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Abstract

This dissertation concerns iterative methods for solving diverse optimiza-
tion problems in infinite-dimensional and Euclidean spaces. It contains six
chapters. My contributions to the fields of Optimization Theory, Nonlinear
Analysis and Numerical Methods are interpreted on the broad spectrum
between practical methods for solving real-world problems to iterative al-
gorithms for approximating solutions of optimization problems in infinite-
dimensional spaces.

The first five chapters of this dissertation focus on my research in the
infinite-dimensional case. The iterative methods proposed in the third chap-
ter are based on several results in Fixed Point Theory and Convex Analysis
which were obtained in the first two chapters. We first studied new prop-
erties of Bregman distances with respect to two classes of convex functions:
Legendre functions and totally convex functions. These developments lead
to many results regarding fixed points of nonexpansive operators which are
defined with respect to Bregman distances instead of the norm. We deal
with a wide variety of optimization problems such as fixed point problems,
equilibrium problems, minimization problems, variational inequalities and
the convex feasibility problem. The fourth chapter is devoted to a long and
detailed study of the problem of finding zeroes of monotone mappings. In
this area we wish to develop iterative methods which generate approxima-
tion sequences which converge strongly to a zero.

My research in finite-dimensional spaces appears in the last but not the
least chapter and deals with developing an algorithm for solving optimiza-
tion problems which arise from real-world applications. We developed a new
numerical method for finding minimum norm solutions of convex optimiza-
tion problems. This algorithm is the first attempt to solve such problems
directly and not by solving a “sequence” of subproblems.
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Introduction

Many problems arising in different areas of Mathematics, such as Convex
Analysis, Variational Analysis, Optimization, Monotone Mapping Theory
and Differential Equations, can be modeled by the problem

r="Tx,

where T is a nonlinear operator defined on a metric space. Solutions to this
equation are called fixed points of T'. If T"is a strict contraction defined on a
complete metric space X, Banach’s contraction principle establishes that T'
has a unique fixed point and for any z € X, the sequence of Picard iterates
{T"x}, . strongly converges to the unique fixed point of 7. However, if the
operators 1" is a nonexpansive operator, that is,

d(TxaTy) < d(IC,y), vxvyEXv

then we must assume additional conditions on 7" and/or on the underlying
space to ensure the existence of fixed points. Since the sixties, the study
of the class of nonexpansive operators is one of the major and most active
research areas of nonlinear analysis. This is due to the connection with the
geometry of Banach spaces along with the relevance of these operators to the
theory of monotone and accretive mappings. The concepts of monotonicity
and accretivity have turned out to be very powerful in diverse fields such as
Operator Theory, Numerical Analysis, Differentiability of Convex Functions
and Partial Differential Equations; see, for instance, [47, 50, [77, 113]. In
particular, one of the reasons is that the class of monotone mappings is broad
enough to cover subdifferentials of proper, convex and lower semicontinuous
functions, which are mappings of increasing importance in Optimization
Theory.

The relationship in Hilbert spaces between the Theory of Monotone Map-
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pings and the Theory of Nonexpansive Operators is basically determined by
two facts: (1) if T is a nonexpansive operator, then the complementary
operator I — T is monotone and (2) the classical resolvent, (I + A)™", of a
monotone mapping A is nonexpansive. Moreover, in both cases the fixed
point set of the nonexpansive operator coincides with the zero set of the
monotone mapping. See [L1] for a detailed study of these two concepts.

In this dissertation you will find results concerning these connections in
general reflexive Banach spaces. The first chapter is a collection of several
notions, definitions and basic results needed in the whole work. This chap-
ter mainly concentrates on functions, operators and mappings. The rest
of the work includes five more chapters. The second chapter is devoted to
results on Bregman distances and on “nonexpansive” operators with respect
to Bregman distances. The next chapter uses the tools and the new devel-
opments to propose and study several iterative methods for approximating
fixed points of such operators which are based on the Picard iteration. The
fourth chapter deals with the very related area of the Theory of Mono-
tone Mappings. We propose and study iterative methods for approximating
zeroes of monotone mappings. Taking into account the iterative methods
proposed in the third and the fourth chapters, we modified them for solving
diverse optimization problems, such as variational inequalities, equilibrium
problems and convex feasibility problems. All these four chapters are formu-
lated in the general context of infinite-dimensional reflexive Banach spaces.
The last, but not the least, chapter is the most practical aspect of this work.
We took one of the algorithms proposed in the previous chapters and mod-
ified it to solve the problem of finding minimal norm solutions of convex
optimization problems.

Let me briefly describe these chapters.

Chapter 2 - Fixed Point Properties of Bregman Nonexpansive
Operators

In 2003, Bauschke, Borwein and Combettes [§] first introduced the class of
Bregman firmly nonexpansive (BFNE) operators which is a generalization of
the classical firmly nonexpansive operators (FNE). A few years before Reich
studied the class of Bregman strongly nonexpansive (BSNE) operators in
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the case of common fixed points. Many other researchers studied several
other classes of operators of Bregman nonexpansive type. Very recently,
in several projects we studied in depth these operators from the aspects of
Fixed Point Theory. The results obtained in this chapter bring out new tools
and techniques which are used by us and many other researchers, to develop
iterative methods for approximating fixed points of operators of Bregman
nonexpansive type.

In [91] we studied the existence and approximation of fixed points of Breg-
man firmly nonexpansive operators in reflexive Banach spaces. In this paper
we first obtained necessary and sufficient conditions for BEFNE operators to
have a (common) fixed point. We also found under which conditions the
asymptotic fixed point set of BEFNE operators coincides with the fixed point
set (demi-closedness principle). The concept of asymptotic fixed points was
first introduced in [88] and plays a key role in analyzing iterative methods.
In practice, it is much easier to prove convergence to an asymptotic fixed
point than to a fixed point and therefore we were motivated to determine
when and under what conditions these two sets coincide.

Motivated by this work and during my visit to CARMA, we collaborated
with Jonathan M. Borwein and found a characterization of BFNE opera-
tors in general reflexive Banach spaces. This characterization allows one to
construct many Bregman firmly nonexpansive operators explicitly. We also
provided several examples of such operators with respect to two important
Bregman functions: the Boltzmann-Shannon entropy and the Fermi-Dirac
entropy in Fuclidean spaces. We have studied these entropies in detail be-
cause of their importance in applications. These two entropies form a large
part of the basis for classical Information Theory.

Then after a visit to the University of Seville we collaborated with Vic-
toria Martin-Marquez and continued our research on certain Bregman non-
expansive classes of operators. We mainly put forward a clear picture of
the existence and approximation of their (asymptotic) fixed points. In par-
ticular, the asymptotic behavior of Picard and Mann type iterations are
discussed for quasi-Bregman nonexpansive (QBNE) operators. We also pre-
sented parallel algorithms for approximating common fixed points of a finite
family of Bregman strongly nonexpansive operators by means of a block op-
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erator which preserves the Bregman strong nonexpansivity.

Chapter 3 - Iterative Methods for Approximating Fixed Points

Fixed point iterative methods started with the celebrated Picard method
and were further developed for computing and constructing fixed points of
various types of nonexpansive operators and in various types of topologies
and spaces (for instance, weak /strong, Hilbert/Banach and metric/normed).
We have been mostly interested in such methods in general reflexive Banach
spaces for operators of Bregman nonexpansive type. In addition, several of
our algorithms are new even in the framework of Hilbert spaces and of Eu-
clidean spaces. Our main motivation was, and still is, to develop iterative
methods which generate a strongly convergent sequence. The importance
of strong convergence over weak convergence plays a key role in applica-
tions and as a result, many researchers are motivated to develop strongly
convergent iterative methods, even under stronger conditions.

