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Abstract

Diverse notions of nonexpansive type operators have been extended to the
more general framework of Bregman distances in reflexive Banach spaces. We
study these classes of operators, mainly with respect to the existence and ap-
proximation of their (asymptotic) fixed points. In particular, the asymptotic
behavior of Picard and Mann type iterations is discussed for quasi-Bregman
nonexpansive operators. We also present parallel algorithms for approximat-
ing common fixed points of a finite family of Bregman strongly nonexpansive
operators by means of a block operator which preserves the Bregman strong
nonexpansivity. All the results hold, in particular, for the smaller class of
Bregman firmly nonexpansive operators, a class which contains the general-
ized resolvents of monotone mappings with respect to the Bregman distance.
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1 Introduction

It is well known that many nonlinear problems can be reduced to the search for
fixed points of nonlinear operators. See, for example, [19, 25, 31] and the references
therein. Iterative methods are often used for finding and approximating such fixed
points (see [5, 17] and their references).

Let K be a nonempty, closed and convex subset of a Banach space X and let
T : K → K be an operator. The most well-known method for solving the fixed point
equation Tx = x is perhaps the Picard successive iterations method when T is a
strict contraction, that is,

‖Tx− Ty‖ ≤ c ‖x− y‖

for some 0 ≤ c < 1 and all x, y ∈ K.
Picard’s method generates a sequence {xn}n∈N successively by

xn+1 = Txn (1)

for each n ≥ 0, with x0 chosen arbitrarily in K. This sequence then converges
in norm to the unique fixed point of T . However, if T is not a strict contraction
(for instance, even if T is nonexpansive with a unique fixed point), then Picard’s
successive iterations method fails, in general, to converge. To see this, it suffices, for
example, to take for T a rotation of the unit disc in the plane about the origin of
coordinates.

Krasnosel’ski [24], however, has shown that in this example, one can obtain a
convergent sequence of successive approximations if instead of T one takes the aux-
iliary nonexpansive operator (1/2) (I + T ), where I denotes the identity operator
of X, that is, if the sequence of successive approximations is defined, for arbitrary
x0 ∈ K, by

xn+1 =
1

2
(I + T )xn (2)

for each n ≥ 0. It is easy to check that the operators T and (1/2) (I + T ) have the
same fixed point sets, so that the limit of a convergent sequence defined by (2) is
necessarily a fixed point of T .

A more general iterative scheme is the following one:

xn+1 = αnxn + (1− αn)Txn (3)

where {αn}n∈N ⊂ (0, 1) is a sequence satisfying appropriate conditions. The sequence
{xn}n∈N, generated by (3), is referred to as the Mann sequence in light of [26]. In
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an infinite-dimensional Hilbert space, the Mann iterative scheme only yields weak
convergence in general (see [4, 20]).

Our first purpose in this paper is to study (modifications of) these two methods in
reflexive Banach spaces. We are also interested in finding variants of these methods
for approximating common fixed points of finitely many operators. A commonly
used approach to tackling this problem arose in the following way.

The problem of finding a point in the intersection of a finite number of closed
and convex subsets {Ki}Ni=1 of a Banach space is a frequently appearing problem
in diverse areas of mathematical and physical sciences. This problem is commonly
referred to as the convex feasibility problem (CFP). A classical method for solving
this problem is the cyclic projection one. In 1965 Bregman [7, Theorem 1] showed
that in a Hilbert space H, for every initial point x0 ∈ H, the sequence {xn}n∈N,
generated by the cyclic projection algorithm

xn+1 = Pn(modN)+1xn, (4)

where Pi denotes the metric projection onto Ki and the modN function takes values
in {0, . . . , N − 1}, converges weakly to a point in K :=

⋂N
i=1Ki 6= ∅.

In order to obtain a similar result in a general Banach space X, Bregman [8]
introduced a distance-like function which later was given the name Bregman dis-
tance (see (9)) by Censor and Lent [15]. Bregman proved that if in (4) the metric
projection is replaced with the Bregman projection (where the norm is replaced with
the Bregman distance) then the cluster points of {xn}n∈N are in K (see [8, Equation
(1.2) and Theorem 1]).

When a parallel computer is available, it may be more convenient to use an-
other method, called the parallel scheme, for constructing an approximating sequence
{xn}n∈N. To this end, at the n-th iteration a set of N positive real numbers {win}

N
i=1

(the weights) with
∑N

i=1w
i
n = 1 is chosen, and, analogously to the sequential scheme,

the new point xn+1 is created by computing a convex combination of all the projec-
tions, namely,

xn+1 =
N∑
i=1

winPixn. (5)

Over the years, the sequential and parallel algorithmic schemes have been extended
to more flexible block-iterative methods in which only a block {Ki}i∈J of the sets is
activated at the n-th iteration, where J is a subset of {1, . . . , N}. The block-iterative
methods evolved further to include the so-called relaxation methods for solving the
convex feasibility problem, which go back to Kaczmarz [22] and Cimmino [18]. These
methods are of special interest because of their relatively easy implementation and
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computational efficiency in solving extremely large and sparse problems. Contribu-
tions to the study of relaxation methods are surveyed in [14]. Aharoni and Censor
[1] discuss a block iterative projection method which incorporates as special cases
many of the earlier relaxation techniques.

Butnariu and Censor [10] studied the following iterative procedure in a Hilbert
space H:

xn+1 =
N∑
i=1

win (αixn + (1− αi)Pixn) , (6)

where x0 ∈ H, {win}
N
i=1 ⊂ [0, 1] (n ∈ N) such that

∑N
i=1w

i
n = 1 (n ∈ N) and

{αi}Ni=1 ⊂ (−1, 1). They proved that {xn}n∈N converged strongly to an element of
K.

Let K be a nonempty, closed and convex subset of a Hilbert space H. An operator
T : K → K is called nonexpansive (or 1-Lipschitz) if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ K. It turns out that nonexpansive fixed point theory can be applied to
the solution of a variety of problems such as finding zeroes of monotone operators
and solutions to certain evolution equations, and to solving convex feasibility (CFP),
variational inequality (VIP) and equilibrium problems (EP). Kikkawa and Takahashi
[23] have recently applied method (6) to the problem of finding common fixed points
of a finite family of nonexpansive mappings in Banach spaces. More precisely, they
studied the algorithm

xn+1 =
N∑
i=1

win
(
αinxn +

(
1− αin

)
Tixn

)
, (7)

where x0 ∈ X, {αin}
N
i=1 and {win}

N
i=1 are sequences in [0, 1] (n ∈ N) such that∑N

i=1w
i
n = 1, (n ∈ N) and {Ti}Ni=1 is a finite family of nonexpansive operators

from K into itself. They prove that under certain conditions on the Banach space
X and the sequences {αin}

N
i=1 and {win}

N
i=1, the sequence {xn}n∈N converges weakly

to an element of F :=
⋂N
i=1 Fix (Ti), where Fix (T ) stands for the fixed point set of

the operator T .
In the present paper we study a generalization of Algorithm (7) in the more

general framework of Bregman distances. In this connection we introduce the block
operator corresponding to a finite family of Bregman operators of nonexpansive type
and prove several results concerning the relations between the common fixed points
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of the family and the block operator. In order to approximate fixed points of such
operators, we use two well-known iterative methods, namely, the Picard and Mann
iterations. For both methods we prove diverse results in several scenarios.

