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Abstract

We study the existence and approximation of fixed points of right Bregman
nonexpansive operators in reflexive Banach space. We present, in particular,
necessary and sufficient conditions for the existence of fixed points and an
implicit scheme for approximating them.
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1 Introduction

The study of nonexpansive operators in Banach spaces has been an important topic
in Nonlinear Functional Analysis and Optimization Theory for almost fifty years
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now [?, ?, ?, ?]. There are several significant classes of nonexpansive operators
which enjoy remarkable properties not shared by all such operators. We refer, for
example, to firmly nonexpansive operators [?, ?]. These operators are of utmost
importance in fixed point, monotone mapping, and convex optimization theories in
view of Minty’s Theorem regarding the correspondence between firmly nonexpansive
operators and maximally monotone mappings [?, ?, ?, ?]. The largest class of nonex-
pansive operators comprises the quasi-nonexpansive operators. These operators still
enjoy relevant fixed point properties although nonexpansivity is only required about
each fixed point [?].

In this paper we are concerned with certain analogous classes of operators which
are, in some sense, nonexpansive not with respect to the norm, but with respect to
Bregman distances [?, ?, ?, ?]. Since these distances are not symmetric in general, it
seems natural to distinguish between left and right Bregman nonexpansive operators.
Some left classes, so to speak, have already been studied and applied quite intensively
[?, ?, ?, ?, ?, ?]. We have recently introduced and studied several classes of right
Bregman nonexpansive operators in reflexive Banach spaces [?, ?]. In these two
papers we focused on the properties of their fixed point sets. Our main aim in the
present paper is to study the existence and approximation of fixed points of these
operators.

Our paper is organized as follows. In Section 2 we discuss several pertinent facts
of Convex Analysis and Bregman operator theory. In the next section we present
necessary and sufficient conditions for right quasi-Bregman nonexpansive operators
to have (asymptotic) fixed points in general reflexive Banach spaces. The fourth
section is devoted to a study of a Browder type implicit algorithm [?] for computing
fixed points of right Bregman firmly nonexpansive operators. Finally, in the last
section we use the implicit method proposed in Section 4 to approximate zeroes of
monotone mappings.

2 Preliminaries

All the results in this paper are set in a real reflexive Banach space X. The norms
of X and X∗, its dual space, are denoted by ‖·‖ and ‖·‖∗, respectively. The pairing
〈ξ, x〉 is defined by the action of ξ ∈ X∗ at x ∈ X, that is, 〈ξ, x〉 := ξ (x). The set
of all real numbers is denoted by R and R = (−∞,+∞] is the extended real line,
while N stands for the set of nonnegative integers. The closure of a subset K of X
is denoted by K. The (effective) domain of a convex function f : X → R is defined
to be

dom f := {x ∈ X : f (x) < +∞} .
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When dom f 6= ∅ we say that f is proper. The Fenchel conjugate function of f is the
convex function f ∗ : X∗ → R defined by

f ∗ (ξ) = sup {〈ξ, x〉 − f (x) : x ∈ X} .

It is not difficult to check that when f is proper and lower semicontinuous, so is f ∗.
The function f is called cofinite if dom f ∗ = X∗.

In this section we present the basic notions and facts that are needed in the
sequel. We divide this section into three parts in the following way. The first one
(Subsection ??) is devoted to admissible functions, while the second (Subsection ??)
concern certain types of Bregman nonexpansive operators.

2.1 Admissible functions

Let x ∈ int dom f , that is, let x belong to the interior of the domain of the convex
function f : X → R. For any y ∈ X, we define the right-hand derivative of f at the
point x by

(1) f ◦(x, y) := lim
t→0+

f (x+ ty)− f (x)

t
.

If the limit as t → 0 in (??) exists for each y, then the function f is said to be
Gâteaux differentiable at x. In this case, the gradient of f at x is the linear function
∇f (x), which is defined by 〈∇f (x) , y〉 := f ◦ (x, y) for all y ∈ X [?, Definition 1.3,
page 3]. The function f is called Gâteaux differentiable if it is Gâteaux differentiable
at each x ∈ int dom f . When the limit as t→ 0 in (??) is attained uniformly for any
y ∈ X with ‖y‖ = 1, we say that f is Fréchet differentiable at x.

The function f is called Legendre if it satisfies the following two conditions.

(L1) int dom f 6= ∅ and the subdifferential ∂f is single-valued on its domain.

(L2) int dom f ∗ 6= ∅ and ∂f ∗ is single-valued on its domain.

The class of Legendre functions in infinite dimensional Banach spaces was first intro-
duced and studied by Bauschke, Borwein and Combettes in [?]. Their definition is
equivalent to conditions (L1) and (L2) because the space X is assumed to be reflexive
(see [?, Theorems 5.4 and 5.6, page 634]). It is well known that in reflexive spaces
∇f = (∇f ∗)−1 (see [?, page 83]). When this fact is combined with conditions (L1)
and (L2), we obtain

ran∇f = dom∇f ∗ = int dom f ∗ and ran∇f ∗ = dom∇f = int dom f.
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It also follows that f is Legendre if and only if f ∗ is Legendre (see [?, Corollary 5.5,
page 634]) and that the functions f and f ∗ are Gâteaux differentiable and strictly
convex in the interior of their respective domains. When the Banach space X is
smooth and strictly convex, in particular, a Hilbert space, the function (1/p) ‖·‖p
with p ∈ (1,∞) is Legendre (cf. [?, Lemma 6.2, page 639]). For examples and more
information regarding Legendre functions, see, for instance, [?, ?].