In this chapter we propose several variants of the classical Picard method
for operators of Bregman nonexpansive type. In 2010 we studied the con-
vergence of two iterative algorithms for finding fixed points of Bregman
strongly nonexpansive operators in reflexive Banach spaces. Both algo-
rithms take into account possible computational errors and we established
two strong convergence results. In these methods we calculate the value of
the operator at the current point and, in contrast with the Picard iterative
method, the next iteration is the Bregman projection onto the intersection
of two half-spaces which contain the solution set. These two algorithms are
more complicated than the Picard method because of the additional projec-
tion step, but on the other hand, they generate a sequence which converges
strongly to a certain fixed point (the operator may have many fixed points).
Another advantage of these algorithms is the nature of the limit point, which
is not only a fixed point, but the one which is closest to the initial starting
point of the algorithm with respect to the Bregman distance.

These algorithms are proposed for finding common fixed points of finitely
many operators. In this case one seeks to find the Bregman projection onto
the intersection of N + 1 half-spaces (N is the number of operators). The
motivation for studying such common fixed-point problems with N > 1
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stems from the simple observation that this is a generalization of the well-
known Convex Feasibility Problem (CFP).

A few months later we proposed in [93] a projection method for solving the
common fixed point problem of N Bregman firmly nonexpansive operators.
In this paper there is an algorithm which is based on the shrinking projection
method. The advantage of this method is that the number of subsets onto
which we project in every step is IV (not N+1 as in the previous algorithms).
But these subsets are not necessarily half-spaces as in the previous case.

Chapter 4 - Iterative Methods for Approximating Zeroes

In this chapter we are concerned with the problem of finding zeroes of map-
pings A : X — 2% that is, finding # € dom A such that

0" e Ax. (0.0.1)

Many problems have reformulations which require us to find zeroes, for
instance, differential equations, evolution equations, complementarity prob-
lems, mini-max problems, variational inequalities and optimization prob-
lems. It is well known that minimizing a convex function f can be reduced
to finding zeroes of the corresponding subdifferential mapping A = 0f.

One of the most important techniques for solving the inclusion ((0.0.1))
goes back to the work of Browder [29] in the sixties. One of the basic ideas
in the case of a Hilbert space H is reducing to a fixed point problem
for the operator Ry : H — 2™ defined by

Ryi=(T+A)7",

which we call in what follows the classical resolvent of A. When H is a
Hilbert space and A satisfies some monotonicity conditions, the classical
resolvent of A is with full domain and nonexpansive, that is,

|[Raz — Ray| < llz —y| Yo,y e™,
and even firmly nonexpansive, that is,

|Raz — Ray|* < (Rax — Ray,x — y) Yo,y e H.
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These properties of the resolvent ensure that its Picard iterates x, .1 = Rax,
converge weakly, and sometimes even strongly, to a fixed point of R4, which
is necessarily a zero of A. Rockafellar introduced this iteration method and
called it the Proximal Point Algorithm (see [100, 10T]).

Methods for finding zeroes of monotone mappings in Hilbert space are
based on the good properties of the resolvent R4 such as nonexpansivity,
but when we try to extend these methods to Banach spaces we encounter
several difficulties (see, for example, [41]).

One way to overcome these difficulties is to use, instead of the classi-
cal resolvent, a new type of resolvent: the f-resolvent first introduced by
Teboulle [108] in 1992 for the subdifferential mapping case and one year
later by Eckstein [51] for a general monotone mapping (see also [46, 88, [§]).
If f: X - (-0, +0] is a Legendre function, then the operator Resf1 X -
2X given by

Res!, = (Vf+A) o VS (0.0.2)

is well defined when A is maximal monotone and int dom f{Jdom A # (.
Moreover, similarly to the classical resolvent, a fixed point of Resff1 is a
solution of . This leads to the question whether, and under what
conditions on A and f, the iterates of Resﬁ approximate a fixed point of
Res;’;.

In order to modify the proximal point algorithm for the new resolvent and
prove the convergence of the iterates of Resf;, we need the nonexpansivity
properties of this resolvent (the theory of which we develop in Chapter 2)
as in the case of the classical resolvent.

We propose several modifications of the classical proximal point algo-
rithm. We first modify this algorithm to obtain algorithms which gener-
ate sequences which converge strongly to zeroes. In this dissertation we
also solve the problems of finding common zeroes of finitely many maximal
monotone mappings. In addition, we allow in these algorithms several kinds
of computational errors.

In a recent single-authored paper [103], which has already appeared in
the prestigious SIAM Journal on Optimization, we focused on the common
zeroes problem. The algorithms proposed in this paper are based on the
concept of finite products of resolvents. This concept has led me to an algo-
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rithm which solves several problems, but in the main step of the algorithm
one should project onto the intersection of just two half-spaces. Therefore
the number of operators does not influence the number of the half-spaces
that should be constructed at each step.

Chapter 5 - Applications - Equilibrium, Variational and Convex
Feasibility Problems

This chapter contains three main applications of the iterative methods pro-
posed in the previous chapters. We start by studying equilibrium problems
in the context of reflexive Banach spaces. The second application is devoted
to iterative methods for solving variational inequalities. Connections be-
tween these two problems to fixed point problems are given. At the end we
apply our algorithms to solving the well-known Convex Feasibility Problem
in the framework of reflexive Banach spaces.

Chapter 6 - Minimal Norm Solutions of Convex Optimization
Problems

We were interested in the following problem. Suppose one has two objec-
tive functions f and w. The problem of minimizing the function f over
a constrains set S may have multiple solutions. Among these solutions of
the “core” problem we wish to find a solution which minimizes the “outer”
objective function w.

A particular case of this problem was studied from the seventies by many
leading researchers. This particular case is when the “other” function is
taken as the norm, that is, w = |-|*. In this case we wish to find a minimal
norm solution of the “core” problem. Since we consider a more general
function w than the usual norm, we call these solutions minimal norm-like
solutions of optimization problems.

A well-known approach to finding the minimal norm solutions of convex
optimization problem is via the celebrated Tikhonov regularization. This
approach involves solving the original problem by solving many emerging
subproblems. These subproblems are simpler than the original problem,
but still need a different approach in order to be solved. In addition, this
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approach suffers a few drawbacks which makes it, from a practical point of
view, problematic for implementation.

Recently, T jointly presented with Amir Beck [17] a direct first order
method for finding minimal norm-like solutions of convex optimization prob-
lems. We proposed the minimal norm gradient method which is aimed at
solving the problem directly and not “stage by stage” or via solving a se-
quence of related problems.

At each iteration of the minimal norm gradient method, the required com-
putations are (i) a gradient evaluation of the objective function f, (ii) an
orthogonal projection onto the feasible set of the “core” problem and (iii) a
solution of a problem consisting of minimizing the objective function w sub-
ject to the intersection of two half-spaces. The convergence of the sequence
generated by the method is established along with an O (1 / \/E) convergence
of the sequence of function values (k being the iteration index). We support
our analysis with a numerical example of a portfolio optimization problem.



Chapter 1

Preliminaries

This chapter contains three sections that deal with several basic notions concerning func-
tions, operators and mappings which will be needed in our later discussion (see [97]). Let
X be a reflexive infinite-dimensional Banach space. The space X is equipped with the
norm ||| and X represents the (topological) dual of X whose norm is denoted by I, - We

denote the value of the functional ¢ € X™ at z € X by (&, ).
From now on we will use the following notations for functions, bifunctions, operators
and single/set-valued mappings.

e A function f which maps X into (—oo, +00] will be denoted by f : X — (—o0, +0].
e A bifunction g which maps X x X into R will be denoted by ¢g : X — (—o0, +0].
e An operator T which maps X into X will be denoted by T': X — X.

o A single-valued mapping A which maps domA < X into X" will be denoted by
A: X - X7

o A set-valued mapping A which maps X into 92%" will be denoted by A: X — X"
We will also use the following notations.

e The set of all nonnegative integers is denoted by N.

e The set of all real numbers is denoted by R.

e The set of all nonnegative real numbers is denoted by R, .

e The set of all positive real numbers is denoted by R, ;.

e The closure of a set K will be denoted by cl K.

e The interior of a set K will be denoted by int K.

e The boundary of a set K will be denoted by bdr K.

e The unit sphere of X is denoted by Sx = {r e X : ||z = 1}.