Our paper is organized in the following way. We start (see Section 2) with
basic definitions, results and remarks concerning our main objects of studying, for
example, Bregman distances, totally convex functions and Bregman nonexpansive
type operators. In the following part (see Section 3) we prove several auxiliary
results which are essential in our later analysis. We show, in particular, that any
Bregman strongly nonexpansive operator is asymptotically regular (see Proposition
11). The third and the fourth sections are devoted to the analysis of Picard and
Mann iterations, respectively. In these two sections we prove convergence results
for Bregman nonexpansive operators. In the last, but not least, section (Section 6)
we introduce the block operator and prove several results concerning approximating
fixed points of such operators.

2 Preliminaries

Let X denote a real reflexive Banach space with norm ‖·‖ and let X∗ stand for the
(topological) dual of X equipped with the induced norm ‖·‖∗. We denote the value
of the functional ξ ∈ X∗ at x ∈ X by 〈ξ, x〉. Given {xn}n∈N and x ∈ X, the strong
convergence (weak convergence) of the sequence {xn}n∈N to x is denoted by xn → x
(xn ⇀ x).

Let f : X → (−∞,+∞] be a function. The domain of f is defined to be

dom f := {x ∈ X : f (x) < +∞} .

When dom f 6= ∅ we say that f is proper. We denote by int dom f the interior of
the domain of f .

The Fenchel conjugate of f is the function f ∗ : X∗ → (−∞,+∞] defined by

f ∗ (ξ) = sup {〈ξ, x〉 − f (x) : x ∈ X} .

Let x ∈ int dom f . For any y ∈ X, we define the right-hand derivative of f at x
by

f ◦ (x, y) := lim
t→0+

f (x+ ty)− f (x)

t
. (8)

If the limit as t→ 0 in (8) exists for any y, then the function f is said to be Gâteaux
differentiable at x. In this case, the gradient of f at x is the function ∇f (x) :
X → (−∞,+∞] defined by 〈∇f (x) , y〉 = f ◦ (x, y) for any y ∈ X. The function f

5



is called Gâteaux differentiable if it is Gâteaux differentiable at any x ∈ int dom f .
Throughout this paper, the function f : X → (−∞,+∞] is a proper, convex and
lower semicontinuous function which is also Gâteaux differentiable on int dom f .

Definition 1 (Legendre function). The function f is called Legendre if it satisfies
the following two conditions:

(L1) the interior of the domain of f , int dom f , is nonempty, f is Gâteaux differen-
tiable and

dom∇f = int dom f ;

(L2) the interior of the domain of f ∗, int dom f ∗, is nonempty, f ∗ is Gâteaux differ-
entiable and

dom∇f ∗ = int dom f ∗.

Since X is reflexive, we always have ∇f = (∇f ∗)−1 (see [6, p. 83]). This fact,
when combined with conditions (L1) and (L2), implies the following equalities:

ran∇f = dom∇f ∗ = int dom f ∗

and
ran∇f ∗ = dom∇f = int dom f.

Conditions (L1) and (L2), in conjunction with [3, Theorem 5.4, p. 634], imply that
the functions f and f ∗ are strictly convex on the interior of their respective domains.

Definition 2 (Bregman distance). The bifunction Df : dom f×int dom f → [0,+∞)
given by

Df (y, x) := f (y)− f (x)− 〈∇f (x) , y − x〉 (9)

is called the Bregman distance with respect to f (cf. [15]).

With the function f we associate the bifunction W f : dom f ∗×dom f → [0,+∞)
defined by

W f (ξ, x) := f (x)− 〈ξ, x〉+ f ∗ (ξ) . (10)

Proposition 1 (Properties of W f ). Let f be a Legendre function. Then the following
statements hold:

(i) The function W f (·, x) is convex for any x ∈ dom f .

(ii) W f (∇f(x), y) = Df (y, x) for any x ∈ int dom f and y ∈ dom f .
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(iii) For any ξ, η ∈ dom f ∗ and x ∈ dom f , we have

W f (ξ, x) + 〈η, (∇f ∗) (ξ)− x〉 ≤ W f (ξ + η, x) .

Proof. (i) This is clear since f ∗ is convex.

(ii) Let x ∈ int dom f and let y ∈ dom f . It is known that

f (x) + f ∗ (∇f (x)) = 〈∇f (x) , x〉 .

Therefore

W f (∇f (x) , y) = f (y)− 〈∇f (x) , y〉+ f ∗ (∇f (x))

= f (y)− 〈∇f (x) , y〉+ [〈∇f (x) , x〉 − f (x)]

= f (y)− f (x)− 〈∇f (x) , y − x〉
= Df (y, x) .

(iii) Let x ∈ dom f be given. Define the function g : X∗ → (−∞,+∞] by g (ξ) =
W f (ξ, x). Then

∇g (ξ) = ∇ (f ∗ − 〈·, x〉) (ξ) = (∇f ∗) (ξ)− x.

Hence
g (ξ + η)− g (ξ) ≥ 〈η, (∇f ∗) (ξ)− x〉 ,

that is,
W f (ξ, x) + 〈η, (∇f ∗) (ξ)− x〉 ≤ W f (ξ + η, x)

for all ξ, η ∈ dom f ∗.

We now recall the definition of a totally convex function which was introduced
in [11, 12].

Definition 3 (Total convexity). The function f is called totally convex at a point
x ∈ int dom f if its modulus of total convexity at x, υf (x, ·) : [0,+∞) → [0,+∞],
defined by

υf (x, t) := inf {Df (y, x) : y ∈ dom f, ‖y − x‖ = t} ,

is positive whenever t > 0. The function f is called totally convex when it is totally
convex at every point of int dom f .
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Definition 4 (Total convexity on bounded subsets). The function f is called totally
convex on bounded sets if, for any nonempty bounded set E ⊂ X, the modulus of total
convexity of f on E, υf (E, t), is positive for any t > 0, where υf (E, ·) : [0,+∞)→
[0,+∞] is defined by

υf (E, t) := inf {υf (x, t) : x ∈ E ∩ int dom f} .

Recall that, according to Censor and Lent [15], the Bregman projection with
respect to f of a point x ∈ X onto the closed convex set K is the (necessarily
unique) minimizer over K of the functional Df (·, x) : X → [0,+∞]; i.e.,

projfK (x) := arg min {Df (y, x) : y ∈ K} .

