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Abstract

We introduce a novel algorithm for solving a class of structured nonsmooth convex-concave
saddle-point problems involving a smooth function and a sum of finitely many bilinear terms
and nonsmooth functions. The proposed method is simple and proven to globally converges to
a saddle-point with an O(1/ε) efficiency estimate. We demonstrate its usefulness for tackling a
broad class of minimization models with a finitely sum of composite nonsmooth functions.
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1 Introduction

In this paper, we consider a class of nonsmooth structured convex-concave saddle-point (SP) prob-
lems. By structured we mean that the model consists of a saddle-point function that is a sum of
a smooth function (i.e., with Lipschitz continuous gradient), with a finite collection of nonsmooth
functions and bilinear terms, see Section 2. This model is very rich and encompasses most convex
optimization models arising in a wide array of applications in signal/image processing and machine
learning, see for instance the two very recent edited volumes [16, 22] and references therein.

The past and current research activities in the search of methods for solving the alluded class of
convex-concave SP problems and their relatives composite nonsmooth minimization problems, have
been intensive over the past five decades and has been recently revived due to their relevance in
many applications, see, e.g., [6, 7, 9, 10, 11, 17, 23, 24]. The recent trends of research efforts has
been focusing on first order methods that allow to adequately handle very large scale problems and
produce efficient schemes for modest accuracy requirement ε > 0. There exist already such algorithms
which achieve the best known O(1/ε) efficiency estimate under various modeling/assumptions on the
problem structures, and under various degrees of sophistication in their derivations and analysis. Let
us briefly mention some of the main underlying approaches and some of their limitations.

A classical way to solve saddle-point problems is via the variational inequality framework [8].
For smooth convex-concave SP, extra-gradient based methods which originated from Korpelevitch
[10] have been recently shown to exhibit an O(1/ε) efficiency estimate [13, 2]. However, these extra-
gradient type methods cannot in general be applied for nonsmooth SP problems without adequate
reformulations or further assumptions, and they also double the amount of computation of projections
which often severely affect their performance. Another approach is to exploit the “max-structure”
inherently present in an SP formulation and combine smoothing with fast gradient schemes [15,
3]. Such methods require knowledge of the smoothing parameter (which depends on the desired
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accuracy) and some other assumptions, such as compactness. A third approach relies on primal-
dual decomposition methods revolving around variants of the well known Alternating Direction of
Multipliers (ADM) for which an O(1/ε) efficiency estimate has been established, see e.g., the very
recent study [21] for more details and many relevant references. However, ADM like methods do not
easily extend to problems involving the sum of finitely many composite nonsmooth terms, see e.g.,
[5] where even the convergence become an issue.

Motivated by the above recent developments, we present a novel and simple algorithm which
allows to tackle a broader class of SP problems and is proven to globally converge to a saddle-point
with efficiency estimate O(1/ε). By simple, we mean an algorithm which at each iteration utilizes
one gradient and one proximal map operation on the given nonsmooth function, assumed to be
easy to compute or/and can be efficiently computed. Moreover, no matrix inversion is involved and
furthermore we do not rely on nested optimization schemes see Section 2 for details and the proposed
algorithm. In Section 3 we derive the promised global nonasymptotic efficiency estimate, and as an
easy by-product the sequential convergence is also obtained. Our approach, also allows to efficiently
address the important class of structured convex models involving the sum of smooth function with a
finite sum of nonsmooth functions composed with linear maps in the objective or in the constraints.
In particular, our method avoids the difficult task of computing the proximal map of the (sum of)
composition with linear maps, see Section 4. Numerical illustration demonstrating the relevance and
potential of the proposed method when compared to recent state-of-the art schemes can be found
in the supplementary material http://www.math.tau.ac.il/~teboulle/pub/orl-papc-numeric.
pdf.