12
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e Given a sequence {z,}, . and z € X, the strong convergence (weak convergence)
of {z,}, . to x is denoted by z, — z (z, — z) as n — o or lim, ,n 2, = @
(w — limy, o T, = 7).

e We will denote by H a Hilbert space.

1.1 Functions

This section is devoted to the notions related to functions that are needed in our results.
We present four subsections with basic notions and results about continuity of functions,
subdifferentiability and differentiability properties and conjugate functions. At the end of
this section we present another subsection on the geometry of Banach spaces.

1.1.1 Lower Semicontinuity, Continuity and Lipschitz Continuity

We will start with the basic notions needed for a discussion of functions.
Definition 1.1.1 (Basic notions for functions). Let f : X — (—o0, +00] be a function.

(i) The domain of f is the following set:

dom f:={re X : f(x) < +w}.

(ii) The epigraph of f is the following set:

epi f:={(z,t) e X xR: f(z) < t}.

(iii) The function f is called proper if dom f # (.

Definition 1.1.2 (Convexity). The function f : X — (—o0,+o] is called convex if it

satisfies

fQz+ 1 =Ny) <Af(2)+(1-A)f({) (1.1.1)
for any two points x,y € dom f and for any real number X € [0, 1].

Remark 1.1.3 (Convexity properties). (i) If the inequality in (1.1.1) is strict, then the

function f is called strictly convex.
(i) It easy to check that f is convex if and only if epi f is a conver set in X x R.

(iii) If f is a convex function, then dom f is a convex set. &

Definition 1.1.4 (Lower and upper semicontinuity). Let f : X — (—o0, +o0] be a function.
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(i) The function f is called lower semicontinuous if, for each real number r, the set
{re X : f(x)<r}is closed.

(ii) The function f is called weakly lower semicontinuous if, for any real number r, the set
{xe X : f(x) <r}is weakly closed in X.

(iii) The function f: X — (—o0,400] is called upper semicontinuous at a point x € dom f
if, for each open set'V in (—o0, +00| containing f (x), there is a neighborhood U of x
such that f (U) < V.

Remark 1.1.5 (Sufficient condition for lower semicontinuity). If f : X — (—o0, +0] is

convex and continuous on dom f which is a closed set, then f is lower semicontinuous. <

The following two propositions show connections among various continuity properties of
convex functions (see, for instance, [35, Propostion 1.1.5, page 6] and [82, Proposition 2.3,
page 22|, respectively).

Proposition 1.1.6 (Continuity properties of convex functions). Let f : X — (—o0, +o0]

be a convex function with int dom f # . The following statements are equivalent.
(i) The function f is locally bounded from above on int dom f.

(ii) The function f is locally bounded on int dom f.

(iii) The function f is locally Lipschitzian on int dom f.

(iv) The function f is continuous on int dom f.

Moreover, if f is lower semicontinuous, then all these statements hold.

Corollary 1.1.7 (Continuity property). Every proper, convex and lower semicontinuous

function f: X — (—o0, +00] is continuous on int dom f.

Proposition 1.1.8 (Lower semicontinuity properties). Let f : X — (—o0, +00] be a convex

function. The following statements are equivalent.
(i) The function f is lower semicontinuous on X .
(ii) For each T € X and for each net {.rg}ﬁe] < X converging to T € X, we have
7) < lim inf .
f(7) < liminf f (z5)
(iii) The set epi f is closed in X x R.

(iv) The function f is weakly lower semicontinuous on X .
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1.1.2 Subdifferentiability
Definition 1.1.9 (Directional derivative). Let f : X — (—oo,+0o0] be a function. Given

z eintdom f and y € X, define ps (y,x;-) : R\ {0} — (—o0, +0] by

pr(ywit) =~ (f(z +ty) = f(2)). (1.1.2)

~ | =

The directional derivative of f at x in the direction y is given by
° =1i it). 1.1.
£ (2,y) o= limop (y, 231) (1.1.3)

The following result presents several properties of the directional derivative of convex
functions (see, for example, [35, Propostion 1.1.2, page 2]).

Proposition 1.1.10 (Properties of directional derivatives). Let f : X — (—o0,400] be a

proper and convex function. If x € intdom f, then the following statements are true.

(i) The function ¢y (y,x;-) is increasing on each of the intervals (0, +o0) and (—o0,0) for
any ye X.

(ii) If f is also strictly convex, then ¢¢ (y, x;-) is strictly increasing on each of the intervals

(0, +00) and (—0,0) for any y e X.

(iii) The directional derivative f° (x,y) exists for any y € X, and we have

[y < flo+y)—f(). (1.1.4)
If, in addition, f is strictly convez, then the inequality in (1.1.4) is strict.
(iv) We have
—fo(x,—y)<fo(x,y) VyEX
(v) The limit f°(x,y) is finite for any y € X if and only if x € intdom f. In this case,
the function y — f°(z,y) is sublinear.

(vi) If, in addition, f is lower semicontinuous, then the function f°(x,-) is Lipschitzian
on X.

Here is a consequence of Proposition |1.1.10| which will be used below (cf. [35], Propostion
1.1.4, page 4]).

Proposition 1.1.11 (Characterization of strict convexity). Let f : X — (—oo, +w0] be a

convex function such that int dom f # (F. The following statements are equivalent.

(i) The function f is strictly convex on int dom f.
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(ii) For any x,y € int dom f such that x # y, we have

fO(ZE,y—[E)—i‘fo(y,I—y) <0.
Definition 1.1.12 (Subgradient and subdifferential). Let f : X — (—o0, +0] be a func-

tion.

(i) A vector € € X" is called a subgradient of f at a point x € dom f if

fly)—fx)=2&y—z) Vyedomf. (1.1.5)

(i) If there exists a subgradient £ of f at x, we say that f is subdifferentiable at x.

(iii) The set of all subgradients of f at a point x is called the subdifferential of f at x, and
is denoted by Of (x).

The next result shows a strong connection between the notions of subdifferentiability
and convexity.

Proposition 1.1.13 (Sufficient condition for convexity). Let f : X — (—oo,+w] be a
function and let K be a convex subset of X. If f is subdifferentiable at each point of K,

then f 1s convex on K.

The following result brings out several properties of the subdifferential mapping (cf. [35]
Propostion 1.1.7, page 8]).

Proposition 1.1.14 (Properties of the subdifferential mapping). Let f : X — (—o0, +0]

be a convex function such that int dom f # &. The following statements are true.

(i) For any x € int dom f, the set df (x) is a conver and weak" closed subset of X .

(i) If, in addition, f is continuous on intdom f, then, for each x € intdom f, the set

of (x) is nonempty and weak’ compact. In this case, for each y € X, we have
[ (@ y) = max {(§,y) : £ € 0f (x)}.
(iii) Ifz € X, then
of @) ={ee X" —f -y <Ew <@y Wyex},

(iv) If, in addition, f is continuous on int dom f, then the set-valued mapping x — 0f ()

. k . . .
18 norm-to-weak  upper semicontinuous on int dom f.
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Proposition [1.1.14(iv) shows that the set-valued subdifferential mapping Jf associated
to a convex function f : X — (—o0,400] is norm-to-weak” upper semicontinuous. A
question which occurs in optimization is whether the set-valued mapping Jf is bounded
on bounded subsets. The answer to this question is given by the following technical result
(cf. [35, Propostion 1.1.11, page 16]).
Proposition 1.1.15 (Characterization of boundedness on bounded subsets). If f : X — R
is a continuous and convex function, then the set-valued mapping of : X — 2X* is bounded
on bounded subsets of domdf if and only if the function f itself is bounded on bounded
subsets X.

1.1.3 Gateaux and Fréchet Differentiability

Definition 1.1.16 (Gateaux differentiability). Let f : X — (—oo, +m] be a proper and

convex function. The function f is called Gateauz differentiable at x € int dom f if the limit

@) (5) = T oy (1) = i (F (2 + ) — f (1) (1.16)
exists.