Throughout this paper, f : X → R is always an admissible function, that is, a
proper, lower semicontinuous, convex and Gâteaux differentiable function. Under
these conditions we know that f is continuous in int dom f (see [?, Fact 2.3, page
619]).

The bifunction Df : dom f × int dom f → [0,+∞), which is defined by

(2) Df (y, x) := f (y)− f (x)− 〈∇f (x) , y − x〉 ,

is called the Bregman distance (cf. [?, ?]).
The Bregman distance does not satisfy the well-known properties of a metric, but

it does enjoy the following two important properties.

• The three point identity : for any x ∈ dom f and y, z ∈ int dom f , we have

(3) Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f (z)−∇f (y) , x− y〉 .

• The four point identity : for any y, w ∈ dom f and x, z ∈ int dom f , we have

(4) Df (y, x)−Df (y, z)−Df (w, x) +Df (w, z) = 〈∇f (z)−∇f (x) , y − w〉 .

According to [?, Section 1.2, page 17] (see also [?]), the modulus of total convexity
of f is the bifunction υf : int dom f × [0,+∞)→ [0,+∞], which is defined by

υf (x, t) := inf {Df (y, x) : y ∈ dom f, ‖y − x‖ = t} .

The function f is called totally convex at a point x ∈ int dom f if υf (x, t) > 0
whenever t > 0. The function f is called totally convex when it is totally convex at
every point x ∈ int dom f . This property is less stringent than uniform convexity
(see [?, Section 2.3, page 92]).

Examples of totally convex functions can be found, for instance, in [?, ?, ?]. We
remark in passing that f is totally convex on bounded subsets if and only if f is
uniformly convex on bounded subsets (see [?, Theorem 2.10, page 9]).
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2.2 Right Bregman operators

Let f : X → R be admissible and let K be a nonempty subset of X. The fixed
point set of an operator T : K → X is the set {x ∈ K : Tx = x}. It is denoted by
Fix (T ). Recall that a point u ∈ K is said to be an asymptotic fixed point [?] of T if
there exists a sequence {xn}n∈N in K such that xn ⇀ u (that is, {xn}n∈N is weakly
convergent to u) and ‖xn − Txn‖ → 0 as n → ∞. We denote the asymptotic fixed

point set of T by F̂ix (T ).
We first list significant types of nonexpansivity with respect to the Bregman

distance.

Definition 2.1 (Right Bregman nonexpansivity). Let K and S be nonempty subsets
of dom f and int dom f , respectively. An operator T : K → int dom f is said to be:

(i∗) right Bregman firmly nonexpansive (R-BFNE) if

(5) 〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (Tx)−∇f (Ty) , x− y〉

for all x, y ∈ K, or equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (x, Tx) +Df (y, Ty)

≤ Df (x, Ty) +Df (y, Tx) .(6)

(ii∗) Right quasi-Bregman firmly nonexpansive (R-QBFNE) with respect to S if

(7) 0 ≤ 〈∇f (p)−∇f (Tx) , Tx− x〉

for all x ∈ K and p ∈ S, or equivalently,

(8) Df (Tx, p) +Df (x, Tx) ≤ Df (x, p) .

(iii∗) Right quasi-Bregman nonexpansive (R-QBNE) with respect to S if

(9) Df (Tx, p) ≤ Df (x, p) , ∀x ∈ K, p ∈ S.

(iv∗) Right Bregman strongly nonexpansive (R-BSNE) with respect to S if it is R-
QBNE with respect to S and if whenever {xn}n∈N ⊂ K is bounded, p ∈ S,
and

(10) lim
n→∞

(Df (xn, p)−Df (Txn, p)) = 0,

it follows that

(11) lim
n→∞

Df (xn, Txn) = 0.
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For the sake of completeness we give here also the definitions of left Bregman
nonexpansivity.

Definition 2.2 (Left Bregman nonexpansivity). Let K and S be nonempty subsets
of int dom f and dom f , respectively. An operator T : K → int dom f is said to be:

(i) left Bregman firmly nonexpansive (L-BFNE) if

(12) 〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (x)−∇f (y) , Tx− Ty〉

for any x, y ∈ K, or equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y)

≤ Df (Tx, y) +Df (Ty, x) .(13)

(ii) Left quasi-Bregman firmly nonexpansive (L-QBFNE) with respect to S if

(14) 0 ≤ 〈∇f (x)−∇f (Tx) , Tx− p〉

for any x ∈ K and p ∈ S, or equivalently,

(15) Df (p, Tx) +Df (Tx, x) ≤ Df (p, x) .

(iii) Left quasi-Bregman nonexpansive (L-QBNE) with respect to S if

(16) Df (p, Tx) ≤ Df (p, x) ∀x ∈ K, p ∈ S.

(iv) Left Bregman strongly nonexpansive (L-BSNE) with respect to S if it is L-
QBNE with respect to S and if whenever {xn}n∈N ⊂ K is bounded, p ∈ S,
and

(17) lim
n→∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that

(18) lim
n→∞

Df (Txn, xn) = 0.