Notation. The set of symmetric p × p positive (semi)-definite matrices is denoted by Sp++ (Sp+),

we also use M � 0 (M � 0). For any z ∈ Rp and any M ∈ Sp+, ‖z‖M := 〈z,Mz〉1/2. Other standard
convex analysis notations can be found in any text, e.g., [18].

2 The Saddle-Point Model and The Algorithm

We begin by describing the setting of the nonsmooth structured convex-concave saddle-point problem
of interest.

2.1 The Saddle-Point Problem

We consider convex-concave saddle-point problems of the form

(M) min
u∈Rn

max
v∈Rd

{K (u, v) := f (u) + 〈u,Av〉 − g (v)} ,

where f and g are convex functions and A is a linear map such that

(i) f : Rn → R is a convex function which is continuously differentiable and its gradient ∇f is
Lipschitz continuous with constant Lf , i.e., for all u1, u2 ∈ Rn, we have

‖∇f (u1)−∇f (u2)‖ ≤ Lf ‖u1 − u2‖ .

(ii) gi : Rdi → (−∞,+∞], i = 1, 2, . . . ,m, is a proper, lower semicontinuous (lsc) and convex
function (possibly nonsmooth). With vi ∈ Rdi , we define v := (v1, v2, . . . , vm) ∈ Rd where
d =

∑m
i=1 di and we let g : Rd → (−∞,+∞] be the proper, lsc and convex function defined by

g (v) :=

m∑
i=1

gi (v) .
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(iii) Ai : Rdi → Rn, i = 1, 2, . . . ,m, is a linear map and we let A : Rd → Rn be the linear map
defined by Av =

∑m
i=1Aivi.

Note that our model’s formulation does not include constraint on the variable u (constraints on the
variable v are built-in thanks to the fact that g is extended valued). However, as we shall see, the
choice of our model (M) is not accidental. It will allow not only to easily handle constraints on u,
but will also to offer much flexibility in tackling various type of composite optimization models which
arise in many important applications (see Section 4).

2.2 The Standing Assumption

Throughout this paper, our standing assumption is that the convex-concave function K (·, ·) has a
saddle-point, i.e., there exists (u∗, v∗) ∈ Rn × Rd such that

K (u∗, v) ≤ K (u∗, v∗) ≤ K (u, v∗) , ∀ u ∈ Rn, v ∈ Rd.

The existence of a saddle-point corresponds to zero duality gap for the induced optimization problems

(P ) inf
u∈Rn

[
r (u) = sup

v∈Rd

K (u, v)

]
and (D) sup

v∈Rd

[
q (v) = inf

u∈Rn
K (u, v)

]
.

One always has infu∈Rn r (u) ≥ supv∈Rd q (v), i.e., weak duality. In addition, (u∗, v∗) is a saddle-point
of K if and only if u∗ is an optimal solution of the primal problem (P), v∗ is an optimal solution of
the dual problem (D), and infu∈Rn supv∈Rd K (u, v) = supv∈Rd infu∈Rn K (u, v) = K (u∗, v∗), where
K (u∗, v∗) is the saddle-point value. For standard qualification conditions which warrant this equality,
see e.g., [1, Chapter 5] and [20, Chapter 11].

2.3 The Algorithm

Before we state our algorithm we need to recall the definition of the Moreau proximal map [12] and
to introduce some convenient notations.

Let h : Rp → (−∞,∞] be a proper, lsc and convex function. For any x ∈ Rp and M ∈ Sp++, the
proximal map associated with h is uniquely defined by:

proxhM (x) := argminy

{
h (y) +

1

2
‖y − x‖2M

}
. (2.1)

When M = µ−1Ip, µ > 0, we simply use the notation proxhµ (·). We also recall the fundamental
Moreau proximal identity [12], that is, for any z ∈ Rp:

proxhM (z) +Mproxh
∗

M−1

(
M−1z

)
= z, (M−1 is the inverse of M ∈ Sp++). (2.2)

For any given real numbers σ1, σ2, . . . , σm > 0, we denote Si := σ−1
i Idi , i = 1, 2, . . . ,m, where Idi

stands for the di×di identity matrix, and define the block diagonal matrix S := Diag [S1, S2, . . . , Sm] ∈
Sd++ with d =

∑m
i=1 di.