Remark 1.1.17 (Characterization of Gateaux differentiable functions). Since in our case
f: X — (=00, +0] is always assumed to be proper and convex, it follows from Proposition
[1.1.10(v) that the function y — f° (x,y) is sublinear. Hence, in our setting, [ is Gateaus
differentiable at x € intdom f if and only if —f° (z,—y) = f° (z,y) for any y € X. If, in
addition, f is lower semicontinuous, then f'(x)(-) = f°(x,-) is continuous and belongs to

X" (see Proposition |1.1.10|(vi)). &

Definition 1.1.18 (Gradient). Let f : X — (—o0, 40| be a function. The gradient of f,
V[, is the linear function x — f'(x) (-) when it exists (see [83, Definition 1.3, page 3]).
The next result establishes characteristic continuity properties of Gateaux derivatives of
convex and lower semicontinuous functions (cf. [35, Propostion 1.1.10(i), page 13]).
Proposition 1.1.19 (The subdifferential is a gradient). Let f : X — (—o0,+] be a
convexr and lower semicontinuous function with int dom f # . The function f is Gateaux

differentiable at a point x € int dom f if and only if Of (x) consists of a single element. In

this case, 0f (x) = {V [ (z)}.

Definition 1.1.20 (Fréchet differentiability). Let f : X — (—oo, +o0] be a function. We
say that f is:

(i) Fréchet differentiable if it is Gateaux differentiable and the limit (1.1.6)) is attained
uniformly for every y € Sx (see [83]).
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(ii) Uniformly Fréchet differentiable on bounded subsets of X if for any bounded subset E
of X the limit (1.1.6)) is attained uniformly for any v € E and every y € Sx.

The following result brings out a connection between differentiability properties of f
and continuity properties of df (cf. [83, Proposition 2.8, page 19]).

Proposition 1.1.21 (Continuity of the subdifferential mapping). Let f : X — (—o0, +o0]
be a conver and continuous function with intdom f # . Then f is Gateauz (respec-
tively Fréchet) differentiable at x € intdom f if and only if there is a selection ¢ for the
subdifferential mapping Of which is norm-to-weak” (norm-to-norm) continuous at x.

In this connection we will also have the following result (c¢f. [89, Proposition 2.1, page
474] and [3, Theorem 1.8, page 13]).

Proposition 1.1.22 (Properties of uniformly Fréchet differentiable functions). Let f :
X — R be a convex function which is both bounded and uniformly Fréchet differentiable on
bounded subsets of X. The following statements hold.

(i) The function f is uniformly continuous on bounded subsets of X .

(ii) The gradient NV f is uniformly continuous on bounded subsets of X from the strong

topology of X to the strong topology of X" .
Proof. (i) See [3, Theorem 1.8, page 13].

(ii) If this result were not true, there would be two bounded sequences {z,,} . and {yn},n»

and a positive number ¢ such that ||z, — y,|| — 0 as n — o and

V(@) =V (Yn) ,wn) = 2,

where {w,},. is a sequence in Sy, that is, |w,| = 1 for each n € N. Since f is
uniformly Fréchet differentiable (see Definition [1.1.20{ii)), there is a positive number
0 such that

fn +twy) — f (yn) =tV f (yn) , wn) < et

for all 0 < t < § and each n € N. From the subdifferentiability inequality (see (|1.1.5]))

we have

<Vf (ZEn) ) (yn + twn) - In> <f (yn + twn) —f (l’n) Vn e N.

In other words,

tVf(wn),wn) < f (Yo + twn) — f(yn) <V (@0) s Tn — yn) + [ (Yn) — f(20) -
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Hence

2et < t<Vf (xn) - Vf (yn) vaL> < [f (yn + twn) - f (yn) - t<Vf (yn) 7wn>]
V(@) T — Yn) + [ (Yn) — f (70)
<et+ <Vf (xn) y Tn — yn> + f (yn) - f (xn) .

Since V f is bounded on bounded subsets of X (see Proposition[1.1.15)), it follows that
(Vf(xn),xn — yn) converges to zero as n — oo, while [f (y,) — f (x,)] = 0 as n — oo
since f is uniformly continuous on bounded subsets which follows from assertion (i).
But this would yield that 2e¢t < et, a contradiction. O

Definition 1.1.23 (Positively homogeneous). Let f : X — (—o0, 40| be a function. We
say that f is positively homogeneous of degree v € R if f (tx) = t*f (x) for all x € X and
any t > 0.

The following result, which seems to be well-known, appears here for the sake of com-
pleteness (cf. [91], Proposition 15.2; page 302]).

Proposition 1.1.24 (Property of positively homogeneous functions). If f : X — R is
a positively homogeneous function of degree v € R, then Vf is a positively homogeneous

mapping of degree o — 1.

Proof. Let y € X. From the definition of the gradient (see Definition [1.1.18)) we have

Y/ (t) () = Jim - (f (2 + hy) = ] (22)) = iy = (7 (82 + thy) = f (12)

h—0 h—0
t : 1 a—1
= lim o (f (@ + hy) = f () =1* V[ (2) (y)
for any x € X and all t > 0. ]

1.1.4 The Fenchel Conjugate

Definition 1.1.25 ((Fenchel) conjugate function). Let f : X — (—o0, 40| be a function.
The function f* : X" — [—o0, +o0] defined by

*®

f (€)= §2§{<€,x>—f(x)}

is called the (Fenchel) conjugate function of f.

Remark 1.1.26 (Basic properties of conjugate functions). Let f : X — (—o0, +0] be a

proper, convex and lower semicontinuous function.
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(i) The conjugate function [~ is convex and lower semicontinuous since it is the supre-
mum of a family of convex and continuous functions and, therefore, convex and lower

semicontinuous functions.

(ii) The conjugate function f* is also proper since f is proper. <&
Definition 1.1.27 (Biconjugate function). Let f : X — (—oo, +o] be a function. The
biconjugate function f* = (f*) 1s defined by

£ (@) = sup (6o — £ (O}

cex™*

Obviously, for any = € X and every £ € X*, we have

fl@)z=&ay—f (). (1.1.7)

It is known as the Young-Fenchel inequality. This inequality implies that f (z) = f* (),
for all x € X.

Example 1.1.28 (Conjugate of the norm-p function). The conjugate function of f, (x) =
(1/p) 2], p € (0,+00), is f, (&) = (1/q) [€]? where 1/p +1/q = 1.

Several basic properties of Fenchel conjugate functions are summarized in the next result
(see [102l, Proposition 1.4.1, page 18]).

Proposition 1.1.29 (Properties of Fenchel conjugate functions). Let f : X — (—o0, +o0]

and g : X — (—o0, +0] be two proper functions. The following statements are true.
(1) If f < g then g" < f~.

(i) For any A =0, we have (\f)" () = Af* (&/N).

(iv) For anyye X, we have (f (- —y)) (&) = f* (€) + (&, ).

(v) For any x € X, we have

)
)
(iii) For any X € R, we have (f + \)" = f* — \.
)
)

§edf (@)= f@)+ [ (&=

(vi) If of () # & then f (x) and f~ (£) are finite.

The next result brings out several connections among Fenchel conjugates and subdiffer-
entiability (c¢f. [22, Propostion 2.118, page 82]).

Proposition 1.1.30 (Fenchel conjugany and subdifferentiability). Assume that f : X —

(—o0, +0] is a function. The following statements are true.
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(i) If for some x € X the value f~ (x) is finite, then,

&k

of " (r) = argmaxg, y+ {<f,a:> —f ({)}

(ii) If f is subdifferentiable at x € X, then f** (x) = f (z).

(iii) If £ (x) = f (z) and is finite, then of (x) = 0f"" (x).

The Young-Fenchel inequality (see (1.1.7)) implies that f > f*. The next theorem
shows that f = f*° when f is a proper, convex and lower semicontinuous function (cf.
[112] Theorem 2.33, page 77]).

