2X

�
and A2 : K1 �K2 ! 2Y

�
.

Kassay�s and Kolumbán�s problem is to �nd a pair (x1; x2) 2 K1 �K2

such that

sup
w2A1(x1;x2)

hw; x� x1i � 0 for all x 2 K1,

sup
z2A2(x1;x2)

hz; y � x2i � 0 for all y 2 K2. (1.14)

4. Recently, Zhao et al. [33] have considered the following system of two
variational inequalities in Euclidean spaces. Let K1 and K2 be two
closed and convex subsets of Rn and Rm, respectively. Let A1 : K1 �
K2 ! Rn and A2 : K1 � K2 ! Rm be two single-valued mappings.
Then Zhao et al.�s problem is to �nd a point (u�1; u

�
2) 2 K1 �K2 such

that

hA1(u�1; u�2); u1 � u�1i � 0 for all u1 2 K1,

hA2(u�1; u�2); u2 � u�2i � 0 for all u2 2 K2. (1.15)

The main di¤erence between problems (1.1) and (1.15) is that our sys-
tem includes any �nite number (not only two) of mappings (not only
single-valued) de�ned on di¤erent sets. In addition, in our case the
problem is formulated in Hilbert space (not only in Euclidean space).

2 Preliminaries

Let H be a real Hilbert space with inner product h�; �i and induced norm k�k.
In what follows, a point-to-set function A : H ! 2H is called a multi-valued
mapping (or a mapping for short) onH. When each set Ax is either empty or
a singleton we call A a single-valued mapping (or an operator for short)
on H. The domain of a mapping A is the set

dom A := fx 2 H : Ax 6= ;g : (2.1)

The range of a mapping A is the set

ran A := fu 2 Ax : x 2 dom Ag : (2.2)
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The graph of a mapping A is the subset of H�H de�ned by

graph A := f(x; u) 2 H �H : u 2 Axg : (2.3)

We write w-limn!+1 x
n = x to indicate that the sequence fxngn2N converges

weakly to x and limn!+1 x
n = x to indicate that the sequence fxngn2N

converges strongly to x.
The next property is known as the Opial condition (see [25]). Every

Hilbert space enjoys this property.

Condition 2.1 (Opial condition) For any sequence fxngn2N in H that
converges weakly to x, we have

lim inf
n!+1

kxn � xk < lim inf
n!+1

kxn � yk (2.4)

for all y 6= x.

Any Hilbert space H has the Kadec-Klee property (see, for instance,
[13]), that is, if fxngn2N is a sequence in H which satis�es w-limn!+1 x

n = x
and limn!+1 kxnk = kxk, then limn!+1 kxn � xk = 0.

De�nition 2.2 (Weakly lower semicontinuous) A function g : H !
(�1;+1] is called weakly lower semicontinuous if

g(x) � lim inf
n!+1

g(xn) (2.5)

for any sequence fxngn2N which satis�es w-limn!+1 x
n = x.

De�nition 2.3 (Monotone mappings) Let A : H ! 2H be a mapping.
We say that
(i) A is monotone if for any x; y 2 dom A we have

hu� v; x� yi � 0 for all u 2 A(x) and v 2 A(y); (2.6)

(ii) A is maximal monotone if it is monotone and its graph graph A is
not properly contained in the graph of any other monotone mapping.

The notion of maximal monotonicity can be equivalently formulated in
the following way.
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Remark 2.4 (Maximal monotone mappings) The mapping A : H !
2H is maximal monotone if and only if we have

8(y; v) 2 graph A
hu� v; x� yi � 0

�
=) u 2 Ax: (2.7)

We now recall two de�nition. Let K � H be a nonempty, closed and
convex set. Denote by CB(K) � K the family of all nonempty, closed,
convex and bounded subsets of K.

De�nition 2.5 (Hausdor¤metric) LetK1; K2 2 CB(K). The Hausdorff
metric on CB(K) is de�ned by

H (K1; K2) := max

�
sup
x2K2

d (x;K1) ; sup
y2K1

d (y;K2)

�
; (2.8)

where the distance function is de�ned by d(x;K) := inf fkx� zk : z 2 Kg.