The algorithm we propose consists of a predictor-corrector gradient step for handling the smooth
part of K and a proximal step for handling the nonsmooth part.
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PAPC: Proximal Alternating Predictor Corrector
Initialization.

(
u0, v0

)
∈ Rn × Rd and let τ > 0, S � 0.

General Step. For k = 1, 2, . . ., compute

pk = uk−1 − τ
(
Avk−1 +∇f

(
uk−1

))
, (2.3)

vk = proxgS

(
vk−1 + S−1AT pk

)
, (2.4)

uk = uk−1 − τ
(
Avk +∇f

(
uk−1

))
. (2.5)

The choice of the parameters τ and S will be made precise in Section 3.
A few remarks regarding the computational steps involved in the PAPC method are now in order.

• A major computational effort of the method is given in the second step (2.4). Since here
g (v) =

∑m
i=1 gi (vi), using the definition of the matrix S we immediately obtain that at any

given point xi ∈ Rdi , i = 1, 2, . . . ,m,

proxgS (x) =
(
proxg1σ1 (x1) , proxg2σ2 (x2) , . . . ,proxgmσm (xm)

)
,

and hence the second step of the algorithm (2.4) decomposes accordingly and for all i =
1, 2, . . . ,m we have

vki = proxgiσi

(
vk−1
i + σiA

T
i p

k
)

= argminvi∈Rdi

{
gi (vi) +

1

2σi

∥∥∥vi − (vk−1
i + σiA

T
i p

k
)∥∥∥2

}
.

Thus, the algorithm PAPC achieves full decomposition for the given structure of K in the sense
that for each i, it avoids the much more difficult task of computing the proximal map of the
composite function gi ◦Ai, and only requires computing the proximal map of gi (·).

• The algorithm uses only one evaluation of the gradient of the smooth function f , and a careful
implementation requires only one application of the operator A and one application of the oper-
ator AT per iteration. Thus, for large scale problems this potentially amounts to a considerable
reduction of computation time compared to the straightforward implementation.

3 Convergence Results for PAPC

In this section, we establish the main convergence properties of the PAPC algorithm. In particular,
we prove its global rate of convergence, showing that it shares the claimed O(1/ε) efficiency estimate.
As an easy by-product we also derive a global convergence of the sequence generated by PAPC to a
saddle-point of K (·, ·). We start by recalling three elementary facts.

Fact 1 - Three points inequality: For any convex function h on Rp which is continuously
differentiable with gradient ∇h which assumed to be Lh-Lipschitz continuous we have:

h (x) ≤ h (y) + 〈∇h (z) , x− y〉+
Lh
2
‖x− z‖2 , ∀ x, y, z ∈ Rp.

Fact 2 - Proximal Inequality: Let h : Rp → (−∞,∞] be a proper, lsc and convex function. Given

M ∈ Sp+ and x ∈ Rp, let z ∈ argminξ∈Rp

{
h (ξ) + 1

2 ‖ξ − x‖
2
M

}
. Then, for all ξ ∈ Rp, we have

h (z)− h (ξ) ≤ 〈ξ − z,M (z − x)〉 .

Fact 3 - Pythagoras identity: For any matrix M ∈ Sp+, we have

2 〈w − v,M (u− v)〉 = ‖w − v‖2M − ‖w − u‖
2
M + ‖u− v‖2M , ∀ u, v, w ∈ Rp. (3.1)
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The proofs of these facts are immediate. Fact 1 follows from the convexity of h and the well known
Descent Lemma for smooth functions, see e.g., [4]. Fact 2 follows from the optimality condition
which characterizes z and the convex subgradient inequality, while Fact 3 is simple algebra.