Proposition 1.1.31 (Biconjugate). Let f : X — (—o0, +0] be a proper, convex and lower

semicontinuous function. Then f = .

The subdifferential mapping of conjugate functions is given by the inverse of the subd-
ifferential mapping of the function (see [102, Proposition 1.4.4, page 20]).

Proposition 1.1.32 (Subdifferential of conjugate functions). Let f : X — (—oo, +w0] be
a proper, conver and lower semicontinuous function on X. Then of" = (ﬁf)fl, where the

inverse mapping (0f) ™"+ X — 2% is defined by

(@)1 (€) ={re X :geaf (1)}
1.1.5 Geometry of Banach Spaces

This subsection gathers some basic definitions and geometrical properties of Banach spaces
which can be found in the book [47] (see also [87]).

Definition 1.1.33 (Types of Banach spaces). A Banach space X

(i) is smooth or has a Gateauz differentiable norm if the limit

et ty] e
t—0 t

(1.1.8)
exists for each x,y € Sx;

(ii) has a uniformly Gateauz differentiable norm if for each y € Sx the limit (1.1.8)) is

attained uniformly for any x € Sx;

(iii) is uniformly smooth if the limit (1.1.8)) is attained uniformly for any x,y € Sx;
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(iv) is uniformly convez if the modulus of uniform convexity of the space X, that is, the
function dx : [0,2] — [0, 1] defined by

B S L L R B N s B
x(B)= 0 t=0

satisfies dx (t) > 0 for all t > 0.

A very related concept to the geometry of Banach spaces is the theory of duality map-
pings. Recall that a gauge is a continuous and strictly increasing function ¢ : RT — R*
such that ¢ (0) = 0 and lim;_,, ¢ (t) = 00. Associated with a gauge function ¢, the duality

mapping is the mapping J, : X — X" given by

To(@) = {ie @) € X" 2 Gy (0).3) = g @ 2] L 6 () = s @]} (10.9)
Remark 1.1.34 (Full domain of duality mappings). According to the Hahn-Banach The-

orem, Jy(x) is a nonempty subset of X* for every v € X. Hence, dom Jp = X. &

Remark 1.1.35 (Properties of duality mappings). It follows from (1.1.9) that J, is an
odd mapping (i.e., Jy (—x) = —Jy (x)) and positively homogeneous (i.e., \Jy (x) = Jy (Ax)
for any A >0). &

If a gauge function ¢ is given by ¢ (t) =t for all t € R™, then the corresponding duality
mapping J, is called the normalized duality mapping, and is denoted by Jx. It follows from
(1.1.9) that the normalized duality mapping Jy is defined by

Jx (@)= {€e X" ¢g 0y =l = eI} (1.1.10)

We can use another way to describe duality mappings. Given a gauge function ¢, we define

B (t) = ftgb (s) ds.
0
Then it can be proved that ® is convex and, for any x € X, we have
Jo (1) = 09 ([z]).
Thus we have from the subdifferential inequality (see ((1.1.5))) that for any x,y € X,
O (|z+yl) < @(zl) + <o (@ +9)), Jolz+y)edy(z+y).
For the normalized duality mapping Jx, the subdifferential inequality (see ) turns

into
lz+yl® < o> + 2,5 (z+y), jl@+y)elx(z+y).
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The relation between the normalized duality mapping Jx and a general duality mapping

Jy is easily given by the following identity:

CUel) ;o) w0, zex.

]

Jy () =

The following result gathers relations between geometric properties of three classes of Ba-
nach spaces and features of duality mappings.

Proposition 1.1.36 (Characterization of Banach spaces). Let X be a Banach space. Given

any gauge function ¢, the following statements are true.

(i) The space X is smooth if and only if the duality mapping Jy is single-valued (cf. [47,
Theorem 1.10, page 46]).

(ii) The space X is uniformly smooth if and only if the duality mapping Jy is single-valued
and norm-to-norm uniformly continuous on bounded subsets of X (cf. [47, Theorem
2.16, page 54]).

(iii) If the space X has a uniformly Gateauz differentiable norm then, J, is norm-to-weak"

uniformly continuous on bounded subsets of X (cf. [47, Corollar 1.5, page 43] and
[86]).
Remark 1.1.37 (Duality mapping of the p-norm function). Take ¢, (t) := pt?'. Then
D, (t) = t*. We denote the duality mapping with respect to ¢, by J, := 0@, (|x|). In this

case the function ¢, is invertible and

Uy (1) = 6, (1) = (E)WH)

is again a gauge function. Define
t
T, = J Y, (s)ds = (p—1) pP/(A=p)yp/(p=1)
0
2X

The duality mapping with respect to v, is the mapping from X* to given by

Ty = o, (J&l,) = p" el (L) ©) o

1.2 Bregman Distances

From now on we will use admissible functions.
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Definition 1.2.1 (Admissible function). A function f : X — (—o0,+00| is called ad-
massible if it is proper, convex and lower semicontinuous, and Gateauz differentiable on
int dom f.

In 1967 (c¢f. [27]) Bregman defined the following bifunction D.

Definition 1.2.2 (Bregman distance). Let f : X — (—oo, +00] be a Gateauz differentiable

function. Then
Dy (y,z) = f(y) = f(x) =XV[f(2),y —x). (1.2.1)

A few years later, Censor and Lent [45] called it the Bregman distance with respect to the
function f. The Bregman distance is at the core of this dissertation mainly because of its
importance in optimization as a substitute for the usual distance or, more exactly, for the
square of the norm of X. During the last 30 years, Bregman distances, have been studied in
this connection by many researchers; for example, Bauschke, Borwein, Burachik, Butnariu,
Censor, Combettes, Tusem, Reich and Resmerita (see, among many others, [7, [, 33, 35] [41]
and the references therein). Over the last 10 years the usage of this concept has been
extended to many fields like Clustering, Image Reconstruction, Information Theory and
Machine Learning. Because of all these reasons we are motivated to develop more tools for
working with Bregman distances.

Remark 1.2.3 (Bregman distance is not a usual distance). It should be noted that Dy (see
(1.2.1)) ) is not a distance in the usual sense of the term. In general, Dy is not symmetric
and it does not satisfy the triangle inequality. Clearly, D¢ (z,z) =0, but Dy (y,z) = 0 may

not imply x = y as it happens, for instance, when f is a linear function on X. &

In general we have the following result (cf. [7, Theorem 7.3(vi), page 642]).

Proposition 1.2.4 (Property of Bregman distances). Let f : X — (—o0, +0]| be a Legendre
function (see Definition below). Then Dy (y,x) = 0 if and only if y = x.

If f is a Gateaux differentiable function, then Bregman distances have the following two
important properties.

e The three point identity: for any x € dom f and y, z € int dom f, we have (see [50])
Dy (2,9) + Dy (y.2) = Dy (w,2) = (Vf (2) = VI (y) 2 — ). (1.2.2)
e The four point identity: for any y,w € dom f and x, z € int dom f, we have
Dy (4.2) - Dy (3, ) — Dy (w,a) + Dy (w,2) = (Vf (2) = Vf (2) .y —w). (12.3)
Bregman distances are very interesting also because of the following property. In the

following remark we emphasize we prove that Bregman distances can be considered as a
generalization of the usual metric distance.
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Remark 1.2.5 (Generalization of the metric distance). It is easy to check that when the
Banach space X is a Hilbert space and f (-) = ||-|?, then Dy (y,x) = |y — z|*, that is, the

metric distance squared. &

Directly from the definition of the Bregman distance (see (1.2.1])) we see that any prop-
erty of Dy is inherited from a property of the function f. First, one may wonder if the
Bregman distance can be defined for non-differentiable functions.

Remark 1.2.6 (Bregman distance of non-differentiable functions). For a non-differentiable
function f : X — (—o0,400], there is a generalization of the Bregman distance (see (1.2.1))):

Dy (y,x) = f(y) = f () = f*(z,y — ). o

In order to obtain more interesting and important properties of the Bregman distance
(see (1.2.1))) we will study more deeply two classes of functions, the Legendre functions and
the totally convex functions.