The following characterization was proved in [13, Corollary 4.4, p. 23].

Proposition 2 (Characterization of the Bregman projection). Let f : X → (−∞,+∞]
be a Gâteaux differentiable and totally convex function. Let x ∈ int dom f and let
K ⊂ int dom f be a nonempty, closed and convex set. If x̂ ∈ K, then the following
statements are equivalent:

(i) the vector x̂ is the Bregman projection of x onto K, projfK (x);

(ii) the vector x̂ is the unique solution of the variational inequality

〈∇f (x)−∇f (z) , z − y〉 ≥ 0, ∀y ∈ K; (11)

(iii) the vector x̂ is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x) , ∀y ∈ K. (12)

Let K ⊂ int dom f be a nonempty set. The fixed point set of an operator T :
K → int dom f is the set {x ∈ K : Tx = x} and is denoted by Fix (T ). A point
p in the closure of K is said to be an asymptotic fixed point of T (cf. [16, 28]) if
K contains a sequence {xn}n∈N which converges weakly to p such that the strong
limn→∞ (xn − Txn) = 0. The set of asymptotic fixed points of T will be denoted by

F̂ix (T ).
We next list significant types of nonexpansivity with respect to the Bregman

distance.

Definition 5 (Bregman nonexpansivity). Let S ⊂ dom f be a nonempty subset.
The operator T : K → int dom f is said to be:
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(i) Bregman nonexpansive (BNE) if

Df (Tx, Ty) ≤ Df (x, y) , ∀ x, y ∈ K; (13)

(ii) quasi-Bregman nonexpansive (QBNE) with respect to S if

Df (p, Tx) ≤ Df (p, x) , ∀ x ∈ K, p ∈ S; (14)

(iii) Bregman firmly nonexpansive (BFNE) if

〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (x)−∇f (y) , Tx− Ty〉 (15)

for any x, y ∈ K, or equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y)

≤ Df (Tx, y) +Df (Ty, x) ; (16)

(iv) quasi-Bregman firmly nonexpansive (QBFNE) with respect to S if

0 ≤ 〈∇f (x)−∇f (Tx) , Tx− p〉 ∀ x ∈ K, p ∈ S, (17)

or equivalently,
Df (p, Tx) +Df (Tx, x) ≤ Df (p, x) ; (18)

(v) Bregman strongly nonexpansive (BSNE) with respect to S if

Df (p, Tx) ≤ Df (p, x) ∀ x ∈ K, p ∈ S, (19)

and if whenever {xn}n∈N ⊂ K is bounded, p ∈ S, and

lim
n→+∞

(Df (p, xn)−Df (p, Txn)) = 0, (20)

it follows that
lim

n→+∞
Df (Txn, xn) = 0. (21)

Remark 1 (Types of quasi-Bregman nonexpansivity).

(i) An operator which satisfies (14) (or (18)) with respect to S := Fix (T ) is called
weakly QBNE (or weakly QBFNE ).
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(ii) An operator which satisfies (14) (or (18)) with respect to S := F̂ix (T ) is called
strongly QBNE (or strongly QBFNE ).

(iii) An operator which satisfies (14) (or (18)) with respect to S := Fix (T ) =

F̂ix (T ) is called QBNE (or QBFNE ).

♦

Remark 2 (Types of Bregman strong nonexpansivity).

(i) An operator which satisfies (19)-(21) with respect to S := Fix (T ) is called
weakly BSNE.

(ii) An operator which satisfies (19)-(21) with respect to S := F̂ix (T ) is called
strongly BSNE (this class of operators was first defined in [28]).

(iii) An operator which satisfies (19)-(21) with respect to S := Fix (T ) = F̂ix (T ) is
called BSNE.

♦

The relations among all these classes of Bregman nonexpansive operators are
summarized in the following scheme (see Table 1).

strongly QBFNE ⇒ strongly BSNE ⇒ strongly QBNE
⇓ ⇓ ⇓

BFNE ⇒ weakly QBFNE ⇒ weakly BSNE ⇒ weakly QBNE

Table 1: Implications between the Bregman nonexpansive types

An interesting particular case of Bregman nonexpansive operators is the following
one: Assume now that f = (1/2) ‖·‖2 and the space X is a Hilbert space H, so that
∇f = I (the identity operator) and Df (y, x) = (1/2) ‖x− y‖2. Thence, Definition
5(i)-(iv) takes the form presented in Definition 6(i’)-(iv’). The analog of Definition
5(v) is presented in Definition 6(v’). This latter class of operators was first studied
in [9]. Since the norm variant does not follow from the Bregman case as do the other
classes we emphasize the connection between these two classes in Remark 3.

Definition 6. In this case we assume that S := Fix (T ). We say that T : K → H
is:
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(i’) nonexpansive (NE) if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀ x, y ∈ K; (22)

(ii’) quasi-nonexpansive (QNE) if

‖Tx− p‖ ≤ ‖x− p‖ , ∀ x ∈ K, p ∈ Fix (T ) ; (23)

(iii’) firmly nonexpansive (FNE) if

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 , ∀ x, y ∈ K; (24)

(iv’) quasi-firmly nonexpansive (QFNE) if

‖Tx− p‖2 + ‖Tx− x‖2 ≤ ‖x− p‖2 , ∀ x ∈ K, p ∈ Fix (T ) , (25)

or equivalently, 0 ≤ 〈x− Tx, Tx− p〉 .

(v’) strongly nonexpansive (SNE) if T is nonexpansive and for any bounded se-
quence {xn − yn}n∈N satisfying

lim
n→+∞

(‖xn − yn‖ − ‖Txn − Tyn‖) = 0, (26)

it follows that
lim

n→+∞
((xn − yn)− (Txn − Tyn)) = 0. (27)

Remark 3 (Connection between BSNE and SNE operators). When f = (1/2) ‖·‖2
and S = Fix (T ), definition 5(v) means that T : K → H is BSNE with respect
to Fix (T ) if T is QNE (definition 6(ii’)) and if for any bounded sequence {xn}n∈N
satisfying

lim
n→∞

(
‖xn − p‖2 − ‖Txn − p‖2

)
= 0 (28)

for all p ∈ Fix (T ), it follows that

lim
n→∞

(xn − Txn) = 0. (29)

One is able to show that, in this case, strong nonexpansivity implies Bregman strong
nonexpansivity. Indeed, if T is SNE, the quasi-nonexpansivity is guaranteed by
definition. Now, given a bounded sequence {xn}n∈N satisfying (28) for some p ∈
Fix (T ), we have

lim
n→∞

(‖xn − p‖ − ‖Txn − p‖) = 0. (30)
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By taking in definition 6(v’) the sequence {yn}n∈N to be the constant sequence defined
by yn = p for all n ∈ N, we see that (29) follows from (27), so T is weakly BSNE,
as claimed. The converse does not hold in general, mainly because nonexpansivity
is required.