De�nition 2.6 (Nonexpansive mappings) Let A : H ! 2H be a map-
ping such that A(x) 2 CB(H) for each x 2 H. We say that
(i) A is Lipschitz continuous with constant LA > 0 if

H (A (x) ; A (y)) � LA kx� yk for all x; y 2 H: (2.9)

So, given x 2 H, ux 2 A(x) and y 2 H, there exists vy 2 A(y) such that
kux � vyk � LA kx� yk.
(ii) A is nonexpansive (see, for example, [17]) if it is Lipschitz contin-

uous with LA = 1.

LetK be a nonempty, closed and convex subsetH. For each point x 2 H,
there exists a unique nearest point in K, denoted by PK(x). That is,

kx� PK (x)k � kx� yk for all y 2 K: (2.10)

The operator PK : H ! K is called the metric projection of H onto K.
It is well known that PK is a nonexpansive operator from H onto K. The
metric projection PK is characterized (see [14, Section 3]) by the following
two properties:

PK (x) 2 K (2.11)
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and
hx� PK (x) ; y � PK (x)i � 0 for all x 2 H; y 2 K: (2.12)

If K is a hyperplane, then (2.12) becomes an equality. It is easy to check
that (2.12) is equivalent to

kx� PK (x)k2 + ky � PK (x)k2 � kx� yk2 for all x 2 H; y 2 K: (2.13)

We denote by NK (v) the normal cone of K at v 2 K, i.e.,
NK (v) := fz 2 H : hz; y � vi � 0 for all y 2 Kg : (2.14)

We also recall that in a real Hilbert space H,
k�x+ (1� �)yk2 = � kxk2 + (1� �) kyk2 � �(1� �) kx� yk2 (2.15)

for all x; y 2 H and � 2 [0; 1].
The following result will be essential in the proof of our main theorem.

Claim 2.7 Consider the half-space

H (x; y) := fz 2 H : hx� y; z � yi � 0g : (2.16)

Given two points x and y in H, set y� := �x + (1 � �)y for any � 2 [0; 1].
Then H = H(x; y) � H(x; y�) =: H�:
Proof. Let z 2 H. In order to show that z 2 H�, � 2 [0; 1], we need to

check that hx� y�; z � y�i � 0. We have
hx� y�; z � y�i = hx� (�x+ (1� �) y) ; z � (�x+ (1� �) y)i

= h(1� �)x� (1� �) y; (�z + (1� �) z)� (�x+ (1� �) y)i
= (1� �) hx� y; (1� �) (z � y) + � (z � x)i
= (1� �)2 hx� y; z � yi+ (1� �)� hx� y; z � xi
= (1� �)2 hx� y; z � yi+ (1� �)� hx� y; y � xi
+ (1� �)� hx� y; z � yi
= (1� �) hx� y; z � yi � (1� �)� kx� yk2

� (1� �) hx� y; z � yi : (2.17)

Since z 2 H, we know that hx� y; z � yi � 0. Hence z 2 H� for any
� 2 [0; 1], as claimed.
De�nition 2.8 (Fixed point set) For a mapping A : H ! 2H; we denote
by Fix(A) the fixed point set of A, i.e.,

Fix(A) := fx 2 H : x 2 A(x)g:
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3 The algorithm

In this section we present a new algorithm for solving the CSVIP. Let fKigNi=1
be N nonempty, closed and convex subsets of H. Let fAigNi=1 be a set of N
mappings from H into 2H such that Ai(x) 2 CB(H) for each x 2 H and
i = 1; : : : ; N . Denote by SOL(Ai; Ki) the solution set of the Variational
Inequality Problem VIP(Ai; Ki) corresponding to the mapping Ai and the
set Ki.