Remark 2.3 (Types of Bregman nonexpansivity with respect to S). As in [?], we
distinguish between two types of Bregman nonexpansivity, depending on the set S,
in such a way that if S = Fix (T ) we say that T is properly Bregman nonexpansive,

whereas if S = F̂ix (T ) we say that T is strictly Bregman nonexpansive, according to
the different notions of Bregman nonexpansivity. The connections among all these
classes of right Bregman nonexpansive operators are presented in Table ??. ♦
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strictly R-QBFNE ⇒ strictly R-BSNE ⇒ strictly R-QBNE
⇓ ⇓ ⇓

R-BFNE ⇒ properly R-QBFNE ⇒ properly R-BSNE ⇒ properly R-QBNE

Table 1: Connections among types of right Bregman nonexpansivity

The following result [?] is essential for the proof of our approximation result in Section
??. It shows that the operator I − T has a certain demiclosedness property. Before
formulating this result, we recall that a mapping B : X → X∗ is said to be weakly
sequentially continuous if the weak convergence of {xn}n∈N ⊂ X to x implies the
weak∗ convergence of {Bxn}n∈N to Bx.

Proposition 2.4 (Asymptotic fixed point set of R-BFNE operators). Let f : X → R
be Legendre and uniformly continuous on bounded subsets of X, and let ∇f be weakly
sequentially continuous. Let K be a nonempty subset of dom f and let T : K →
int dom f be an R-BFNE operator. Then Fix (T ) = F̂ix (T ).

In [?] we studied properties of several classes of right Bregman nonexpansive
operators from the point of view of their fixed point sets. A useful tool for such a
study is the following operator.

Definition 2.5 (Conjugate operator). Let f : X → R be Legendre and let T : K ⊂
int dom f → int dom f be an operator. We define the conjugate operator associated
with T by

T ∗f := ∇f ◦ T ◦ ∇f ∗ : ∇f(K)→ int dom f ∗.

When there is no danger of confusion we use the notation T ∗ for T ∗f . We also

denote
(
T ∗f
)∗
f∗

by T ∗∗. It is very natural to ask what the connections between left

and right classes of Bregman nonexpansivity are. This question can be answered by
using the following proposition [?, Proposition 2.7].

Proposition 2.6 (Properties of the conjugate operator). Let f : X → R be Legendre
and let T : K ⊂ int dom f → int dom f be an operator. Then the following properties
hold.

(i) domT ∗ = ∇f (domT ) and ranT ∗ = ∇f (ranT ).

(ii) T is R-BFNE if and only if T ∗ is L-BFNE.
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(iii) Fix (T ) = ∇f ∗ (Fix (T ∗)).

(iv) T is R-QBFNE (R-QBNE or R-BSNE) if and only if T ∗ is L-QBFNE (L-
QBNE or L-BSNE).

(v) T ∗∗ = T .

(vi) If, in addition, ∇f and ∇f ∗ are uniformly continuous on bounded subsets of
int dom f and int dom f ∗, respectively, then

F̂ix (T ∗) = ∇f
(

F̂ix (T )
)
.

This connection between left and right Bregman nonexpansive operators allows
us to get properties of right Bregman nonexpansive operators from their left coun-
terparts (cf. [?]). The following result is an example of this.

Proposition 2.7 (∇f (Fix (T )) of an R-QBNE operator is closed and convex). Let
f : X → R be a Legendre function and let K be a nonempty subset of int dom f such
that ∇f (K) is closed and convex. If T : K → int dom f is an R-QBNE operator,
then ∇f (Fix (T )) is closed and convex.

Proof. Since T is R-QBNE, the conjugate operator T ∗ is L-QBNE with respect to f ∗

(see Proposition ??(iv)). Moreover, f ∗ is Legendre, and the domain of T ∗ is ∇f (K),
which is closed and convex by assumption. Applying [?, Lemma 15.5, page 307] and
Proposition ??(iii), we get that Fix (T ∗) = ∇f (Fix (T )) is closed and convex, as
asserted.

The right Bregman projection (cf. [?, ?]) with respect to f of x ∈ int dom f onto
a nonempty, closed and convex set K ⊂ int dom f is defined by

(19)
−−→
projfK (x) := argmin

y∈K
{Df (x, y)} = {z ∈ K : Df (x, z) ≤ Df (x, y) ∀y ∈ K}.

It is not clear a priori that the right Bregman projection is well defined because Df

is not convex in its second variable. However, Bauschke et al. (cf. [?, Proposition
7.1, page 9]) proved that

(20)
−−→
projfK = ∇f ∗ ◦←−−projf

∗

∇f(K) ◦ ∇f,

where
←−−
projfK stands for the left Bregman projection onto K with respect to f (see

[?, ?] for more information). As a consequence, one is able to prove that the right
Bregman projection with respect to functions with admissible and totally convex
conjugates has a variational characterization (cf. [?, Proposition 4.10]) as long as
∇f (K) is closed and convex.
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Proposition 2.8 (Characterization of the right Bregman projection). Let f : X → R
be a function such that f ∗ is admissible and totally convex. Let x ∈ X and let K
be a subset in int dom f such that ∇f (K) is closed and convex. If x̂ ∈ K, then the
following conditions are equivalent.

(i) The vector x̂ is the right Bregman projection of x onto K with respect to f .

(ii) The vector x̂ is the unique solution of the variational inequality

〈∇f (z)−∇f (y) , z − x〉 ≥ 0 ∀y ∈ K.

(iii) The vector x̂ is the unique solution of the inequality

Df (z, y) +Df (x, z) ≤ Df (x, y) ∀y ∈ K.