1.2.1 Legendre Functions

The notion of Legendre functions in a general Banach space X was introduced first by
Bauschke, Borwein and Combettes in [7, Definition 5.2, page 634]. In our setting the Banach
space X is reflexive, thus, from [7, Theorems 5.4 and 5.6, page 634] we can equivalently
define the notion of Legendre functions as follows.

Definition 1.2.7 (Legendre). A function f : X — (—o0,+o] is called Legendre if it

satisfies the following two conditions.
(L1) intdom f # J and the subdifferential Of is single-valued on its domain.

(L2) intdom f* # & and 0f* is single-valued on its domain.

Since X is reflexive, we also have that Vf = (Vf*)f1 (see [7, Theorem 5.10, page 636)).
This fact, combined with Conditions (L1) and (L2), implies the following equalities which
will be very useful in the sequel:

(i) . .
ranVf =domVf =intdom f . (1.2.4)

(i)
ran VS = domVf = int dom f. (1.2.5)

Conditions (L1) and (L2), in conjunction with [7, Theorem 5.4, page 634], imply that both
functions f and f* are strictly convex and Gateaux differentiable in the interior of their
respective domains.

Several interesting examples of Legendre functions are presented in [0 [7]. Among them
are the functions (1/p) |-|” with p € (1,00), where the Banach space X is smooth and
strictly convex, in particular, a Hilbert space.
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1.2.2 Totally Convex Functions

The notion of totally convex functions was first introduced by Butnariu, Censor and Reich
[33] in the context of the Euclidean space R™ because of its usefulness for establishing
convergence of a Bregman projection method for finding common points of infinite families
of closed and convex sets. In this finite dimensional environment total convexity hardly
differs from strict convexity. In fact, a function with a closed domain in a finite dimensional
Banach space is totally convex if and only if it is strictly convex. The relevancy of total
convexity as a strengthened form of strict convexity becomes apparent when the Banach
space on which the function is defined is of infinite dimension. In this case, total convexity is
a property stronger than strict convexity but weaker than locally uniform convexity. Total
convexity in the infinite dimensional case is studied intensively by Butnariu and ITusem and
summarized in the book [35].

Total convexity is a property of the modulus of total convexity of the function which
ensures that some sequential convergence properties which are true in the uniformity-
like structure defined on the space via Bregman distances with respect to totally convex
functions are inherited by the norm topology of the space. Therefore, in order to establish
convergence and/or “good behavior” of some algorithms in infinite-dimensional settings, it
is enough to do so with respect to the uniformity-like structure determined by the Bregman
distance associated to totally convex functions.

This naturally leads to the question of whether totally convex functions with predes-
ignate properties exist on a given Banach space. It is shown in [35] that totally convex
functions can be found on any separable as well as on any reflexive Banach space.

In this subsection we present several properties of the modulus of total convexity asso-
ciated to a convex function f. The interest in the modulus of total convexity and totally
convex functions comes from the usefulness of these concepts when dealing with a class
of recursive procedures for computing common fixed points for large families of operators
and, in particular, solutions to optimization, convex feasibility, variational inequality and
equilibrium problems as shown in the following chapters of this thesis.

Definition 1.2.8 (Total convexity at a point). A function f : X — (—o0,+o0] is called
totally convex at a point x € intdom f if its modulus of total convexity at x, that is, the

function vy (z,-) : [0, +00) — [0, +00] defined by
vp (@,8) = it {Dy (5,2) -y e dom f, |y — 3] = 1} (1.2:6)

15 positive whenever t > 0.

Remark 1.2.9 (Totally convex function). A function f: X — (—oo, +00] is called totally

convex when it is totally convex at any point of int dom f. &

Definition 1.2.10 (Total convexity on bounded subsets). A function f : X — (—o0, +o0]
is called totally conver on bounded subsets if vy (E,t) is positive for any nonempty and

bounded subset E of X and for any t > 0, where the modulus of total convexity of the
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function f on the set E defined by

v (E,t) = inf {Vf (x,t):x € Eﬂintdomf}.

The following proposition summarizes several properties of the modulus of total convex-
ity (cf. [33, Proposition 2.4, page 26| and [35, Propostion 1.2.2, page 18]).

Proposition 1.2.11 (Properties of the modulus of total convexity). Let f : X — (—o0, +0]

be an admissible function. If x € int dom f, then the following assertion hold.
(i) The domain of vy (z,-) is an interval |0, 7y (z)) or |0, 7y (z)] with 1/ (x) € (0, 400].
(i) Ifce[1,4) and t = 0, then vy (x,ct) = cvy (z,t).

iii) The function vy (x,-) is superadditive, that is, for any s,t € |0, +00), we have
f
vi(z,s +t) = vy (z,s) + vy (z,t).

(iv) The function vy (z,-) is nondecreasing; it is strictly increasing if and only if f is totally

convex at x.

Moreover, if X = R" and f : C' — R, where C' is an open, conver and unbounded

subset of R™, then the following statements also hold.
(v) The modulus of total convexity vy (x,-) is continuous from the right on (0,400).

(vi) If f : C — R is a convex and continuous extension of f to C and if vy (x,-) is

continuous, then, for each t € [0, +00), we have
vp (a,t) = inf {Df (y,2) 1y € C, |y —z| =t}.

Definition 1.2.12 (Cofinite). A function f : X — (—o0, +0] is called cofinite if dom f* =

*

X",

The following proposition follows from [37, Proposition 2.3, page 39] and [112, Theorem
3.5.10, page 164].

Proposition 1.2.13 (Sufficient condition for cofiniteness). If f : X — (—o0,+0] is
Fréchet differentiable and totally convex, then f is cofinite.

Uniformly Convex Functions

The applications of totally convex functions discussed in this work requires us to know
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whether on a given Banach space totally convex functions exist and, eventually, how rich
the class of totally convex functions on a given Banach space X. For that we compare the
notion of the modulus of total convexity with the modulus of uniform convexity. Totally
convex functions are strictly convex, but there exists a strictly convex function which is
not totally convex (see [34]). In addition, a strongly related concept to total convexity is
the concept of uniform convexity which was first introduced and studied in [T110, 112] (see
also 23] 26]).

Definition 1.2.14 (Uniform convexity (function)). A function f : X — (—o0,+0] is
called uniformly convez if the function dy : |0, +00) — |0, +o0], defined by

3 (t) := inf{%f(:c) + 1f(y) —f (x—gy) y—z| =t xye domf}, (1.2.7)

2

is positive whenever t > 0. The function d; (-) is called the modulus of uniform convezity

of f.

Remark 1.2.15 (Uniform convexity implies total convexity). According to [35, Proposition
1.2.5, page 25], if x € intdom f and t € [0,400), then vy (z,t) = d7 (t) and, therefore, if f

15 uniformly convex, then it also is totally convex. &

The converse implication is not generally valid, that is, a function f may be totally
convex without being uniformly convex (for such an example see [35], Section 1.3, page 30]).
Even for Gateaux differentiable functions, the notions of uniformly and totally convex are
not equivalent. However, if f is Fréchet differentiable, then we have the following result
(cf. |37, Proposition 2.3, page 40]).

Proposition 1.2.16 (Total and uniform convexity coincide). Suppose that f : X —

(—o0,+0] is a lower semicontinuous function. If x € intdom f and f is Fréchet dif-

ferentiable at x, then f is totally convex at x if and only if f is uniformly conver at x.
The notions of uniformly and totally convex on bounded subsets are equivalent under

less restrictive conditions on the function, which can be seen in the following result (cf.
[37, Proposition 4.2, page 53]).

Proposition 1.2.17 (Total and uniform convexity on bounded subsets). Suppose that
f: X — (—o0,+0] is an admissible function. The function f is totally convex on bounded

subsets if and only if f is uniformly convex on bounded subsets.