To establish the iteration complexity of the PAPC algorithm and the convergence of the generated
sequence

{(
uk, vk

)}
k∈N, we consider the following quantity

Γk (u, v) = K
(
uk, v

)
−K

(
u, vk

)
, ∀ u ∈ Rn, v ∈ Rd.

Our main task is to find an upper-bound for Γk(u, v), k ∈ N. Indeed, Γk (u, v) ≤ 0 for all u ∈ Rn
and all v ∈ Rd, implies that K

(
uk, vk

)
≤ K

(
u, vk

)
for all u ∈ Rn, and that K

(
uk, v

)
≤ K

(
uk, vk

)
for all v ∈ Rd, namely, that

(
uk, vk

)
is a saddle-point of K with saddle-point value K

(
uk, vk

)
. We

now proceed to prove two key inequalities which will be the basis for proving our main convergence
results.

Lemma 3.1. Let
{(
pk, vk, uk

)}
k∈N be the sequence generated by the PAPC algorithm, then for every

k ∈ N and every u ∈ Rn, v ∈ Rd, the following hold:

(i) K
(
uk, vk

)
−K

(
u, vk

)
≤ 1

2τ

(∥∥u− uk−1
∥∥2 −

∥∥u− uk∥∥2
)
− 1

2

(
1
τ − Lf

) ∥∥uk − uk−1
∥∥2
.

(ii) K
(
uk, v

)
−K

(
uk, vk

)
≤ 1

2

(∥∥v − vk−1
∥∥2

G
−
∥∥v − vk∥∥2

G
−
∥∥vk − vk−1

∥∥2

G

)
,

where G := S − τATA, is assumed positive semi-definite.

Proof. (i) Applying Fact 1 on the convex and differentiable function h (u) := K
(
u, vk

)
with x := uk,

y := u and z := uk−1, yields

K
(
uk, vk

)
−K

(
u, vk

)
≤
〈
∇uK

(
uk−1, vk

)
, uk − u

〉
+
Lf
2

∥∥∥uk − uk−1
∥∥∥2
.

Using the fact that ∇uK
(
uk−1, vk

)
= Avk +∇f

(
uk−1

)
= τ−1

(
uk−1 − uk

)
, where the last equation

follows from the definition of step (2.5), we get

K
(
uk, vk

)
−K

(
u, vk

)
≤ 1

τ

〈
uk−1 − uk, uk − u

〉
+
Lf
2

∥∥∥uk − uk−1
∥∥∥2
.

The desired result follows by using the identity (3.1) with M ≡ In, for the first term in the right
hand side of the above inequality.

(ii) Using the definition of K (·, ·), step (2.4) of PAPC can be written (after omitting constant
terms) as

vk = prox
−K(pk,·)
S

(
vk−1

)
= argminv∈Rd

{
−K

(
pk, v

)
+

1

2

∥∥∥v − vk−1
∥∥∥2

S

}
.

Applying Fact 2 to the convex function h(ν) := −K(pk, ν) with ξ := v, z := vk and x := vk−1, yields

K
(
pk, v

)
−K

(
pk, vk

)
≤
〈
vk − vk−1, S

(
v − vk

)〉
. (3.2)

Now, from the definition of K(·, ·), simple algebra shows that the following identity holds

K
(
uk, v

)
−K

(
uk, vk

)
+K

(
pk, vk

)
−K

(
pk, v

)
=
〈
uk − pk,A

(
v − vk

)〉
. (3.3)

Using the definitions of pk in (2.3) and uk in (2.5) we have uk−pk = τA
(
vk−1 − vk

)
, hence, together

with (3.2) and (3.3), we obtain

K
(
uk, v

)
−K

(
uk, vk

)
=
〈
uk − pk,A

(
v − vk

)〉
+K

(
pk, v

)
−K

(
pk, vk

)
≤ τ

〈
vk−1 − vk,ATA

(
v − vk

)〉
+
〈
vk − vk−1, S

(
v − vk

)〉
=
〈
vk − vk−1,

(
S − τATA

) (
v − vk

)〉
.
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Thus, with G := S − τATA, which assumed to be positive semidefinite, the desired result follows by
using the identity (3.1) with M ≡ G.