Given two subsets K ⊂ C ⊂ X, an operator R : C → K is said to be a retraction
of C onto K if Rx = x for each x ∈ K. A retraction R : C → K is said to be sunny
(see [?, ?]) if

R (Rx+ t (x−Rx)) = Rx

for each x ∈ C and any t ≥ 0, whenever Rx+ t (x−Rx) ∈ C.
Under certain conditions on f , it turns out that the right Bregman projection is

the unique sunny R-QBNE retraction of X onto its range (cf. [?, Corollary 4.6]).

Proposition 2.9 (Properties of the right Bregman projection). Let f : X → R be a
Legendre, cofinite and totally convex function, and assume that f ∗ is totally convex.
Let K be a nonempty subset of X.

(i) If ∇f (K) is closed and convex, then the right Bregman projection,
−−→
projfK = ∇f ∗ ◦←−−projf

∗

∇f(K) ◦ ∇f,
is the unique sunny R-QBNE retraction of X onto K.

(ii) If K is a sunny R-QBNE retract of X, then ∇f (K) is closed and convex, and
−−→
projfK is the unique sunny R-QBNE retraction of X onto K.

The previous result yields the fact that the fixed point set of any R-QBNE oper-
ator is a sunny R-QBNE retract of X and the corresponding retraction is uniquely
defined by the right Bregman projection onto the fixed point set (cf. [?, Corollary
4.7]).

Proposition 2.10 (Fix (T ) is a sunny R-QBNE retract). Let f : X → R be Legendre,
cofinite and totally convex, with a totally convex conjugate f ∗. If T : X → X is an
R-QBNE operator, then there exists a unique sunny R-QBNE retraction of X onto
Fix (T ), and this is the right Bregman projection onto Fix (T ).
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3 Existence of fixed points

In this section we obtain necessary and sufficient conditions for R-QBNE operators
to have (asymptotic) fixed points in general reflexive Banach spaces. We begin with
a necessary condition for a strictly R-QBNE operator to have an asymptotic fixed
point.

Proposition 3.1 (Necessary condition for F̂ix (T ) to be nonempty). Let f : X → R
be an admissible and totally convex function. Let T : K ⊂ int dom f → K be an
operator. The following assertions hold.

(i) If T is strongly R-QBNE and F̂ix (T ) is nonempty; or

(ii) if T is weakly R-QBNE and Fix (T ) is nonempty,

then {T nx}n∈N is bounded for each x ∈ K.

Proof. (i) We know from (??) that

Df (Tx, p) ≤ Df (x, p)

for any p ∈ F̂ix (T ) and x ∈ K. Therefore

Df (T nx, p) ≤ Df

(
T n−1x, p

)
≤ · · · ≤ Df (x, p)

for any p ∈ F̂ix (T ) and x ∈ K. This inequality shows that the nonnegative
sequence {Df (T nx, p)}n∈N is bounded. Now the boundedness of the sequence
{T nx}n∈N follows from [?, Lemma 3.1, page 31].

(ii) This result is a consequence of the arguments in assertion (i) when p ∈ F̂ix (T )
is replaced with p ∈ Fix (T ).

A left variant of Proposition ??(ii) has already been proved in [?, Theorem 15.7,
page 307]. Note that this left variant result can be rewritten as follows, where the
conditions on f , T and K are somewhat different.

Proposition 3.2 (Necessary condition for Fix (T ) to be nonempty (left variant)).
Let f : X → R be an admissible function and assume that ∇f ∗ is bounded on bounded
subsets of int dom f ∗. Let T : K ⊂ int dom f → K be a properly L-QBNE operator.
If Fix (T ) is nonempty, then {T nx}n∈N is bounded for each x ∈ K.
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Using this result and the properties of the conjugate operator, we can now obtain
a variant of Proposition ??(ii) under different assumptions on f .

Proposition 3.3 (Necessary condition for Fix (T ) to be nonempty (second version)).
Let f : X → R be a function such that f ∗ is admissible, and assume that ∇f and
∇f ∗ are bounded on bounded subsets of int dom f and int dom f ∗, respectively. Let
T : K ⊂ int dom f → K be a properly R-QBNE operator. If Fix (T ) is nonempty,
then {T nx}n∈N is bounded for each x ∈ K.

Proof. Since T is a properly R-QBNE operator with Fix (T ) 6= ∅, it follows from
Proposition ??(iii) and (iv) that

(21) T ∗ := ∇f ◦ T ◦ ∇f ∗ : ∇f (K)→ ∇f (K)

is a properly L-QBNE operator with respect to f ∗ with Fix (T ∗) = ∇f (Fix (T )) 6=
∅. Since the assumptions of Proposition ??(ii) hold, the sequence {(T ∗)n ξ}n∈N is
bounded for each ξ ∈ ∇f (K).

Next we note that

(22) (T ∗)n = T ∗ ◦ · · · ◦ T ∗ = ∇f ◦ T n ◦ ∇f ∗ = (T n)∗ .

Therefore {(T n)∗ ξ}n∈N is bounded for each ξ ∈ ∇f (K), which means that the
sequence {∇f (T nx)}n∈N is bounded for each x ∈ K. Now the desired result follows
because ∇f ∗ is bounded on bounded subsets of int dom f ∗.

Given an operator T : K ⊂ int dom f → K, we let

(23) Sfn (z) := (1/n)
n∑
k=1

∇f
(
T kz

)
, z ∈ K.

Using these f -averages, we now present a sufficient condition for R-BFNE operators
to have a fixed point. We start by proving this result directly.