Note that if S = F̂ix (T ), the previous implication is no longer true. However,

in the finite dimensional case, H = Rn, if T is continuous, then Fix (T ) = F̂ix (T ).
This happens, in particular, when T is SNE. Therefore, in finite dimension, any SNE
mapping (called paracontraction in [16]) is also strongly BSNE.

To sum up, we can say that Bregman strong nonexpansivity turns out to be a
generalization of strong nonexpansivity. ♦

The following two results emphasize the advantage of strongly BSNE operators
over other types of Bregman nonexpansive operators (cf. [28, Lemma 1, p. 314] and
[28, Lemma 2, p. 314], respectively).

Proposition 3 (Common asymptotic fixed points of a composition). Let f : X → R
be a Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of X. Let K be a nonempty, closed and convex subset of
X. If each Ti, 1 ≤ i ≤ N , is a strongly BSNE self-mapping of K, and the set

F̂ :=
⋂{

F̂ix (Ti) : 1 ≤ i ≤ N
}

is not empty, then F̂ix (TNTN−1 · · ·T1) ⊂ F̂ .

Proposition 4 (Composition of strongly BSNE operators). Let f : X → (−∞,+∞]
be a Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of X. Let K be a nonempty, closed and convex subset of
int dom f . Let each Ti, 1 ≤ i ≤ N , be a strongly BSNE self-mapping of K, and let
T = TNTN−1 · · ·T1. If the sets F̂ and F̂ix (T ) are not empty, then T is also strongly
BSNE.

Remark 4. For each 1 ≤ i ≤ N , let Ti be a strongly BSNE operator with respect
to F̂ix (Ti) = Fix (Ti), and let T = TNTN−1 · · ·T1. If F =

⋂
{Fix (Ti) : 1 ≤ i ≤ N} is

nonempty, then T is also strongly BSNE with respect to Fix (T ) = F̂ix (T ).
Indeed, from Proposition 3 we get that

Fix (T ) ⊂ F̂ix (T ) ⊂ F̂ = F ⊂ Fix (T ) ,

which implies that Fix (T ) = F̂ix (T ), as claimed.
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In addition, in this case, it follows from Proposition 3 that

Fix (T ) =
⋂
{Fix (Ti) : 1 ≤ i ≤ N} . (31)

♦

Proposition 5 (cf. [30, Lemma 15.6, p. 306]). Let f : X → R be a Legendre
function which is uniformly Fréchet differentiable and bounded on bounded subsets of
X. Let K be a nonempty, closed and convex subset of X, and let T : K → K be a
BFNE operator. Then Fix (T ) = F̂ix (T ).

Proposition 6 (cf. [30, Theorem 15.7, p. 307]). Let f : X → (−∞,+∞] be a
Legendre function such that ∇f ∗ is bounded on bounded subsets of int dom f ∗. Let
K be a nonempty, closed and convex subset of int dom f and let T : K → K be a
weakly QBNE operator. If Fix (T ) is nonempty, then {T ny}n∈N is bounded for each
y ∈ K.

Remark 5. Based on the implications described in Table 1, we see that Proposition
6 holds for all Bregman nonexpansive type operators appearing in the table. ♦

Definition 7 (Sequentially consistent). The function f is called sequentially consis-
tent (see [13]) if for any two sequences {xn}n∈N and {yn}n∈N in int dom f and dom f ,
respectively, such that the first one is bounded,

lim
n→+∞

Df (yn, xn) = 0 ⇒ lim
n→+∞

‖yn − xn‖ = 0.

Proposition 7 (cf. [12, Lemma 2.1.2, p. 67]). The function f : X → (−∞,+∞] is
totally convex on bounded subsets of X if and only if it is sequentially consistent.

Proposition 8 (cf. [29, Proposition 2.1, p. 474]). If f : X → R is uniformly Fréchet
differentiable and bounded on bounded subsets of X, then ∇f is uniformly continuous
on bounded subsets of X from the strong topology of X to the strong topology of X∗.

3 Auxiliary Results

Definition 8 (Weakly sequentially continuous mapping). A mapping A : X → X∗

is called weakly sequentially continuous if for any sequence {xn}n∈N ⊂ X, xn ⇀ x

implies that Axn
∗
⇀ Ax.
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Proposition 9 (Weak convergence). Let f : X → (−∞,+∞] be a Legendre function
such that ∇f is weakly sequentially continuous. Suppose that the sequence {xn}n∈N
is bounded and that

lim
n→∞

Df (u, xn) (32)

exists for any weak subsequential limit u of {xn}n∈N. Then {xn}n∈N converges weakly
to u.

Proof. It suffices to prove the uniqueness of weak subsequential limits of {xn}n∈N
because, since {xn}n∈N is bounded and X is reflexive, we know that there is at least
one. Assume that u and v are any two weak subsequential limits of {xn}n∈N. From
(32) we know that

lim
n→∞

(Df (u, xn)−Df (v, xn))

exists. From the definition of the Bregman distance (see (9)) we get

Df (u, xn)−Df (v, xn) = [f (u)− f (xn)− 〈∇f (xn) , u− xn〉]
− [f (v)− f (xn)− 〈∇f (xn) , v − xn〉]
= f (u)− f (v) + 〈∇f (xn) , v − u〉

and therefore
lim

n→+∞
〈∇f (xn) , v − u〉

exists. Since u and v are weak subsequential limit of {xn}n∈N, there are subsequences
{xnk
}k∈N and {xnm}m∈N of {xn}n∈N such that xnk

⇀ u and xnm ⇀ v. Since ∇f is

weakly sequentially continuous, we know that ∇f (xnk
)
∗
⇀ ∇f (u) and ∇f (xnm)

∗
⇀

∇f (v). Thus

〈∇f (u) , v − u〉 = lim
k→+∞

〈∇f (xnk
) , v − u〉 = lim

n→+∞
〈∇f (xn) , v − u〉

= lim
m→+∞

〈∇f (xnm) , v − u〉 = 〈∇f (v) , v − u〉 .

Hence 〈∇f (v)−∇f (u) , v − u〉 = 0, which implies that u = v because f is strictly
convex.

Proposition 10 (Boundedness Property). Let f : X → (−∞,+∞] be a Leg-
endre function such that ∇f ∗ is bounded on bounded subsets of int dom f ∗. Let
x ∈ int dom f . If {Df (x, xn)}n∈N is bounded, so is the sequence {xn}n∈N.

14



Proof. Let β be an upper bound of the sequence {Df (x, xn)}n∈N. Then from the
definition of W f (see (10)) we obtain that

f (x)− 〈∇f (xn) , x〉+ f ∗ (∇f (xn)) = W f (∇f (xn) , x) = Df (x, xn) ≤ β.