Examples of Totally Convex Functions

In Banach spaces of infinite dimension finding totally convex functions is a challenging
problem. This happens because, in an infinite dimensional context, we need to find totally
convex functions designed in such a way that specific methods like the proximal point
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algorithm with Bregman distance and/or the projection type algorithms are effectively and
efficiently computable. For instance, the function f, := |-|”, p € (1, 400), is totally convex
in any uniformly convex Banach space X (cf. [36, Theorem 1, page 322]).

Proposition 1.2.18 (Total convexity of p-norm in uniformly convex Banach spaces). If X
is a uniformly convexr Banach space, then, for each p € (1,400), the function |-|| is totally

conver.

Remark 1.2.19 (Total convexity of p-norm in locally uniformly convex Banach spaces).
The function |-|”, p € (1, +0), is totally convex even if X is only locally uniformly convez,
that is, if for each = in the unit ball of the space X, the function px (x,-) : [0,2] — [0,1]
defined by

inf {1 —(3) Jlz+yl:lyl =1z —y|=t}, t>0
i (01) = { (1= @) e +yl:lyl=1]e -yl >0}

0, t=0

is positive whenever t > 0. The function px (x,-) is called the modulus of locally uniform

convexity of the space X. &

It is proved in [112] that |-|*, p € (1, +00), are uniformly convex at any point, and, hence
are totally convex at any point. In [96] Resmerita proves that a Banach space on which
the functions |-|”, p € (1, +o0), are totally convex is necessarily strictly convex and has the
Kadec-Klee property, that is,

(W— lim z, =2 and lim |z,| = ||a:||> — lim z,, = z.
n—:ao n—a0 n—a0

More precisely, she proves that those spaces are exactly the E-spaces (cf. [96, Theorem 3.2,
page 8]).

Definition 1.2.20 (Sequentially consistent). A function f : X — (—0,+o] is called
sequentially consistent (see [{1)]) if for any two sequences {x,},y and {yn}, oy i dom f
and int dom f, respectively, such that the first one is bounded,

lim Dy (y,,zn) = 0 = lim [ly, — z,[ = 0.
n—0o n—a0

In the following result we see that in uniformly convex Banach spaces the function |-||”,
p € (1,400), is sequentially consistent (cf. [36, Corollary 1, page 326]).
Proposition 1.2.21 (Sequentially consistency of the p-norm function in uniformly convex
Banach spaces). If X is a uniformly convexr Banach space, then, for each p € (1,+0), the

function ||-|" is sequentially consistent.

The following result gives us a tool to generate more examples of totally convex functions
(cf. [35, Proposition 1.2.7, page 28]).
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Proposition 1.2.22 (Arithmetic of totally convex functions). The following statements
hold.

(i) Let f; + X — (—oo,+o], 1 < i < N, be totally convex functions with domains

D1y, Ds, ..., Dy, respectively. Assume that

N

ﬂint DZ #* @

i=1
Then, for any N nonnegative real numbers ci,cs,...,cn such that Zfil c¢; > 0, the
function h := Zf\il cifi is totally convexr and, for any x € ﬂf\il int D; and for all

t € [0, +00), we have

N
vp (x,t) = Z civy, (z,t).
i—1

(i) If f : X — (—o0, +0] s totally conver and lower semicontinuous with open domain
D, and if ¢ is a real convexr function defined, differentiable and strictly increasing on
an open interval which contains f (D), then the function g : X — (—o0, +0] defined
by g(z) = ¢(f (x)), if v € D, and g(x) = +0o0 otherwise, is totally convex and we

have
vg (@,1) 2 &' (f () vy (2, 1)
forall x € D and any t = 0.

Convergence analysis of many iterative algorithms for solving convex optimization prob-
lems in Banach spaces show that the produced sequences are bounded and that any weak
accumulation points of which are optimal solutions of the problems these algorithms are
supposed to solve. Obviously the identification of a convergent subsequence of a given
sequence is difficult, if not impossible. Thus such algorithms can be used to compute ap-
proximate solutions of the given problem only to the extent to which either the objective
function of the optimization problem is strictly convex because in such case the sequences
those algorithms generate converge weakly to the necessarily unique optimal solution of
the problem or one can regularize the problem by replacing the objective function with a
strictly convex approximation of it in such a way that the optimal solution of the regularized
problem exists and is close enough to the optimal solution set of the original problem.

Keeping the optimal solution of the regularized problem close to the optimal solution
set of the original problem usually demands that the strictly convex approximation of
the objective function should be uniform on bounded subsets. Also, the regularization
process often requires the use of functions satisfying, among other conditions, a stronger
form of strict convexity, namely, total convexity. Because of this, for a large number of
optimization algorithms regularization of the optimization problem using totally convex
and sufficiently uniform approximations of the objective function, which preserve some if
not all of its continuity properties, is an implicit guarantee of a better convergence behavior
of the computational procedure. Thus the abundance of totally convex functions and the
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possibility of using them as good approximations of given convex functions are crucial in
numerous optimization algorithms.

Butnariu, Reich and Zaslavski [40] prove that whenever there exists a function which is
totally convex at each point of K, and Lipschitz continuous on any bounded subset of K,
then the set of totally convex functions on K, the set of lower semicontinuous and totally
convex functions on K, the set of continuous and totally convex functions on K, as well
as the set of Lipschitz continuous and totally convex functions on K are large in the sense
that they contain countable intersections of open (in the weak topology) and everywhere
dense (in the strong topology) subsets. This result is meaningful because it implies the
existence of large pools of totally convex functions.

At the same time it guarantees that given a convex function f with some continuity
features, one can find uniform on bounded subsets totally convex approximations of it
which not only preserve the continuity features of f, but also have corresponding Breg-
man distances which are uniformly close on bounded subsets to the Bregman distance
corresponding to f itself.

Examples of Totally Convex Functions in Euclidian Spaces

Let X = R. In this section we study in detail the total convexity of the Boltzmann-Shannon
entropy
BS (z) :=zlog(z) —z, 0<xz< 400 (1.2.8)

Figure 1.1: The Boltzmann-Shannon entropy

and the Fermi-Dirac entropy

FD (z) :=zlog(z)+ (1 —x)log(l—z), 0<z<l. (1.2.9)

Each of these functions can be defined to be zero, by its limits, at the endpoints of their
domains.

We study the entropies BS and FD in detail because of their importance in applications.
These two functions, which form a large part of the basis for the classical information theory,
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Figure 1.2: The Fermi-Dirac entropy

arguably provide the only consistent measures of the average uncertainty in predicting
outcomes of a random experiment (see [68]).

Moreover, both Dgs and Dzp are jointly convex [24, 26], an uncommon property which
they share with (z,y) — ||z —y|> The utility of both the Boltzmann-Shannon and the
Fermi-Dirac entropies is enhanced because they are totally convex. In the following two
results (Propositions [1.2.23| and [1.2.24)) we calculate the modulus of total convexity of the
BS entropy and show that BS is totally convex (see [33, [35]). Propositions and
are analogous results concerning the FD entropy.

We start with formula of the modulus of total convexity of BS (cf. [25, Propsoition 4.2,
page 170]).

Proposition 1.2.23 (Modulus of total convexity of BS). The modulus of total convexity
of BS on (0,+) is given by

t

vgs (x,t) = x [(1 + i) log <1 + E) — —] , z€(0,+0), t=0. (1.2.10)

T T

Proof. Let xg € (0,+o0) and 0 < t < . It is clear from the definition of the modulus of

total convexity (see ((1.2.6))) that

VBRS (CL’(), t) = min {DBS (ZL‘Q + t, ZL‘Q) s DBS ({L’O — t, {L’())}

— min {(a:o +1)log (onj t) —t,(z0 — t) log (xox; t) + t}
oo 2)- 2]
ol (1= e (=) < 2}

In order to find this minimum we define a function ¢ : [0,20) — R by

t t t t t t
o (t) 1:1’0[<1——>10g(1——> + — — <1+—)log<1—|——) —i——].
Zo Lo Zo To To T
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& (1) = —log (1 - (i)> ,

and so ¢ is increasing for all ¢ < x5. Thus ¢ (t) > 0 for any ¢ < xo, which means that

t t t
vps (zo,t) = 2o [(1 + —) log (1 + —) — —]
Zo i Zo

for any t < xy. If t = ¢ then the point t — xy does not belong to the domain of BS and

It is clear that ¢ (0) = 0 and

therefore

Vs (20, 1) = Das (0 + £, 20) = 20 [(1 + i) log (1 + i) _ i] |

Zo Lo Zo
Hence (|1.2.10)) holds for any ¢ > 0. O

Now we will prove that BS is totally convex on (0, +00) but not uniformly convex (cf.
[25, Propsoition 4.3, page 171]).