Proposition 3.4 (Sufficient condition for Fix (T ) to be nonempty). Let f : X → R
be an admissible function. Let K be a nonempty subset of int dom f such that ∇f (K)
is closed and convex, and let T : K → K be an R-BFNE operator. If there exists
x ∈ K such that

∥∥Sfn (x)
∥∥9∞ as n→∞, then Fix (T ) is nonempty.

Proof. Assume there exists x ∈ K such that
∥∥Sfn (x)

∥∥9∞ as n→∞. Let y ∈ K,
k ∈ N and n ∈ N be given. Since T is R-BFNE, we have (see (??))

(24) Df

(
T k+1x, Ty

)
+Df

(
Ty, T k+1x

)
≤ Df

(
y, T k+1x

)
+Df

(
T kx, Ty

)
,
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where T 0 = I, the identity operator. From the three point identity (see (??)) and
(??) we get

Df

(
T k+1x, Ty

)
+Df

(
Ty, T k+1x

)
≤ Df

(
T kx, Ty

)
+Df

(
Ty, T k+1x

)
+Df (y, Ty)

+
〈
∇f

(
T k+1x

)
−∇f (Ty) , T y − y

〉
.

This implies that

0 ≤ Df (y, Ty) +Df

(
T kx, Ty

)
−Df

(
T k+1x, Ty

)
+
〈
∇f

(
T k+1x

)
−∇f (Ty) , T y − y

〉
.

Summing up these inequalities with respect to k = 0, 1, . . . , n− 1, we now obtain

0 ≤ nDf (y, Ty) +Df (x, Ty)−Df (T nx, Ty)

+

〈
n−1∑
k=0

∇f
(
T k+1x

)
− n∇f (Ty) , T y − y

〉
.

Dividing this inequality by n, we get

0 ≤ Df (y, Ty) +
1

n
[Df (x, Ty)−Df (T nx, Ty)]

+

〈
1

n

n−1∑
k=0

∇f
(
T k+1x

)
−∇f (Ty) , T y − y

〉

and hence

(25) 0 ≤ Df (y, Ty) +
1

n
Df (x, Ty) +

〈
Sfn (x)−∇f (Ty) , T y − y

〉
.

Since
∥∥Sfn (x)

∥∥ 9 ∞ as n → ∞ by assumption, we know that there exists a sub-
sequence

{
Sfnk

(x)
}
k∈N of

{
Sfn (x)

}
n∈N such that Sfnk

(x) ⇀ ξ ∈ X∗ as k → ∞.
Substituting nk for n in (??) and letting k →∞ , we obtain

(26) 0 ≤ Df (y, Ty) + 〈ξ −∇f (Ty) , T y − y〉 .

Since ∇f (K) is closed and convex, we know that ξ ∈ ∇f (K). Therefore there exists
p ∈ K such that ∇f (p) = ξ and from (??) we obtain

(27) 0 ≤ Df (y, Ty) + 〈∇f (p)−∇f (Ty) , T y − y〉 .
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Setting y = p in (??), we get from the four point identity (see (??)) that

0 ≤ Df (p, Tp) + 〈∇f (p)−∇f (Tp) , Tp− p〉
= Df (p, Tp) +Df (p, p)−Df (p, Tp)−Df (Tp, p) +Df (Tp, Tp)

= −Df (Tp, p) .

Hence Df (Tp, p) ≤ 0 and so Df (Tp, p) = 0. It now follows from [?, Lemma 7.3(vi),
p. 642] that Tp = p. That is, p ∈ Fix (T ).

At this point we recall the left variant of this result [?, Theorem 15.8, page 310],
where

(28) Sn (z) := (1/n)
n∑
k=1

T kz, z ∈ K.

Proposition 3.5 (Sufficient condition for Fix (T ) to be nonempty (left variant)).
Let f : X → R be an admissible function. Let K be a nonempty, closed and convex
subset of int dom f , and let T : K → K be an L-BFNE operator. If there exists
x ∈ K such that ‖Sn (x)‖9∞ as n→∞, then Fix (T ) is nonempty.

Using this result, we obtain a second version of Proposition ?? under different
assumptions on the function f .

Proposition 3.6 (Sufficient condition for Fix (T ) to be nonempty (second version)).
Let f : X → R be a function such that f ∗ is admissible. Let K be a nonempty subset
of int dom f such that ∇f (K) is closed and convex, and let T : K → K be an R-
BFNE operator. If there exists x ∈ K such that

∥∥Sfn (x)
∥∥ 9 ∞ as n → ∞, then

Fix (T ) is nonempty.

Proof. Since T is an R-BFNE operator, we obtain from Proposition ??(ii) that T ∗ is
an L-BFNE operator. In addition, from (??) we get the following connection between
the f -average operator Sfn (see (??)) and the operator Sn (defined by (??) for the
operator T ) with respect to the conjugate operator T ∗, which here we denote by ST

∗
n .

Given x ∈ K and ξ := ∇f (x) ∈ ∇f (K),

Sfn (x) =
1

n

n∑
k=1

∇f
(
T kx

)
=

1

n

n∑
k=1

∇f
(
T k (∇f ∗ (ξ))

)
=

1

n

n∑
k=1

(∇f ◦ T ◦ ∇f ∗ (ξ))k =
1

n

n∑
k=1

(T ∗ (ξ))k := ST
∗

n (ξ) .