Algorithm 3.1
Initialization: Select an arbitrary starting point x1 2 H.
Iterative step: Given the current iterate xn, calculate the next iterate

as follows:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

yni = PKi
(xn � �ni uni ) ; uni 2 Ai (xn) ;

�nd vni 2 Ai (yni ) which satis�es De�nition 2.6(i) with uni ;
zni = PKi

(xn � �ni vni ) ;
Cni = fz 2 H : hxn � zni ; z � xn � 
ni (zni � xn)i � 0g ;

Cn =
TN
i=1C

n
i ;

W n = fz 2 H : hx1 � xn; z � xni � 0g ;
xn+1 = PCn\Wn (x1) :

(3.1)

This algorithm is quite complex in comparison with more �direct�itera-
tive methods. In order to calculate the next approximation to the solution of
the problem, the latter use only a value of one main operator at the current
approximation. On the other hand, Algorithm 3.1 generates strongly con-
vergent sequences, as is proved below, and this powerful quality apparently
complicates the process. It seems natural to ask by how much? and whether
it is possible in reality to calculate Cni , C

n = \ni=1Cni , W n and Cn \W n?
Our main interest here is not to develop a practical numerical method

and whether our work can help in the design and analysis of more practi-
cal algorithms remains to be seen. In Subsection 4.6 we give some small
computational examples to demonstrate the practical di¢ culties.
In order to prove our convergence theorem we assume that the following

conditions hold.
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Condition 3.2 The mappings fAigNi=1 are maximal monotone and Lipschitz
continuous with LAi = �i.

Condition 3.3 The common solution set F :=
TN
i=1SOL(Ai; Ki) is non-

empty.

Condition 3.4 The sequence f�ni gn2N � [a; b], i = 1; : : : ; N , for some a and
b with 0 < a < b < 1=�; where � := max1�i�N �i.

Condition 3.5 The sequence f
ni gn2N � ["; 1=2] for each i = 1; : : : ; N ,
where " 2 (0; 1=2].
Theorem 3.6 Assume that Conditions 3.2-3.5 hold. Then any sequences
fxngn2N, fyni gn2N and fzni gn2N ; generated by Algorithm 3.1, converge strongly
to PF (x1).

Proof. We divide the proof into four claims.

Claim 3.7 The projection PF (x1) and the sequence fxngn2N are well-de�ned.
Proof. It is known that each SOL(Ai; Ki), i = 1; : : : ; N , is a closed and

convex subset of H (see, e.g., [4, Lemma 2.4(ii)]). Hence F is nonempty (by
Condition 3.3), closed and convex, so PF (x1) is well de�ned. Next, it is clear
that both Cni and W

n are closed half-spaces for all n � 1. Therefore Cn and
Cn \W n are closed and convex for all n � 1. It remains to be proved that
Cn \W n is not empty for all n. When 
ni = 1=2 for all n 2 N and for all
i = 1; : : : ; N; then the set Cni has the following form:eCni := fz 2 H : kzni � zk � kxn � zkg : (3.2)

From Claim 2.7 it follows thateCni � fz 2 H : hxn � zni ; z � xn � 
ni (zni � xn)i � 0g = Cni : (3.3)

Let eCn = TN
i=1

eCni . It is enough to show that F � eCn \W n for all n 2 N.
First we prove that F � eCn for all n 2 N. To this end, let s 2 F and let
wi 2 Ai(s) for any i = 1; : : : ; N . It now follows from (2.13) that

kzni � sk
2 = kPKi

(xn � �ni vni )� sk
2

� k(xn � �ni vni )� sk
2 � k(xn � �ni vni )� zni k

2

= kxn � sk2 � kxn � zni k
2 + 2�ni hvni ; s� zni i

= kxn � sk2 � kxn � zni k
2 + 2�ni [hvni � wi; s� yni i

+ hwi; s� yni i+ hvni ; yni � zni i] (3.4)
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for any i = 1; : : : ; N . Using the monotonicity of Ai and the fact that s 2
SOL(Ai; Ki) ; we obtain from (3.4) that

kzni � sk
2 � kxn � sk2 � kxn � zni k

2 + 2�ni hvni ; yni � zni i
= kxn � sk2 � kxn � yni + yni � zni k

2 + 2�ni hvni ; yni � zni i
= kxn � sk2 � kxn � yni k

2 � 2 hxn � yni ; yni � zni i�
kyni � zni k

2 + 2�ni hvni ; yni � zni i
= kxn � sk2 � : kxn � yni k

2 � kyni � zni k
2+

2 hxn � �ni vni � yni ; zni � yni i : (3.5)