Before we proceed with the convergence results, we need some additional notations. For any
sequence {xk}k∈N and any integer N ≥ 1, we denote by x̄N := 1

N

∑N
k=1 x

k the average (ergodic)
sequence associated with {xk}k∈N. Let σ := max1≤i≤m σi.

Theorem 3.1. Let
{(
pk, uk, vk

)}
k∈N be the sequence generated by the PAPC algorithm with τLf ≤ 1

and στ
∑m

i=1 ‖Ai‖
2 ≤ 1. Then, G = S − τATA is positive semidefinite and for every u ∈ Rn and

v ∈ Rd, we have

K
(
ūN , v

)
−K

(
u, v̄N

)
≤
τ−1

∥∥u− u0
∥∥2

+
∥∥v − v0

∥∥2

G

2N
.

Proof. We begin by showing that the condition στ
∑m

i=1 ‖Ai‖
2 ≤ 1 implies that the symmetric d× d

matrix G is positive semi-definite. First, note that G = S − τATA � 0 if λmin (S) ≥ τλmax

(
ATA

)
,

where λmin (·) (λmax (·)) stands for the minimal (maximal) eigenvalue of the given symmetric ma-
trix. Recalling the definition of S given in Section 2.3, we obtain that λmin (S) = min1≤i≤m σ

−1
i =

(max1≤i≤m σi)
−1 = σ−1, and hence the last condition reduces to στλmax

(
ATA

)
≤ 1. On the other

hand, using the definition of A we have

λmax

(
ATA

)
=
∥∥ATA∥∥ =

∥∥∥∥∥
m∑
i=1

ATi Ai

∥∥∥∥∥ ≤
m∑
i=1

∥∥ATi Ai∥∥ =
m∑
i=1

‖Ai‖2 ,

and the first part of the claim follows. Now, let u ∈ Rn and v ∈ Rd. Since G � 0 and we assume
that τLf ≤ 1, adding the two inequalities (i)-(ii) of Lemma 3.1 it immediately follows that for all
k ∈ N, and for all u ∈ Rn, v ∈ Rd

K
(
uk, v

)
−K

(
u, vk

)
≤ 1

2τ

(∥∥∥u− uk−1
∥∥∥2
−
∥∥∥u− uk∥∥∥2

)
+

1

2

(∥∥∥v − vk−1
∥∥∥2

G
−
∥∥∥v − vk∥∥∥2

G

)
.

Now, since K (u, v) is convex-concave, using the definition of
(
ūN , v̄N

)
, by the Jensen inequality and

summing the last inequality over k = 1, 2, . . . , N it follows that

K
(
ūN , v

)
−K

(
u, v̄N

)
≤ 1

N

N∑
k=1

(
K
(
uk, v

)
−K

(
u, vk

))
≤ 1

2τN

∥∥u− u0
∥∥2

+
1

2N

∥∥v − v0
∥∥2

G
.

This proves the desired result.

Two important consequences of this global upper-bound established in Theorem 3.1 can be de-
duced. Let ε > 0, then following [14], a point (uε, vε) is called an ε-saddle-point for K if

sup {K (uε, v)−K (u, vε) : u ∈ SP , v ∈ SD} ≤ ε,

where SP is the optimal solutions set of the primal problem and SD is the optimal solutions set of
the dual problem associated to the saddle-point function K (see Section 2). We thus immediately
obtain from Theorem 3.1 the following efficiency estimate result.

Corollary 3.1. Let
{(
pk, uk, vk

)}
k∈N be the sequence generated by the PAPC algorithm with τLf ≤ 1

and στ
∑m

i=1 ‖Ai‖
2 ≤ 1. Assume that both optimal solutions sets SP and SD associated to the saddle-

point problem (M) are compact. Then, given a desired accuracy ε > 0, the PAPC method produces
an ε-saddle-point (ūN , v̄N ) of K in N = O(1/ε) iterations.