13



Hence the assumption that there exists x ∈ K such that
∥∥Sfn (x)

∥∥9∞ as n→∞ is
equivalent to the assumption that there exists ξ ∈ ∇f (K) such that

∥∥ST ∗
n (ξ)

∥∥9∞
as n→∞. Now we apply Proposition ?? to f ∗ and T ∗ on ∇f (K), which is assumed
to be closed and convex, and get that Fix (T ∗) is nonempty. From Proposition ??(iii)
we obtain that Fix (T ) is nonempty too.

From Propositions ?? and ?? we deduce the following result which says that every
nonempty set K such that ∇f (K) is bounded, closed and convex has the fixed point
property for R-BFNE self-operators

Corollary 3.7. Let f : X → R be either an admissible function or a function such
that f ∗ is admissible. Let K be a nonempty subset of int dom f such that ∇f (K)
is bounded, closed and convex, and let T : K → K be an R-BFNE operator. Then
Fix (T ) is nonempty.

4 Approximation of fixed points

In this section we study the convergence of a Browder type implicit algorithm [?] for
computing fixed points of R-BFNE operators with respect to a Legendre function f .

Theorem 4.1 (Implicit method for approximating fixed points). Let f : X → R be
a Legendre and positively homogeneous function of degree α > 1, which is uniformly
continuous on bounded subsets of X. Assume that ∇f is weakly sequentially contin-
uous and f ∗ is totally convex. Let K be a nonempty and bounded subset of X such
that ∇f (K) is bounded, closed and convex with 0∗ ∈ ∇f (K), and let T : K → K be
an R-BFNE operator. Then the following two assertions hold.

(i) For each t ∈ (0, 1), there exists a unique ut ∈ K satisfying ut = tTut.

(ii) The net {ut}t∈(0,1) converges strongly to
−−→
projfFix(T ) (0) as t→ 1−.

Proof. (i) Fix t ∈ (0, 1) and let St be the operator defined by St = tT . Note that,
since ∇f is positively homogeneous of degree α−1 > 0, we have ∇f (0) = 0∗ ∈
∇f (K). This implies that St is an operator from K into K. Indeed, it is easy
to see that for any x ∈ K, since tα−1 ∈ (0, 1) and ∇f (K) is convex, we have

∇f ∗
(
tα−1∇f (Tx) +

(
1− tα−1

)
∇f (0)

)
∈ K.

14



On the other hand,

∇f ∗
(
tα−1∇f (Tx) +

(
1− tα−1

)
∇f (0)

)
= ∇f ∗

(
tα−1∇f (Tx)

)
= ∇f ∗ (∇f (tTx))

= tTx.

Hence Stx ∈ K for any x ∈ K. Next we show that St is an R-BFNE operator.
Given x, y ∈ K, since T is R-BFNE, we have

〈∇f (Stx)−∇f (Sty) , Stx− Sty〉 = tα 〈∇f (Tx)−∇f (Ty) , Tx− Ty〉
≤ tα 〈∇f (Tx)−∇f (Ty) , x− y〉
= t 〈∇f (Stx)−∇f (Sty) , x− y〉
≤ 〈∇f (Stx)−∇f (Sty) , x− y〉 .

Thus St is indeed R-BFNE. Since ∇f (K) is bounded, closed and convex, it
follows from Corollary ?? that St has a fixed point. Furthermore, Fix (St)
consists of exactly one point. Indeed, if u, u′ ∈ Fix (St), then it follows from
the right Bregman firm nonexpansivity of St that

〈∇f (u)−∇f (u′) , u− u′〉 = 〈∇f (Stu)−∇f (Stu
′) , Stu− Stu′〉

≤ 〈∇f (Stu)−∇f (Stu
′) , u− u′〉

= tα−1 〈∇f (u)−∇f (u′) , u− u′〉 ,

which means that
〈∇f (u)−∇f (u′) , u− u′〉 ≤ 0.

Since f is Legendre, we know that f is strictly convex and therefore ∇f is
strictly monotone. Hence u = u′. Thus there exists a unique point ut ∈ K
such that ut = Stut.

(ii) Note that, since T is R-BFNE, it follows from Corollary ?? that Fix (T ) is
nonempty. Furthermore, since T is R-QBNE (see Table ??), from Proposition
?? we know that ∇f (Fix (T )) is closed and convex. Therefore Proposition ??

shows that
−−→
projfFix(T ) is well defined and has a variational characterization. Let

{tn}n∈N be an arbitrary sequence in the real interval (0, 1) such that tn → 1−

as n → ∞. Denote xn = utn for all n ∈ N. It suffices to show that xn →−−→
projfFix(T ) (0) as n→∞. Since K is bounded, there is a subsequence {xnk

}k∈N
of {xn}n∈N such that xnk

⇀ v as k →∞. From the definition of xn, we see that
‖xn − Txn‖ = (1− tn) ‖Txn‖ for all n ∈ N. So, we have ‖xn − Txn‖ → 0 as
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n → ∞ and hence v ∈ F̂ix (T ). Proposition ?? now implies that v ∈ Fix (T ).
We next show that xnk

→ v as k → ∞. Fix n ∈ N. Since T is properly
R-QBFNE (see Table ??), we have

0 ≤ 〈∇f (Txn)−∇f (v) , xn − Txn〉 .

Since xn − Txn = (tn − 1)Txn, we also have

0 ≤ 〈∇f (Txn)−∇f (v) , (tn − 1)Txn〉 .

This yields

(29) 0 ≤ 〈∇f (Txn)−∇f (v) ,−Txn〉

and

(30) 〈∇f (Txn)−∇f (v) , Txn − v〉 ≤ 〈∇f (Txn)−∇f (v) ,−v〉 .