From (2.12) we have

hxn � �ni vni � yni ; zni � yni i = hxn � �ni uni � yni ; zni � yni i
+ �ni huni � vni ; zni � yni i
� �ni huni � vni ; zni � yni i (3.6)

and from the Cauchy-Schwarz inequality it follows that

hxn � �ni vni � yni ; zni � yni i � �ni kuni � vni k kzni � yni k : (3.7)

Each mapping Ai, 1; : : : ; N , is Lipschitz continuous with constant �i. There-
fore Ai is obviously Lipschitz continuous with constant �. Using this fact,
we obtain

hxn � �ni vni � yni ; zni � yni i � �ni � kxn � yni k kzni � yni k : (3.8)

Hence

kzni � sk
2 � kxn � sk2 � kxn � yni k

2 � kyni � zni k
2+

2�ni � kxn � yni k kzni � yni k : (3.9)

Since

0 � (�ni � kxn � yni k � kzni � yni k)
2

= (�ni �)
2 kxn � yni k

2 � 2�ni � kxn � yni k kzni � yni k
+ kzni � yni k

2 ; (3.10)
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we obtain that

2�ni � kxn � yni k kzni � yni k � (�ni �)
2 kxn � yni k

2 + kzni � yni k
2 : (3.11)

Thus,

kzni � sk
2 � kxn � sk2 � kxn � yni k

2 � kyni � zni k
2+

(�ni �)
2 kxn � yni k

2 + kzni � yni k
2 :

= kxn � sk2 �
�
1� (�ni �)

2� kxn � yni k2 : (3.12)

Since �ni < 1=� it follows that kzni � sk
2 � kxn � sk2. Therefore s 2 eCn.

Consequently, F � eCn for all n � 1. Now we prove by induction that the
sequence fxngn2N is well de�ned. Indeed, since F � eC1 and F � W 1 = H, it
follows that F � eC1\W 1 and therefore x2 = P eC1\W 1(x1) is well de�ned. Now
suppose that F � eCn�1 \W n�1 for some n > 2. Let xn = P eCn�1\Wn�1(x1).
Again we have F � eCn and for any s 2 F , it follows from (2.12) that


x1 � xn; s� xn
�
=


x1 � P eCn�1\Wn�1(x

1); s� P eCn�1\Wn�1(x
1)
�
� 0:
(3.13)

This implies that s 2 W n. Therefore F � eCn \ W n for any n � 1, as
required. This shows that the sequence fxngn2N is indeed well de�ned.

Claim 3.8 The sequences fxngn2N, fyni gn2N and fzni gn2N are bounded for
any i = 1; : : : ; N .

Proof. Since xn+1 = PCn\Wn(x1); we have for any s 2 Cn \W n,

xn+1 � x1

 � 

s� x1

 : (3.14)

Therefore fxngn2N is bounded. It follows from the de�nition of W n that
xn = PWn(x1). Since xn+1 2 W n, it follows from (2.13) that

xn+1 � xn

2 + 

xn � x1

2 � 

xn+1 � x1

2 : (3.15)

Thus the sequence fkxn � x1kgn2N is increasing and bounded, hence conver-
gent. This shows that limn!1 kxn � x1k exists. In addition, from (3.15) we
get that

lim
n!1



xn+1 � xn

 = 0: (3.16)
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Since xn+1 2 Cni , i = 1; : : : ; N , we have

xn � zni ; xn+1 � xn � 
ni (zni � xn)

�
� 0: (3.17)