This implies that the sequence {∇f (xn)}n∈N is contained in the sublevel set,

levψ≤ (β − f (x)), of the function ψ = f ∗ − 〈·, x〉. Since the function f ∗ is proper
and lower semicontinuous, an application of the Moreau-Rockafellar Theorem (see
[2, Fact 3.1, p. 623]) shows that ψ is coercive. Consequently, all sublevel sets
of ψ are bounded. Hence the sequence {∇f (xn)}n∈N is bounded. By hypothesis,
∇f ∗ is bounded on bounded subsets of int dom f ∗. Therefore the sequence xn =
∇f ∗ (∇f (xn)), n ∈ N, is bounded too, as claimed.

Definition 9 (Asymptotic regularity). An operator T : K → K is called asymptot-
ically regular if, for any x ∈ K, we have

lim
n→∞

∥∥T n+1x− T nx
∥∥ = 0. (33)

In the following result we prove that any BSNE operator is asymptotically regular.

Proposition 11 (BSNE operators are asymptotically regular). Assume that f :
X → (−∞,+∞] is a Legendre function which is totally convex on bounded subsets
of int dom f and assume that ∇f ∗ is bounded on bounded subsets of int dom f ∗. Let
K be a nonempty, closed and convex subset of int dom f . Let T be a strongly (weakly)

BSNE operator from K into itself such that F̂ix (T ) 6= ∅ (Fix (T ) 6= ∅). Then T is
asymptotically regular.

Proof. Assume that T is strongly BSNE. Let u ∈ F̂ix (T ) and let x ∈ K. From (19)
we get that

Df

(
u, T n+1x

)
≤ Df (u, T nx) ≤ . . . ≤ Df (u, Tx) .

Thus limn→∞Df (u, T nx) exists and the sequence {Df (u, T nx)}n∈N is bounded. Now
Proposition 10 implies that {T nx}n∈N is also bounded for any x ∈ K. Since the limit
limn→∞Df (u, T nx) exists, we have

lim
n→∞

(
Df (u, T nx)−Df

(
u, T n+1x

))
= 0.

From (20) and (21) we get

lim
n→∞

Df

(
T n+1x, T nx

)
= 0.
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Since {T nx}n∈N is bounded, we now obtain from Proposition 7 that

lim
n→∞

∥∥T n+1x− T nx
∥∥ = 0.

In other words, T is asymptotically regular. The proof when T is weakly BSNE is
identical when we take u ∈ Fix (T ).

Remark 6. From the proof of Proposition 11 we see that Proposition 6 can be
improved for strongly BSNE operators since the result remains true if the assumption
Fix (T ) 6= ∅ is replaced by the assumption F̂ix (T ) 6= ∅. ♦

4 Picard Iterations for Bregman Nonexpansive

Operators

The main result in this section is the following one.

Theorem 1 (Picard Iteration). Let f : X → (−∞,+∞] be a Legendre function such
that ∇f ∗ is bounded on bounded subsets of int dom f ∗. Let K be a nonempty, closed
and convex subset of int dom f and let T : K → K be a strongly QBNE operator.
Then the following assertions hold:

(i) if F̂ix (T ) is nonempty, then {T nx}n∈N is bounded for each x ∈ K;

(ii) if, furthermore, T is asymptotically regular, then, for each x ∈ K, any weak

subsequential limit of {T nx}n∈N belongs to F̂ix (T );

(iii) if, furthermore, ∇f is weakly sequentially continuous, then {T nx}n∈N converges

weakly to an element in F̂ix (T ) for each x ∈ K.

Proof. (i) See Proposition 6 and Remark 6.

(ii) Since {T nx}n∈N is bounded (by point (i)), there is a subsequence {T nkx}k∈N
which converges weakly to some u. Define xn = T nx for any n ∈ N. Since T is
asymptotically regular, it follows from (33) that xn − Txn → 0. Therefore we

have xnk
⇀ u and xnk

− Txnk
→ 0, which means that u ∈ F̂ix (T ).

(iii) From point (ii) and since T is strongly QBNE, we already know that the limit
limn→∞Df (u, T nx) exists for any weak limit u of the sequence {T nx}n∈N. The
result now follows immediately from Proposition 9.
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Corollary 1. Let f : X → (−∞,+∞] be a Legendre function which is totally
convex on bounded subsets of X. Suppose that ∇f is weakly sequentially continuous
and ∇f ∗ is bounded on bounded subsets of int dom f ∗. Let K be a nonempty, closed
and convex subset of int dom f . Let T : K → K be a BSNE operator with respect to
Fix (T ) = F̂ix (T ) 6= ∅. Then {T nx}n∈N converges weakly to an element in Fix (T )
for each x ∈ K.

Proof. The result follows immediately from Theorem 1 and Proposition 11.

Remark 7. If Fix (T ) 6= F̂ix (T ), but F̂ix (T ) 6= ∅, then we only know that, for a

strongly BSNE operator T , {T nx}n∈N converges weakly to an element in F̂ix (T ) for
each x ∈ K. This result was previously proved in [28, Lemma 4, p. 315] under
somewhat different assumptions. ♦

Remark 8. Let f : X → R be a uniformly Fréchet differentiable function which
is bounded on bounded subsets of X. From Proposition 5 and Corollary 1 we get
that Theorem 1 holds for BFNE operators. It is well known that in Hilbert spaces,
Picard iterations of firmly nonexpansive operators converge weakly to a fixed point
of the operator (see, for instance, [21]). ♦

Remark 9 (Common fixed point - Composition case). Let f : X → (−∞,+∞] be
a Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of X. Suppose that ∇f is weakly sequentially continuous
and ∇f ∗ is bounded on bounded subsets of int dom f ∗. Let K be a nonempty, closed
and convex subset of int dom f .

Let {Ti : 1 ≤ i ≤ N} beN BSNE operators with respect to F̂ix (Ti) = Fix (Ti) 6= ∅
for each 1 ≤ i ≤ N and let T = TNTN−1 · · ·T1. From Proposition 4 and Remark 4
we obtain that if

⋂
{Fix (Ti) : 1 ≤ i ≤ N} 6= ∅, then T is also strongly BSNE with

respect to F̂ix (T ) = Fix (T ) =
⋂
{Fix (Ti) : 1 ≤ i ≤ N}.

From Theorem 1 we now get that {T nx}n∈N converges weakly to a common fixed
point of the family of strongly BSNE operators. Similarly, if we just assume that each
Ti is strongly BSNE, 1 ≤ i ≤ N , with F̂ix (Ti) 6= ∅, then we get weak convergence of
the sequence {T nx}n∈N to a common asymptotic fixed point. ♦

5 Mann Iterations for Bregman Nonexpansive

Operators

In the following theorem we study a different iterative method, which is defined by
using convex combinations with respect to the convex function f , a concept which
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was first introduced in [16].