Since xnk
⇀ v and ‖xnk

− Txnk
‖ → 0 as k → ∞, it follows that Txnk

⇀ v.

From the weak sequential continuity of∇f we obtain that∇f (Txnk
)
∗
⇀ ∇f (v)

as k →∞. Hence it follows from the monotonicity of ∇f and from (??) that

0 ≤ lim inf
k→∞

〈∇f (Txnk
)−∇f (v) , Txnk

− v〉

≤ lim sup
k→∞

〈∇f (Txnk
)−∇f (v) ,−v〉(31)

= 0.

Thus
lim
k→∞
〈∇f (Txnk

)−∇f (v) , Txnk
− v〉 = 0.

Since

Df (v, Txnk
) +Df (Txnk

, v) = 〈∇f (Txnk
)−∇f (v) , Txnk

− v〉 ,

it follows that

lim
k→∞

Df (v, Txnk
) = lim

k→∞
Df (Txnk

, v) = 0.

From [?, Proposition 2.2, page 3] we get that ‖Txnk
− v‖ → 0 as k →∞.
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Finally, we claim that v =
−−→
projfFix(T ) (0). Indeed, note that inequality (??) holds

when we replace v with any p ∈ Fix (T ). Then, since ∇f (Txnk
)
∗
⇀ ∇f (v) and

Txnk
→ v as k →∞, letting k →∞ in this inequality, we get

0 ≤ 〈∇f (v)−∇f (p) ,−v〉

for any p ∈ Fix (T ). In other words,

0 ≤ 〈∇f (v)−∇f (p) , 0− v〉

for any p ∈ Fix (T ). Now we obtain from Proposition ?? that v =
−−→
projfFix(T ) (0),

as asserted.

Here is the left variant of this result [?].

Proposition 4.2 (Implicit method for approximating fixed point (left variant)). Let
f : X → R be a Legendre and totally convex function, which is positively homogeneous
of degree α > 1, uniformly Fréchet differentiable and bounded on bounded subsets of
X. Let K be a nonempty, bounded, closed and convex subset of X with 0 ∈ K, and
let T : K → K be an L-BFNE operator. Then the following two assertions hold.

(i) For each t ∈ (0, 1), there exists a unique ut ∈ K satisfying ut = tTut;

(ii) The net {ut}t∈(0,1) converges strongly to
←−−
projfFix(T ) (∇f ∗ (0∗)) as t→ 1−.

Again using the left variant and the conjugation properties, we can obtain a right
variant under somewhat different conditions.

Theorem 4.3 (Implicit method for approximating fixed points (second version)).
Let f : X → R be a Legendre and cofinite function. Assume that f ∗ is totally
convex, positively homogeneous of degree α > 1, and uniformly Fréchet differentiable
and bounded on bounded subsets of X∗. Let K be a nonempty subset of int dom f
such that ∇f (K) is bounded, closed and convex with 0∗ ∈ ∇f (K). Let T : K → K
be an R-BFNE operator. Then the following two assertions hold.

(i) For each t ∈ (0, 1), there exists a unique ut ∈ K satisfying ut = tTut.

(ii) The net {ut}t∈(0,1) converges strongly to
−−→
projfFix(T ) (0) as t→ 1−.
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Proof. (i) Since T is an R-BFNE operator, we obtain from Proposition ??(ii) that
the conjugate operator T ∗ : ∇f (K) → ∇f (K) is an L-BFNE operator with
respect to f ∗. Now we apply Proposition ??(i) to T ∗ and get that for each
t ∈ (0, 1), there exists a unique ξt ∈ ∇f (K) satisfying ξt = tT ∗ξt. Denote
ut = ∇f ∗ (ξt) ∈ K. Then from the definition of conjugate operators we get

ξt = tT ∗ξt ⇔ ∇f (ut) = tT ∗∇f (ut)

⇔ ∇f (ut) = t (∇f ◦ T ◦ ∇f ∗) (∇f (ut))

⇔ ∇f (ut) = t∇f (Tut) .

Note that, since∇f ∗ is positively homogeneous of degree α−1 > 0, the gradient
∇f is positively homogeneous of degree 1/ (α− 1) > 0. Hence

∇f (ut) = ∇f
(
tα−1Tut

)
.

So, for each t ∈ (0, 1), there exists a unique ut ∈ K satisfying ut = tα−1Tut,
which yields assertion (i) because α− 1 > 0 and 0 < t < 1.

(ii) From the positive homogeneity, we deduce that ∇f ∗ (0∗) = 0. Therefore, ap-
plying Proposition ??(ii) to f ∗ and the conjugate operator T ∗ on ∇f (K), we
get that the net {ξt}t∈(0,1) converges strongly to

←−−
projf

∗

Fix(T ∗) (∇f (0)) =
←−−
projf

∗

Fix(T ∗) (0∗)

as t→ 1−. Now, since ut = ∇f ∗ (ξt) ∈ K for all t ∈ (0, 1), it follows from (??)
that

lim
t→1−

∇f (ut) =
←−−
projf

∗

Fix(T ∗) (0∗)

= ∇f
(−−→

projfFix(T ) (∇f ∗ (0∗))
)

= ∇f
(−−→

projfFix(T ) (0)
)
.(32)