Remark 3.1. Note that under standard qualification conditions, which is our standing assumption
(cf. Section 2.2), the optimal set SD of the dual problem associated to (M) is always compact.
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Another easy consequence of Theorem 3.1 is a convergence result of the sequence generated by
PAPC to a saddle-point of problem (M).

Corollary 3.2. Let
{(
pk, uk, vk

)}
k∈N be the sequence generated by the PAPC algorithm with τLf < 1

and στ
∑m

i=1 ‖Ai‖
2 < 1. Then, the sequence

{(
uk, vk

)}
k∈N converges to a saddle-point (ũ, ṽ) of K.

Proof. Adding the two inequalities of Lemma 3.1 it immediately follows that for any u ∈ Rn, v ∈ Rd
and for all k ∈ N

K
(
uk, v

)
−K

(
u, vk

)
≤ 1

2τ

(∥∥∥uk−1 − u
∥∥∥2
−
∥∥∥uk − u∥∥∥2

)
− 1

2

(
1

τ
− Lf

)∥∥∥uk − uk−1
∥∥∥2

+
1

2

(∥∥∥vk−1 − v
∥∥∥2

G
−
∥∥∥vk − v∥∥∥2

G
−
∥∥∥vk − vk−1

∥∥∥2

G

)
. (3.4)

In particular, let (u∗, v∗) ∈ Rn × Rd be an arbitrary saddle-point of the function K, then by the
saddle-point property, K

(
uk, v∗

)
−K

(
u∗, vk

)
≥ 0, it follows from the last inequality that(

1

τ
− Lf

)∥∥∥uk − uk−1
∥∥∥2

+
∥∥∥vk − vk−1

∥∥∥2

G
≤ D

(
wk−1, w∗

)
−D

(
wk, w∗

)
, (3.5)

where w := (u, v) ∈ Rn×Rd and we define D (w1, w2) := 1
τ ‖u1 − u2‖2+‖v1 − v2‖2G. As a consequence

of (3.5), the sequence
{
D
(
wk, w∗

)}
k∈N is non-increasing and therefore the sequence

{
wk
}
k∈N is

bounded. On the other hand, summing (3.5) for any k = 1, 2, . . . , N , since G � 0 and Lfτ < 1, it
follows that

lim
k→∞

∥∥∥uk − uk−1
∥∥∥ = 0 and lim

k→∞

∥∥∥vk − vk−1
∥∥∥
G

= 0. (3.6)

Since the sequence
{
wk
}
k∈N is bounded, it has at least one limit point. Suppose that w̃ = (ũ, ṽ) is a

limit point of the sequence
{
wk
}
k∈N, then taking the limit in (3.4) over the appropriate subsequences

and using (3.6) yields K (ũ, v)−K (u, ṽ) ≤ 0 for all u ∈ Rn and v ∈ Rd, which proves that (ũ, ṽ) is a
saddle-point of K. To complete the proof it only remains to show that

{
wk
}
k∈N has a unique limit

point. This follows by a standard argument, see e.g., [19, page 885].

4 Composite Minimization via Saddle-Point

Our main purpose in this section is, on one hand, to illustrate the flexibility of the model (M), and
on the other hand, the simplicity of the resulting PAPC algorithm when applied to these problems.
To do so, we start with a simple but key observation, which for ease of reference we call the Dual
Transportation Trick.

4.1 The Dual Transportation Trick

A fundamental convex analysis result [18] states that the bi-conjugate of a proper, lsc and convex
function h : Rp → (−∞,∞] coincides with itself, i.e., h∗∗ = h. Thus, any proper, lsc and convex
function h admits the following variational max-representation

h (x) = max
u∈Rp

{〈u, x〉 − h∗ (u)} .