Thus

ni kzni � xnk

2 �


xn � zni ; xn � xn+1

�
: (3.18)

Hence kzni � xnk � kxn � xn+1k and therefore

lim
n!1

kzni � xnk = 0; for all i = 1; : : : ; N: (3.19)

Thus fzni gn2N is a bounded sequence for each i = 1; : : : ; N . Using (3.12), we
see that

kxn � yni k
2 �

�
1� (�ni �)

2��1 �kxn � sk2 � kzni � sk2�
=
�
1� (�ni �)

2��1 (kxn � sk � kzni � sk) (kxn � sk+ kzni � sk)
�
�
1� (�ni �)

2��1 kxn � zni k (kxn � sk+ kzni � sk) : (3.20)

Since both fxngn2N and fzni gn2N are bounded, Condition 3.4 and (3.19),
imply that

lim
n!1

kxn � yni k = 0 for all i = 1; : : : ; N: (3.21)

Therefore fyni gn2N is a bounded sequence for each i = 1; : : : ; N , which com-
pletes the proof of Claim 3.8.

Claim 3.9 Any weak accumulation point of the sequences fxngn2N,fyni gn2N
and fzni gn2N belongs to F .

Proof. Since fxngn2N is bounded (see Claim 3.8), there exists a sub-
sequence fxnkgk2N of fxngn2N which converges weakly to x�. Therefore it
follows from (3.21) that there also exists a subsequence fynki gk2N of fyni gn2N
which converges to x� for each i = 1; : : : ; N . De�ne the mapping Ti as follows:

Ti(r) =

�
Ai(r) +NKi

(r) ; r 2 Ki;
?; otherwise,

(3.22)

where NKi
(r) is the normal cone of Ki at r 2 Ki. Since Ai is a maximal

monotone mapping, it follows from [29, Theorem 5, p. 85] that Ti is a maxi-
mal monotone operator and T�1i (0) = SOL(Ai; Ki). Let (r; w) 2 graph (Ti)
with r 2 Ki and let pi 2 Ai(r). Since w 2 Ti(r) = Ai(r) + NKi

(r), we get
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w � pi 2 NKi
(r). Since ynki 2 Ki, we obtain hw � pi; r � ynki i � 0. On the

other hand, since ynki = PKi
(xnk � �nki u

nk
i ), we also have

h(xnk � �nki u
nk
i )� y

nk
i ; r � y

nk
i i � 0 (3.23)

and thus �
xnk � ynki
�nki

� unki ; r � y
nk
i

�
� 0: (3.24)

Therefore it follows from the monotonicity of the mapping Ai, i = 1; : : : ; N ,
that

hw; r � ynki i � hpi; r � y
nk
i i

� hpi; r � ynki i+
�
xnk � ynki
�nki

� unki ; r � y
nk
i

�
= hpi � vnki ; r � y

nk
i i+ hv

nk
i � unki ; r � y

nk
i i

+

�
xnk � ynki
�nki

; r � ynki
�

� hvnki � unki ; r � y
nk
i i+

�
xnk � ynki
�nki

; r � ynki
�
: (3.25)

From the Cauchy-Schwarz inequality and the Lipschitz continuity with con-
stant � it follows that

hw; r � ynki i � �� kr � y
nk
i k kxnk � y

nk
i k � kr � y

nk
i k

kxnk � ynki k
a

= �Mi

�
� kxnk � ynki k+

kxnk � ynki k
a

�
; (3.26)

where Mi = supk2N fkr � ynki kg. Taking the limit as k ! 1 and using the
fact that fkr � ynki kgk2N is bounded, we see that hw; r � x�i � 0. The max-
imality of Ti and Remark 2.4 now imply that x� 2 T�1i (0) = SOL(Ai; Ki).
Hence x� 2 F .

Claim 3.10 The sequences fxngn2N,fyni gn2N and fzni gn2N converge strongly
to PF (x1).