Since f ∗ is uniformly Fréchet differentiable and bounded on bounded subsets
of int dom f ∗, we know that ∇f ∗ is uniformly continuous on bounded subsets
of X∗ [?, Proposition 2.1]. Since {ξt = ∇f (ut)}t∈(0,1) is bounded as a conver-
gent sequence, it now follows from (??) that {ut}t∈(0,1) converges strongly to
−−→
projfFix(T ) (0) as t→ 1−.
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Remark 4.4. Under the hypotheses of Theorem ??, since ∇f (K) is closed and
convex, if we assume, in addition, that f is totally convex, then Proposition ??
implies that the right Bregman projection onto Fix (T ) is the unique sunny R-QBNE
retraction of X onto Fix (T ). In other words, the sequence {ut}t∈(0,1) converges
strongly to the value of the unique sunny R-QBNE retraction of X onto Fix (T ) at
the origin. In the setting of a Hilbert space, when f = (1/2) ‖·‖2, this fact recovers
the result of Browder [?], which shows that, for a nonexpansive mapping T , the
approximating curve xt = (1− t)u+ tTxt generates the unique sunny nonexpansive
retraction onto Fix (T ) when t→ 1−, in the particular case where u = 0. ♦

5 Zeroes of monotone mappings

Let A : X → 2X
∗

be a set-valued mapping. Recall that the (effective) domain of the
mapping A is the set domA = {x ∈ X : Ax 6= ∅}. We say that A is monotone if for
any x, y ∈ domA, we have

(33) ξ ∈ Ax and η ∈ Ay =⇒ 0 ≤ 〈ξ − η, x− y〉 .

A monotone mapping A is said to be maximal if the graph of A is not a proper
subset of the graph of any other monotone mapping.

A problem of great interest in Optimization Theory is that of finding zeroes of
set-valued mappings A : X → 2X

∗
. Formally, the problem can be written as follows:

(34) Find x ∈ X such that 0
∗ ∈ Ax.

This problem occurs in practice in various forms. For instance, minimizing a lower
semicontinuous and convex function f : X → R, a basic problem of optimization,
amounts to finding a zero of the mapping A = ∂f , where ∂f (x) stands for the
subdifferential of f at the point x ∈ X. Finding solutions of some classes of differ-
ential equations can also be reduced to finding zeroes of certain set-valued mappings
A : X → 2X

∗
.

In the case of a Hilbert space H, one of the most important methods for solving
(??) consists of replacing it with the equivalent fixed point problem for the classical
resolvent RA : H → 2H of A, defined by

RA := (I + A)−1 .

In this case, provided that A satisfies some monotonicity conditions, the resolvent
RA is single-valued, nonexpansive and even firmly nonexpansive. When X is not a
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Hilbert space, the classical resolvent RA is of limited interest and other operators
should be employed. For example, in several papers (see, for instance, [?, ?]) the
f -resolvent ResfA was used for finding zeroes of monotone mappings A in general
reflexive Banach spaces. More precisely, given a set-valued mapping A : X → 2X

∗
,

the f -resolvent of A is the operator ResfA : X → 2X which is defined by

(35) ResfA := (∇f + A)−1 ◦ ∇f.

In this paper we consider another variant of the classical resolvent for general reflexive
Banach spaces, namely, the conjugate resolvent of a mapping A [?].

Definition 5.1 (Conjugate f -resolvent). Let A : X → 2X
∗

be a set-valued mapping.
The conjugate resolvent of A with respect to f , or the conjugate f -resolvent, is the
operator CResfA : X∗ → 2X

∗
defined by

(36) CResfA := (I + A ◦ ∇f ∗)−1 .

The conjugate resolvent satisfies the following properties [?].

Proposition 5.2 (Properties of conjugate f -resolvents). Let f : X → R be an
admissible function and let A : X → 2X

∗
be a mapping such that int dom f∩domA 6=

∅. The following statements hold.

(i) dom CResfA ⊂ int dom f ∗.

(ii) ran CResfA ⊂ int dom f ∗.

(iii) ∇f ∗
(

Fix
(

CResfA

))
= int dom f ∩ A−1 (0∗).

(iv) Suppose, in addition, that A is a monotone mapping. Then the following as-
sertions also hold.

(a) If f |int dom f is strictly convex, then the operator CResfA is single-valued on
its domain and R-BFNE.

(b) If f : X → R is such that ran∇f ⊂ ran (∇f + A), then dom CResfA =
int dom f ∗.

According to Proposition ??(iii) and (iv)(a), we can apply Theorem ?? in the
dual space X∗ to the conjugate resolvent CResfA and obtain an implicit method for
approximating zeroes of monotone mappings.
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Theorem 5.3 (Implicit method for approximating zeroes). Let f : X → R be
a Legendre and totally convex function such that f ∗ is positively homogeneous of
degree α > 1 and uniformly continuous on bounded subsets of X∗. Assume that
∇f ∗ is weakly sequentially continuous. Let K∗ be a nonempty and bounded subset
of X∗ such that ∇f ∗ (K∗) is bounded, closed and convex with 0 ∈ ∇f ∗ (K∗). Let λ
be any positive real number and let A : X → 2X

∗
be a monotone mapping such that

∇f (domA) ⊂ K∗ ⊂ ran (I + λA ◦ ∇f ∗). Then the following two assertions hold.

(i) For each t ∈ (0, 1), there exists a unique ξt ∈ K∗ satisfying ξt = tCResfλAξt.

(ii) The net {ξt}t∈(0,1) converges strongly to
−−→
projf∇f(A−1(0∗)) (0∗) as t→ 1−.
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