Our main observation is that this well known and fundamental relation is in fact the key player not
only for handling constraints, but also for deriving “full splitting” of most optimization problems
involving composition with linear maps through their saddle-point representation in the form (M).
This is described next, and then we illustrate it on various optimization models.
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Let U ⊂ Rn be a closed and convex set, consider the following constrained convex problem

(C) min
u∈Rp

{F (u) : u ∈ U} .

Let δU denotes the usual convex indicator function of the set U (i.e., 0 if u ∈ U and ∞ otherwise),
and recall that δ∗U = σU , the so-called support function of the set U , which is proper, lsc and convex
when U is a closed and convex set, thus in this case σ∗U = δU . Equipped with these basic objects,
problem (C) can be written

min
u∈Rp

{F (u) + δU (u)} = min
u∈Rp

max
v∈Rp

{F (u) + 〈u, v〉 − δ∗U (v)} (4.1)

= min
u∈Rp

max
v1,v2∈Rp

{〈u, v1〉 − F ∗ (v1)− 〈u, v2〉 − δ∗U (v2)} . (4.2)

Clearly, both saddle-point representations given in (4.1) and (4.2) can be seen as particular cases of
model (M), yet they illustrate two important different goals: (4.1) provides a way to reinterpret a
constrained optimization problem as an unconstrained saddle-point problem. It allows to transport
the primal constraint variable u ∈ U into the objective function, but with an additional nonsmooth
convex function σU = δ∗U in the dual space of the saddle-point function. The representation (4.2)
provides a way to continue and further decompose the problem to fit our model (M) in the case
where F is also nonsmooth. As described below, this elementary dual transportation trick allows to
easily apply PAPC on constrained SD as well as quite general composite optimization models.

4.2 Handling Constrained Saddle-Point Problems

Let U ⊆ Rn be a closed and convex set, consider the following constrained saddle-point problem (here
for simplicity of exposition it is enough to look at m = 1, which means that, d ≡ d1, A = A1 ≡ A,
g1 (v) ≡ g (v) and σ1 = σ):

(CM) min
u∈U

max
v∈Rd

{K (u, v) = f (u) + 〈u,Av〉 − g (v)} .

Using the dual transportation trick we obtain the following equivalent unconstrained saddle-point
problem which is compatible with the requirements of the PAPC method, namely unconstrained in
u:

(CM′) min
u∈Rn

max
v∈Rd,w∈Rn

{
K ′ (u; v, w) := f (u) + 〈u,Av〉 − g (v) + 〈u,w〉 − σU (w)

}
.

Observing that the inner maximization problem in (CM′) is separable in the variables v and w, the
PAPC method for solving the constrained saddle-point problem (CM) can be formulated as follows.

PAPC: constrained version
Initialization.

(
u0, v0, w0

)
∈ Rn × Rd × Rn and τ, σ > 0.

General Step (k = 1, 2, . . .)

pk = uk−1 − τ
(
Avk−1 + wk−1 +∇f

(
uk−1

))
, (4.3)

vk = proxgσ

(
vk−1 + σAT pk

)
, (4.4)

wk = proxσUσ

(
wk−1 + σpk

)
= wk−1 + σpk − σPU

(
wk−1 + σpk

σ

)
. (4.5)

uk = uk−1 − τ
(
Avk + wk +∇f

(
uk−1

))
. (4.6)

Theorem 3.1 holds on problem (P′) with the parameters τLf ≤ 1 and στ
(
‖A‖2 + 1

)
≤ 1.
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4.3 Minimization with Finite Sum of Composite Functions

Let U ⊆ Rn be a closed and convex set. The problem of interest can be described as follows

(Gen) min
u∈Rp

{
F (u) +

m∑
i=1

Hi (Biu) : u ∈ U

}
,

where F is a smooth and convex function on Rp (see (ii) of the problem setting in Section 2), Hi,
i = 1, 2, . . . ,m, is a proper, lsc and convex function over Rdi (extended valued) and Bi ∈ Rdi × Rp.
This model is quite general and covers many interesting problems (e.g., in imaging sciences and
machine learning) and also includes convex problems with separable structure in the objective and
coupling linear constraints of the form

(SC) min
xi

{
m∑
i=1

ψi (xi) :

m∑
i=1

Bixi = b

}
.