Proof. Since (3.14) holds for all s 2 Cn \W n and F � Cn \W n by the
proof of Claim 3.7, we get for s = PF (x1) that

xn � x1

 � 

PF (x1)� x1

 (3.27)
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and furthermore,

lim
n!1



xn � x1

 � 

PF (x1)� x1

 : (3.28)

Now, since the sequence fxngn2N is bounded (see Claim 3.8), there exists a
subsequence fxnkgk2N of fxngn2N which converges weakly to x�. From Claim
3.9 it follows that x� 2 F . From the weak lower semicontinuity of the norm
and (3.28) it follows that

kx� � x1k � lim inf
k!1

kxnk � x1k

= lim
n!1

kxn � x1k =


PF (x1)� x1

 : (3.29)

Since x� 2 F , it follows that x� = PF (x1): So, since by Claim 3.9 any weak
accumulation point of the sequence fxngn2N belong to F , it follows that
w-limn!1 x

n = x� = PF (x
1): Finally,

kx� � x1k � lim inf
k!1

kxn � x1k = lim
n!1

kxn � x1k =


x� � x1

 : (3.30)

Since w-limn!1(x
n � x1) = x� � x1 and limn!1 kxn � x1k = kx� � x1k, it

follows from the Kadec-Klee property of H that limn!1 kxn � x�k = 0, as
asserted.
This completes the proof of Theorem 3.6. �
Now we present several consequences of our main result.
First, consider the case where Condition 3.2 is replaced with the following

condition.

Condition 3.11 Each one of the mappings fAigNi=1 is maximal monotone
and �i-inverse strongly monotone (�i-ism) with constant �i > 0, that
is,

hu� v; x� yi � �iku� vk2 for all u 2 Ai(x) and v 2 Ai(y): (3.31)

The class of inverse strongly monotone mappings is commonly used in
variational inequality problems (see e.g., [18] and references therein). The
Cauchy-Schwarz inequality shows that inverse strong monotonicity implies
monotonicity and Lipschitz continuity with constant LA = 1=�, where � is
the ism constant. Thus it is clear that Theorem 3.6 applies to this case too.
Second, consider the case where we take Ai as single-valued mappings,

that is, Ai : H ! H, and we change Condition 3.2 to the following one: The
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mappings Ai are monotone and Lipschitz continuous. It is known that, in
general, monotonicity and Lipschitz continuity do not imply inverse strong
monotonicity. However, our strong convergence theorem is also applicable in
this case.

4 Applications

The CSVIP encompasses several previously separately studied problems, as
well as some new ones. For example, the following four problems are special
cases of the CSVIP.

4.1 The Convex Feasibility Problem

Let H be a real Hilbert space. Given N nonempty, closed and convex subsets
Ki � H, with

TN
i=1Ki 6= ;, the Convex Feasibility Problem (CFP) is to �nd

a point x� such that

x� 2
N\
i=1

Ki: (4.1)

This is obviously a special case of the CSVIP with single-valued mappings
obtained by choosing all Ai = 0: The literature on the CFP is vast and many
algorithms for solving it have been developed (see, e.g., [2, 11]). It plays a
fundamental role in many real-world applications. See, e.g., [8].

4.2 The Common Minimizer Problem

A new problem which can be seen as a special case of the CSVIP is the
Common Minimizer Problem (CMP). Given N nonempty, closed and convex
subsets Ki � H, with

TN
i=1Ki 6= ;, and operators gi, i = 1; 2; : : : ; N , that

are continuously di¤erentiable and convex on Ki, respectively, the CMP is
to �nd a point x� so that

x� 2
N\
i=1

Ki and x� = argminfgi(x) j x 2 Kig for all i = 1; 2; : : : ; N: (4.2)

The problem of �nding a minimizer of a continuously di¤erentiable and
convex operator over a convex set K is equivalent to solving a certain vari-
ational inequality. See Example 1.2. Therefore, this CMP translates to a
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CSVIP (with single-valued mappings) by choosing in (1.1) Ai = rgi for all
i = 1; 2; : : : ; N:
Replacing rgi by @gi, we see that the CSVIP also includes the case where

the gi are not necessarily di¤erentiable.