Theorem 2 (Mann Iteration). Let T : X → X be a strongly BSNE operator with

F̂ix (T ) 6= ∅. Let f : X → R be a Legendre function which is totally convex on
bounded subsets of X. Suppose that ∇f is weakly sequentially continuous and ∇f ∗
is bounded on bounded subsets of int dom f ∗. Let {xn}n∈N be the sequence generated
by the iterative scheme

xn+1 = ∇f ∗ (αn∇f (xn) + (1− αn)∇f (Txn)) , (34)

where {αn}n∈N ⊂ [0, 1] satisfies lim supn→∞ αn < 1. Then, for each x0 ∈ X, the

sequence {xn}n∈N converges weakly to a point in F̂ix (T ).

Proof. We divide the proof into 3 steps.

Step 1. The sequence {xn}n∈N is bounded.

Let p ∈ F̂ix (T ). From Proposition 1(i), (ii) and (19) we have for all n ∈ N,

Df (p, xn+1) = Df (p,∇f ∗ (αn∇f (xn) + (1− αn)∇f (Txn)))

= W f (αn∇f (xn) + (1− αn)∇f (Txn) , p)

≤ αnW
f (∇f (xn) , p) + (1− αn)W f (∇f (Txn) , p)

= αnDf (p, xn) + (1− αn)Df (p, Txn)

≤ αnDf (p, xn) + (1− αn)Df (p, xn)

= Df (p, xn) . (35)

This shows that the nonnegative sequence {Df (p, xn)}n∈N is decreasing, thus bounded,
and limn→∞Df (p, xn) exists. From Proposition 10 we obtain that {xn}n∈N is bounded,
as claimed.

Step 2. Every weak subsequential limit of {xn}n∈N belongs to F̂ix (T ).

For any p ∈ F̂ix (T ) we have by the first inequality of (35),

Df (p, xn+1) ≤ Df (p, xn) + (1− αn) (Df (p, Txn)−Df (p, xn)) .

Hence
(1− αn) (Df (p, xn)−Df (p, Txn)) ≤ Df (p, xn)−Df (p, xn+1) (36)

for all n ∈ N. We already know that limn→∞Df (p, xn) exists. Since lim supn→∞ αn <
1, it follows that

lim
n→∞

(Df (p, xn)−Df (p, Txn)) = 0.
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Now, since T is strongly BSNE and p ∈ F̂ix (T ), we obtain

lim
n→∞

Df (Txn, xn) = 0.

Since {xn}n∈N is bounded, Proposition 7 implies that

lim
n→∞

‖Txn − xn‖ = 0.

Therefore, if there is a subsequence {xnk
}k∈N of {xn}n∈N which converges weakly to

some v ∈ X as k → +∞, then v ∈ F̂ix (T ).

Step 3. The sequence {xn}n∈N converges weakly to a point in F̂ix (T ).
Since ∇f is weakly sequentially continuous, the result follows immediately from

Proposition 9 since limn→∞Df (u, xn) exists for any weak subsequential limit u of
the sequence {xn}n∈N by Step 2.

Corollary 2. Let T : X → X be a BSNE operator with respect to Fix (T ) =

F̂ix (T ) 6= ∅. Let f : X → R be a Legendre function which is totally convex on
bounded subsets of X. Suppose that ∇f is weakly sequentially continuous and ∇f ∗
is bounded on bounded subsets of int dom f ∗. Let {xn}n∈N be the sequence generated
by (34), where {αn}n∈N ⊂ [0, 1] satisfies lim supn→∞ αn < 1. Then, for each x0 ∈ X,
the sequence {xn}n∈N converges weakly to a point in Fix (T ).

Remark 10. When f = (1/2) ‖·‖2 and X is a Hilbert space, since both ∇f and ∇f ∗
are the identity operator, the iterative scheme (34) coincides with the Mann iteration
the weak convergence of which for nonexpansive mappings is well known, even in
more general Banach spaces, under the assumption that

∑
n∈N αn (1− αn) =∞ (see

[27]).

Remark 11 (Common fixed point - Composition case). Let f : X → R be a
Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of X. Suppose that ∇f is weakly sequentially continuous
and ∇f ∗ is bounded on bounded subsets of int dom f ∗.

Let {Ti : 1 ≤ i ≤ N} beN BSNE operators with respect to F̂ix (Ti) = Fix (Ti) 6= ∅
for each 1 ≤ i ≤ N and let T = TNTN−1 · · ·T1. Then from Proposition 4 and Remark
4 we obtain that, if

⋂
{Fix (Ti) : 1 ≤ i ≤ N} 6= ∅, T is also BSNE with respect to

F̂ix (T ) = Fix (T ) =
⋂
{Fix (Ti) : 1 ≤ i ≤ N}.

Now combining Theorem 2, Proposition 3 and (31), we get that the sequence
{xn}n∈N generated by (34) converges weakly to an element in

⋂
{Fix (Ti) : 1 ≤ i ≤ N}

for each x ∈ X.
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In the case where each Ti is strongly BSNE with F̂ix (Ti) 6= ∅, the sequence
{xn}n∈N weakly converges to a common asymptotic fixed point of the family
{Ti : 1 ≤ i ≤ N} whenever such a point exists. ♦

6 Block Iterative Algorithms

We begin this section with three simple observations which are essential for our later
study of the block operator.

Lemma 1. Let f : X → (−∞,+∞] be a Legendre function and let {ti}Ni=1 ⊂ (0, 1)

satisfy
∑N

i=1 ti = 1. Let {xi}Ni=1 be a subset of X and assume that

f

(
N∑
i=1

tixi

)
=

N∑
i=1

tif (xi) . (37)

Then x1 = x2 = . . . = xN .

Proof. If xk 6= xl for some k, l ∈ {1, 2, . . . , N}, then from the strict convexity of f
we get

f

(
tk

tk + tl
xk +

tl
tk + tl

xl

)
<

tk
tk + tl

f (xk) +
tl

tk + tl
f (xl) .

Using this inequality, we obtain

f

(
N∑
i=1

tixi

)
= f

(
(tk + tl)

(
tk

tk + tl
xk +

tl
tk + tl

xl

)
+
∑
i 6=k,l

tixi

)

≤ (tk + tl) f

(
tk

tk + tl
xk +

tl
tk + tl

xl

)
+
∑
i 6=k,l

tif (xi)

< (tk + tl)

(
tk

tk + tl
f (xk) +

tl
tk + tl

f (xl)

)
+
∑
i 6=k,l

tif (xi)

=
N∑
i=1

tif (xi) .

This contradicts assumption (37).

As a direct consequence of Lemma 1 we have the following result.
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Corollary 3. Let f : X → (−∞,+∞] be a Legendre function and let {ti}Ni=1 ⊂ (0, 1)

satisfy
∑N

i=1 ti = 1. Let {ξi}Ni=1 be a finite subset of X∗ and assume that

f ∗

(
N∑
i=1

tiξi

)
=

N∑
i=1

tif
∗ (ξi) .