Indeed, a direct computation shows that a dual formulation of problem (SC) also fits the model
(Gen) with F := 〈u, b〉, Hi := ψ∗i and Bi ← −BT

i (for convenience, the dual problem is written as
minimiztion problems after an appropriate change of sign).

Using the dual transportation trick for the constraint u ∈ U , and the fact that Hi is proper, lsc
and convex, problem (Gen) can be written as

min
u∈Rp

max
yi∈Rdi ,w∈Rp

{
F (u) +

m∑
i=1

〈
BT
i yi, u

〉
+ 〈w, u〉 −

m∑
i=1

H∗i (yi)− σU (w)

}
,

which clearly reduces to a saddle-point problem in the form (M) with saddle-point function K (u, v) =
F (u) + 〈u,Av〉 − g (v) through the identification v := (y1, y2, . . . , ym, w), Av :=

∑m
i=1B

T
i yi + w

and g (v) :=
∑m

i=1H
∗
i (yi) + σU (w). Observe that this yields a fully separable nonsmooth part

in the variables yi, i = 1, 2, . . . ,m and w, which allows for adequate decomposition in the main
computational step of PAPC. In particular, this eliminates the difficulty of computing the proximal
map of the composition of a convex function with a linear map.

4.4 Constrained Composite Minimization

Another interesting model is the following constrained composite convex minimization problem

(C-Gen) min
u∈Rp

{
F (u) :

m∑
i=1

Hi (Biu) ≤ α

}
,

where F , Hi (i = 1, 2, . . . ,m) and Bi (i = 1, 2, . . . ,m) as in the (Gen) model (note that thanks
to the dual transportation trick (cf. (4.2)), we can also easily consider the case where nonsmooth
terms would be present in the objective), and here Hi (·) is finite valued. To tackle this problem, we
first reformulate the constraint set as the intersection of adequate closed and convex sets defined as
follows: Ci := {(y, t) ∈ Rp × R : Hi (y) ≤ t},

∆m :=

{
z ∈ Rm :

m∑
i=1

zi ≤ α

}
and Di := {(u, y) ∈ Rp × Rm : Biu = y} .

Then with these sets, problem (C-Gen) can be written as follows:

min
u∈Rp,zi∈R,yi∈Rdi , i=1,2...,m

{
F (u) + δ∆m (z) +

m∑
i=1

δCi (yi, zi) +
m∑
i=1

δDi (u, yi)

}
.
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As previously explained, using the dual transportation trick, it is then easy to see that the later can
then be written as a saddle-point problem of the form (M) which will involve a separable sum of
support functions. Applying the PAPC algorithm on the resulting minimax formulation of problem
(C-Gen), requires in this case (thanks to Moreau proximal identity) the computation of the projection
onto each set ∆m, Ci and Di, i = 1, 2, . . . ,m. The projection onto ∆m and Di admits a closed form
solution. Furthermore, the projection onto a set of the form Ci, namely the epigraph of Hi, can also
be computed via the following result whose simple proof is left to the reader.

Proposition 4.1. Let H : Rp → R be convex and let C := {(y, t) ∈ Rp × R : H (y) ≤ t}. For any
(x, s) 6∈ C, let (ȳ, t̄) = PC ((x, s)) be the projection of (x, s) onto C. Then,

ȳ = argminy∈Rn

{
‖y − x‖2 + (H (y)− s)2

}
and t̄ = H(ȳ).

For example, when H is a norm, i.e., H (·) := ‖·‖, then C is the second-order cone for which it
is well known that PC admits an explicit closed form.
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