4.3 The Common Saddle-Point Problem

The equivalence between certain VIPs and the saddle-point problems of Ex-
ample 1.5 leads us to present the Common Saddle-Point Problem (CSPP).
LetH1 andH2 be two real Hilbert spaces and let fUigNi=1 � H1 and fVigNi=1 �
H2 be nonempty, closed and convex. Set H := H1 � H2: Given N single-
valued mappings ffi :H ! RgNi=1, the CSPP is to �nd a point (u�1; u�2) 2�
\Ni=1Ui

�
�
�
\Ni=1Vi

�
such that for all i = 1 : : : N , we have

fi(u
�
1; u2) � fi(u�1; u�2) � fi(u1; u�2) (4.3)

for all (u1; u2) 2 Ui � Vi: This problem reduces to the CSVIP when we take
in (1.1) Ai = (r(fi)u1 ;�r(fi)u2) and Ki = Ui � Vi for all i = 1; 2; : : : ; N:

4.4 The Hierarchical Variational Inequality Problem

Next we present another special case of the CSVIP, namely, the Hierarchical
Variational Inequality Problem (HVIP). Let H be a real Hilbert space.

1. Let K be a nonempty, closed and convex subset of H and let A :
K ! K and V : K ! K be two nonexpansive single-valued mappings.
Consider the operator B := I � V . Xu [30] studied the problem of
�nding a point x� 2 Fix(A) such that

hB(x�); x� x�i � 0 for all x 2 Fix(A): (4.4)

2. Yao and Liou [32] considered the following Hierarchical Variational
Inequality Problem (HVIP). Let H be a real Hilbert space and let K �
H be a nonempty, closed and convex subset. Given the single-valued
mappings A : K ! H and V : K ! H, set B := I�V: Then the HVIP
is to �nd a point x� 2 SOL(A;K) such that

hB(x�); x� x�i � 0 for all x 2 SOL(A;K): (4.5)
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Since it is well known that x� 2 SOL(A;K), x� 2 Fix(PK(x���A(x�)))
for all � � 0, this problem is essentially a special case of Xu�s problem. Both
problems can be formulated as a special CSVIP in the following way. Find
a point x� 2 H such that

h(I � A)(x�); x� x�i � 0 for all x 2 H (4.6)

and
hB(x�); x� x�i � 0 for all x 2 Fix(A): (4.7)

This is a two-set CSVIP with the single-valued mappings A1 = I � A and
A2 = B; and the sets K1 = H and K2 = Fix(A).
Recently, hierarchical �xed point problems and hierarchical minimization

problems have attracted attention because of their connections with some
convex programming problems. See, e.g., [23, 24, 31, 30] and the references
therein.

4.5 Variational Inequality Problem over the intersec-
tion of convex sets

Let H be a real Hilbert space. Given for i = 1; 2; : : : ; N nonempty,
closed and convex subsets Ki � H, with

TN
i=1Ki 6= ;. We consider

the CSVIP (1.1) with all Ai � A for i = 1; 2; : : : ; N: Then we obtain a
single variational inequality problem over a nonempty intersection
of N nonempty, closed and convex subsets, i.e., �nd a point x� 2TN
i=1Ki such that, for each i = 1; 2; : : : ; N; there exist u� 2 A(x�)

satisfying

hu�; x� x�i � 0 for all x 2 Ki, i = 1; 2; : : : ; N (4.8)

and in particular

hu�; x� x�i � 0 for all x 2
N\
i=1

Ki: (4.9)