Then ξ1 = ξ2 = . . . = ξN .

Proof. Since the function f is Legendre, its conjugate f ∗ is also Legendre. Thus the
result follows immediately from Lemma 1.

The following lemma concerns the Bregman distance.

Lemma 2. Let f : X → (−∞,+∞] be a Legendre function and let {ti}Ni=1 ⊂ (0, 1)

satisfy
∑N

i=1 ti = 1. Let z ∈ X. Let {xi}Ni=1 be a finite subset of X and assume that

Df

(
z,∇f ∗

(
N∑
i=1

ti∇f (xi)

))
=

N∑
i=1

tiDf (z, xi) . (38)

Then x1 = x2 = . . . = xN .

Proof. Equality (38) can be reformulated as follows:

Df

(
z,∇f ∗

(
N∑
i=1

ti∇f (xi)

))
= W f

(
N∑
i=1

ti∇f (xi) , z

)
=

N∑
i=1

tiDf (z, xi) .

Now from the definition of W f (see (10)) and the definition of the Bregman distance
(see (9)) we get

N∑
i=1

ti (f (z)− f (xi)− 〈∇f (xi) , z − xi〉) = f (z) + f ∗

(
N∑
i=1

ti∇f (xi)

)

−

〈
N∑
i=1

ti∇f (xi) , z

〉
.

Thus

f ∗

(
N∑
i=1

ti∇f (xi)

)
=

N∑
i=1

ti (〈∇f (xi) , xi〉 − f (xi)) .
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Since f (xi) + f ∗ (∇f (xi)) = 〈∇f (xi) , xi〉 for any 1 ≤ i ≤ N , we obtain

f ∗

(
N∑
i=1

ti∇f (xi)

)
=

N∑
i=1

tif
∗ (∇f (xi)) .

Corollary 3 now implies that x1 = x2 = . . . = xN , as claimed.

Definition 10 (Block operator). Let {Ti : 1 ≤ i ≤ N} be N operators from X to X
and let {wi}Ni=1 ⊂ (0, 1) satisfy

∑N
i=1wi = 1. Then the block operator corresponding

to {Ti : 1 ≤ i ≤ N} and {wi : 1 ≤ i ≤ N} is defined by

TB := ∇f ∗
(

N∑
i=1

wi∇f (Ti)

)
. (39)

Remark 12. The following inequality will be essential in our next result:

Df (p, TBx) = Df

(
p,∇f ∗

(
N∑
i=1

wi∇f (Tix)

))
= W f

(
N∑
i=1

wi∇f (Tix) , p

)

≤
N∑
i=1

wiW
f (∇f (Tix) , p) =

N∑
i=1

wiDf (p, Tix) . (40)

It follows from Proposition 1(i),(ii). ♦

In our next result we prove that the block operator defined by (39) is weakly
QBNE when each Ti, 1 ≤ i ≤ N , is weakly QBNE.

Proposition 12 (Block operator of weakly QBNE operators). Assume that f :
X → (−∞,+∞] is a Legendre function and let {Ti : 1 ≤ i ≤ N} be N weakly QBNE
operators from X into X such that F =

⋂
{Fix (Ti) : 1 ≤ i ≤ N} 6= ∅. Let {wi}Ni=1 ⊂

(0, 1) satisfy
∑N

i=1wi = 1. Then TB is weakly QBNE with respect to F = Fix (TB).

Proof. Let p ∈ F . Since each Ti, i = 1, . . . , N , is QBNE, we obtain from (40) that

Df (p, TBx) ≤
N∑
i=1

wiDf (p, Tix) ≤
N∑
i=1

wiDf (p, x) = Df (p, x) (41)

for all x ∈ X. Thus TB is a QBNE operator with respect to F . Next we will show
that Fix (TB) = F .
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The inclusion F ⊂ Fix (TB) is obvious, so it is enough to show that Fix (TB) ⊂ F .
To this end, let u ∈ Fix (TB) and k ∈ {1, 2, . . . , N}. For p ∈ F , such that p 6= u, we
obtain from (40) that

Df (p, u) = Df (p, TBu) ≤
N∑
i=1

wiDf (p, Tiu) ≤
∑
i 6=k

wiDf (p, u) + wkDf (p, Tku) .

Therefore

wkDf (p, u) =

(
1−

∑
i 6=k

wi

)
Df (p, u) ≤ wkDf (p, Tku) ,

that is,
wkDf (p, u) ≤ wkDf (p, Tku) .

Since wk > 0, it follows that Df (p, u) ≤ Df (p, Tku). On the other hand, since Tk
is weakly QBNE and p ∈ F ⊂ Fix (Tk), we have Df (p, Tku) ≤ Df (p, u). Thus
Df (p, u) = Df (p, Tku) for all k ∈ {1, 2, . . . , N}. Hence

Df

(
p,∇f ∗

(
N∑
i=1

wi∇f (Tiu)

))
= Df (p, TBu) = Df (p, u) =

N∑
i=1

wiDf (p, Tiu) .

(42)
Now Lemma 2 implies that T1u = T2u = . . . = Tnu. Therefore u ∈ F .

Proposition 13 (Asymptotic fixed points of block operators). Let f : X → R be
a Legendre function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of X. If each Ti, i = 1, . . . , N , is a strongly BSNE
operator from X into itself, and the set

F̂ :=
⋂{

F̂ix (Ti) : 1 ≤ i ≤ N
}

is not empty, then F̂ix (TB) ⊂ F̂ .

Proof. Let u ∈ F̂ and let x ∈ F̂ix (TB). Then there exists a sequence {xn}n∈N which
converges weakly to x such that limn→∞ (xn − TBxn) = 0. Since the function f is
bounded on bounded subsets of X, ∇f is also bounded on bounded subsets of X (see
[12, Proposition 1.1.11, p. 17]). So the sequences {xn}n∈N and {∇f (TBxn)}n∈N are
bounded. Since f is also uniformly Fréchet differentiable, it is uniformly continuous
on bounded subsets of X and therefore

lim
n→∞

(f (TBxn)− f (xn)) = 0. (43)
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In addition, by Proposition 8 we obtain that ∇f is also uniformly continuous on
bounded subsets of X and thus

lim
n→∞

(∇f (TBxn)−∇f (xn)) = 0. (44)

From the definition of the Bregman distance (see (9)) we obtain that

Df (u, xn)−Df (u, TBxn) = [f (u)− f (xn)− 〈∇f (xn) , u− xn〉]
− [f (u)− f (TBxn)− 〈∇f (TBxn) , u− TBxn〉]
= f (TBxn)− f (xn)− 〈∇f (xn) , u− xn〉
+ 〈∇f (TBxn) , u− TBxn〉
= f (TBxn)− f (xn)− 〈∇f (xn)−∇f (TBxn) , u− xn〉
+ 〈∇f (TBxn) , xn − TBxn〉 .

Combining the facts that {xn}n∈N and {∇f (TB(xn))}n∈N are bounded, (43) and (44),
we obtain that

lim
n→∞

(Df (u, xn)−Df (u, TBxn)) = 0. (45)

Since each operator Ti, i = 1, . . . , N , is strongly BSNE, we deduce from (19) and
(40) that for any k = 1, . . . , N ,

Df (u, TBxn) ≤
N∑
i=1

wiDf (u, Tixn) = wkDf (u, Tkxn) +
∑
i 6=k

wiDf (u, Tixn)

≤ wkDf (u, Tkxn) +
∑
i 6=k

wiDf (u, xn)

= wkDf (u, Tkxn) + (1− wk)Df (u, xn)

= wk (Df (u, Tkxn)−Df (u, xn)) +Df (u, xn) . (46)

Hence for any k ∈ {1, . . . , N}, we have

lim
n→∞

wk (Df (u, xn)−Df (u, Tkxn)) ≤ lim
n→∞

(Df (u, xn)−Df (u, TBxn)) = 0.

Thence
lim
n→∞

(Df (u, xn)−Df (u, Tkxn)) = 0

for any k ∈ {1, . . . , N}. Since each operator Ti, i = 1, . . . , N , is strongly BSNE, we
get from (20) and (21) that

lim
n→∞

Df (Tixn, xn) = 0.
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Since f is totally convex and {xn}n∈N is bounded, it follows from Proposition 7 that

lim
n→∞

(Tixn − xn) = 0.

This means that x belongs to F̂ix (Ti) because we also know that xn ⇀ x. Therefore

x ∈ F̂ , which proves that F̂ix (TB) ⊂ F̂ , as claimed.

Proposition 14 (Block operator of strongly BSNE operators). Let f : X → R be
a Legendre function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of X. Assume that ∇f ∗ is bounded on bounded subsets of
int dom f ∗. If each Ti, i = 1, . . . , N , is a strongly BSNE operator from X into itself,
and the sets

F̂ :=
⋂{

F̂ix (Ti) : 1 ≤ i ≤ N
}

and F̂ix (TB) are not empty, then TB is also strongly BSNE.

Proof. If u ∈ F̂ix (TB), then u ∈ F̂ by Proposition 13. Therefore the fact that each

Ti, i = 1, . . . , N , is strongly BSNE, with respect to F̂ix (Ti), implies that (19) holds
for TB and any x ∈ X.

Now we assume that there exists a bounded sequence {xn}n∈N in X such that

lim
n→∞

(Df (u, xn)−Df (u, TBxn)) = 0

and therefore, as we proved in Proposition 13, we get

lim
n→∞

(Df (u, xn)−Df (u, Tixn)) = 0

for any i ∈ {1, . . . , N}. Since each Ti, i = 1, . . . , N , is strongly BSNE and u ∈
F̂ix (TB) ⊂ F̂ix (Ti), it follows from (20) and (21) that

lim
n→∞

Df (Tixn, xn) = 0.

Since f is totally convex and {xn}n∈N is bounded, it follows from Proposition 7 that

lim
n→∞

(Tixn − xn) = 0.

Since f is uniformly Fréchet differentiable, it follows from Proposition 8 that ∇f is
uniformly continuous on bounded subsets of X and thus

lim
n→∞

(∇f (Tixn)−∇f (xn)) = 0.
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By the definition of the block operator (see (39)), we have

∇f (TBxn)−∇f (xn) =
N∑
i=1

wi (∇f (Tixn)−∇f (xn))

and therefore
lim
n→∞

(∇f (TBxn)−∇f (xn)) = 0. (47)

On the other hand, from the definition of the Bregman distance (see (9)) we obtain
that

Df (TBxn, xn) +Df (xn, TBxn) = 〈∇f (TBxn)−∇f (xn) , TBxn − xn〉 . (48)

Note that each sequence {Tixn}n∈N, i = 1, . . . , N , is bounded because so is the
sequence {xn}n∈N and limn→∞ (Tixn − xn) = 0. Since ∇f and ∇f ∗ are bounded
on bounded subsets of X and int dom f ∗, respectively, it follows that {TBxn}n∈N is
bounded too. Thence, combining (47) and (48), we deduce that

lim
n→∞

(Df (TBxn, xn) +Df (xn, TBxn)) = 0.

Therefore
lim
n→∞

Df (TBxn, xn) = 0.

This means that (20) implies (21) for TB and this proves that TB is BSNE, as
required.

Proposition 15 (Block operator of weakly BSNE operators). Let f : X → R be
a Legendre function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of X. Assume that ∇f ∗ is bounded on bounded subsets of
int dom f ∗. If each Ti, i = 1, . . . , N , is a weakly BSNE operators from X into itself,
and the set

F :=
⋂
{Fix (Ti) : 1 ≤ i ≤ N}

is not empty, then TB is also weakly BSNE and F = Fix (TB).

Proof. On the one hand, since each Ti is weakly BSNE, it is weakly QBNE. Then
the fact that F 6= ∅ makes it possible to apply Proposition 12 so that F = Fix (TB)
and TB is weakly QBNE, that is, it satisfies inequality (19) for any p ∈ Fix (TB).

On the other hand, given a bounded sequence such that, for any u ∈ Fix (TB),

lim
n→∞

(Df (u, xn)−Df (u, TBxn)) = 0,
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analogously to the argument used in Proposition 14, one is able to deduce that

lim
n→∞

Df (TBxn, xn) = 0.

Thus TB is indeed weakly BSNE, as asserted.

As a consequence of the previous results, we now see that Picard and Mann
iterations provide convergent iterative methods for approximating common fixed
points of a finite family of BSNE operators.

Remark 13 (Common fixed point - Block iterative algorithm). Let f : X →
(−∞,+∞] be a Legendre function which is bounded, uniformly Fréchet differen-
tiable and totally convex on bounded subsets of X. Suppose that ∇f is weakly
sequentially continuous and ∇f ∗ is bounded on bounded subsets of int dom f ∗.

Let {Ti : 1 ≤ i ≤ N} beN BSNE operators with respect to F̂ix (Ti) = Fix (Ti) 6= ∅
and let TB be the block operator defined by (39). If F :=

⋂
{Fix (Ti) : 1 ≤ i ≤ N}

and Fix (TB) are nonempty, then from Propositions 14 we know that TB is strongly
BSNE. Furthermore, from Proposition 13 we get that

Fix (TB) ⊂ F̂ix (TB) ⊂ F ⊂ Fix (TB) ,

which implies that F̂ix (TB) = Fix (TB) 6= ∅.
Therefore, both Theorem 1 and Theorem 2 apply to guarantee the weak conver-

gence of the sequences {T nBx} and {xn}n∈N, generated by Algorithm (34), under the
appropriate conditions. ♦
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