4.6 Implementation

In this subsection we demonstrate on a simple low-dimensional example,
the practical di¢ culties associated with implementation of Algorithm 3.1,
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see also our comment after the formulation of the algorithm above. We
consider a two-discs convex feasibility problem in R2 and provide an ex-
plicit formulation of our Algorithm 3.1, as well as some numerical results.
More explicitly, let K1 = f(x; y) 2 R2 : (x� a1)2 + (y � b1)2 � r21g and K2 =
f(x; y) 2 R2 : (x� a2)2 + (y � b2)2 � r22g with K1 \ K2 6= ;. Consider the
problem of �nding a point (x�; y�) 2 R2 such that (x�; y�) 2 K1\K2. Observe
that in this case A1 = A2 = f0g. For simplicity we choose 
n1 = 
n2 = 1=2.
Given the current iterate xn = (u; v), then the explicit formulation of the
iterative step of Algorithm 3.1 becomes:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

yn1 = PK1 (x
n) =

�
a1 +

r1 (u� a1)
k(u� a1; v � b1)k

; b1 +
r1 (v � b1)

k(u� a1; v � b1)k

�
;

yn2 = PK2 (x
n) =

�
a2 +

r2 (u� a2)
k(u� a2; v � b2)k

; b1 +
r2 (v � b2)

k(u� a2; v � b2)k

�
;

Cn1 = fz = (s; t) 2 R2 : kz � yn1 k � kz � xnkg ;
Cn2 = fz = (s; t) 2 R2 : kz � yn2 k � kz � xnkg ;
W n = fz 2 R2 : hx1 � xn; z � xni � 0g ;
xn+1 = PCn1 \Cn2 \Wn

�
x1
�
:

(4.10)
In order to calculate xn+1, we solve the following constrained minimization
problem: (

min kx1 � zk2;
such that z 2 Cn1 \ Cn2 \W n:

(4.11)

In the case of the metric projection onto two half-spaces, an explicit formula
can be found in [3, De�nition 3.1] and in [10, Subsection 3.1] Following the
same technique, it is easy to obtain the solution to 4.11 even for more than
three half-spaces. The problem is that there are many subcases in the explicit
formula (two to the power of the number of half-spaces).
Now we present some numerical results for the particular case whereK1 =

f(x; y) 2 R2 : x2 + y2 � 1g and K2 = f(x; y) 2 R2 : (x� 1)2 + y2 � 1g. We
choose separately two starting points (�1=2; 3) and (3; 3) and for each start-
ing point we present a table (1, 2) with the (x; y) for the �rst 10 iteration
of Algorithm 3.1. In addition Figures 4.1 and 4.2 illustrates the geometry in
each iterative step, i.e., the discs and the three half-spaces Cn1 , C

n
2 and W

n.
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Case 4.1 Starting point x1 = (�1=2; 3) with the �rst 10 iterations of the
algorithm.

Iteration Number x-value y-value
1 �0:500000000 3:0000000000
2 0:0263507717 1:9471923798
3 0:2898391508 1:4209450920
4 0:4211545167 1:1576070220
5 0:4687763141 1:0169184232
6 0:4862238741 0:9429308114
7 0:4935428246 0:9048859275
8 0:4968764116 0:8855650270
9 0:4984644573 0:8758239778
10 0:4992386397 0:8709324060

Table 1: 10 iteration with the starting point x1 = (�1=2; 3)
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Geometric illustration of Algorithm 3.1 in each iterative step, i.e., the discs
and the three half-spaces Cn1 , C

n
2 and W

n, with the starting point
x1 = (�1=2; 3)

Case 4.2 Starting point is x1 = (3; 3) with the �rst 10 iterations of the
algorithm.
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Iteration Number x-value y-value
1 3:0000000000 3:0000000000
2 1:8536075595 1:8534992168
3 1:2802790276 1:2803811470
4 0:9937807510 0:9936561265
5 0:8503033752 0:8505218683
6 0:7789970157 0:7785224690
7 0:7423971596 0:7434698006
8 0:7264747366 0:7235683325
9 0:7115677773 0:7205826742
10 0:7260458319 0:6973591138

Table 2: 10 iteration with the starting point x1 = (3; 3)
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Geometric illustration of Algorithm 3.1 in each iterative step, i.e., the discs
and the three half-spaces Cn1 , C

n
2 and W

n, with the starting point x1 = (3; 3)
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