Proposition 1.2.24 (Total convexity of BS on (0, 4+00)). The function BS is totally con-

vex, but not uniformly convex on (0,+0c0).

Proof. We need to show that vgs (xg,t) > 0 for any ¢ > 0. We know that vgs (29,0) = 0
and from Proposition [1.2.23| we obtain that

0

t
p (vBs (xo,t)) = log (1 + —) >0, t>0.

Lo

This means that vgs (o, t) is a strictly increasing function for all ¢ > 0. Thence, vgs (xq,t) >
0 for any ¢ > 0 and so BS is totally convex on (0, +), as asserted.
From Remark [1.2.15| we have, for any ¢t > 0, that

0< 535 (t) < lim vBps ($, t) =0.

r—0

It follows that dps (t) = 0 and thus BS is not uniformly convex. O

In [33] it is mentioned that the modulus of total convexity of the function f (x) = xlog ()
is also given by and that f is totally convex. Note that Dy = Dgs.

The following results show that FD is both totally convex and uniformly convex (cf.
[25, Propsoitions 4.5 and 4.6, pages 171-172]).
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Proposition 1.2.25 (Modulus of total convexity of FD). The modulus of total convexity
of FD 1is given by

vep (z,t) = x [(1 + é) log (1 + é) + <% — 1) log (1 — 1f£)] : (1.2.11)

when 0 <z <1/2 and 0 <t <1—x, and by

Vo (2,1) = [(1 _ é) log (1 _ é) + (lzt _ 1) log (1 + 1fx)] (1.2.12)

when 1/2<x <1 and0 <t <uz.

Proof. Let xg € (0,1). Denote M = max{z, 1 —xo} and m = min{zg, 1 —zo}. If 0 <t < m,
then it is clear from the definition of the modulus of total convexity (see ([1.2.6])) that

vrp (20,t) = min{Drp (w9 +t,20) , Drp (v0 — ¢, 7o)}

) t t 1—-t¢ t
zmm{mol(l—i——)log(l—i——)—i—( —1)log<1— )],
X0 i) Zo ]_—.170
1
x0[<1—i)log(1—i>+< +t—1>10g(1+ t )]}
Zo Zo To 1_'-7;0
In order to find this minimum we define a function ¢ : [0,m) — R by
t t 1+¢ t
w(t):zxol(l——)log(l——)—i-(+ —1)10g<1+ )]
Xo Zo o 1_‘7;0
t t 1-—t t
—x0l<1+—>log(1+—)+< —l)log(l— )]
i Zo Zo 1—.%'0
It is clear that ¢ (0) = 0 and
t 1\’ t\”
"(t) =log |1 — “log[1-(=) ).
v -me(1- () ) e (- (5) )

Therefore, for any 0 < t < m, the function 1) is increasing when 0 < x < 1/2 and decreasing

when 1/2 < x < 1. Hence, for any 0 < ¢ < m, the function ¢ (¢) > 0 when 0 < = < 1/2 and
Y (t) <0 when 1/2 <z < 1. If m <t < M, then one of the points zq — ¢ or x¢ + t belongs

to the domain of FD and the second does not. Therefore the modulus of total convexity
of FD is given by (1.2.11)) and (1.2.12)) in all cases. O

Proposition 1.2.26 (Total convexity of FD on (0,1)). The function FD is totally convex
on (0,1).

Proof. We need to show that vzp (g, t) > 0 for any ¢ > 0. We know that vzp (x¢,0) = 0
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and from Proposition [1.2.25| we obtain that

1og(1+ L ) 0<zr<1/2, 0<t<l-—u,

0 z(1—z—t)
= (Wrp (2o, 1)) =
g Lvre (rort) log (1+(1__:c)t(x—t))’ 2<z<l, O<t<z

This means that vrp (9, 1) is a strictly increasing function for all ¢ > 0. Thence, we get

that vrp (z9,t) > 0 for any ¢ > 0 and so FD is totally convex on (0, 1), as asserted. ]

The following technical result will be useful in order to prove that FD is uniformly
convex on (0,1) (¢f. [25, Lemma 4.7, page 172]).

Lemma 1.2.27 (Uniform convexity of a one variable function). Let f : (a,b) — R be twice

differentiable function. If f" (x) = m > 0 on (a,b), then f is uniformly convex there.

Proof. Let x,y € (a,b) with |y — x| =t > 0. Then

101 (50 0 (59 (59 F2 (5

and

=1 (55) e (5 (59 - C2 ()

for some «, 5 € (a,b). Therefore

g (52) - CE (50 2 (5> 2

as asserted. O]

The following result follows immediately from the previous lemma (cf. [25, Proposition
4.8, page 172]).

Proposition 1.2.28 (Uniform convexity of D on (0,1)). The function FD is uniformly

convezx on (0,1).

Proof. This result follows immediately from Lemma |1.2.27 because FD" (z) = 4 for all
z € (0,1). O

Now, assume that X = R". In this case the Boltzmann-Shannon entropy is the function
BS, : R}, — R defined by

BS, (z) := Zla:Z log (z;) —x;, xeRY,.
i=1

The following result shows that BS,, is a totally convex function on R’ (c¢f. [25, Proposi-
tion 4.19, page 178]).
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Proposition 1.2.29 (Total convexity of BS,, on R ). The function BS, is totally convex

on R% . and its modulus of total convewity satisfies

t t t
= ] . - —
ves, (2,1) 2 {Sidn {IZ [(1 - xz\/ﬁ> log (1 - xl\/ﬁ) xz\/ﬁ] } '

Proof. Let BS : [0, +o0) — R be the convex and continuous function defined by

zlog(x) —x, x>0

@(m) ::{ 0 xz =0.

It is clear that the restriction of BS to (0, +o0) is exactly BS. The function BS,, : R?, — R
defined by

is convex, continuous and its restriction to R | is exactly BS,. Let

VRS, (ZL‘,t) = 1nf{Dm(y,a:) : yERZ,L-a ||y—xH = t}

Since the set {y € R? : |y — z|| = ¢} is compact in R” and Dgg— (-, z) is continuous on this

set, there exists y € R” such that |z — g|| = ¢ and

vss, (1,t) = vgs, (v,t) = Dgs; (§,2) = ), Dgs (i 1)
=1

The modulus of total convexity of BS is given by ({1.2.10)) and is continuous in t. Therefore
we can apply Proposition |1.2.11|(vi) and obtain that, for each 1 <7 < n,

Dgs (Ui, x:) = vps (i, | — Uil) -
Hence

vgs, (©,t) = Z vgs (i, |15 — il) - (1.2.13)
i=1

When ¢ > 0, we have that |z; — 7;| > 0 for at least one index 7. As noted in Proposition
1.2.23] the function BS is totally convex. Consequently, vgs (s, |x; — 7:]) > 0 for at least
one index . This and (1.2.13) show that, if t > 0, then vgs, (z,t) > 0, i.e., BS, is totally

n
convex on R _ .
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Since for at least one index iy we have |z; — g;| = t/4/n, we deduce from ([1.2.13)) that

n

vss, (,1) = Z vps (i, [2i — Gil) = vs (Tigs |Tio — Yio )
=1

> vgs (i, t/v/n) = min {vas (@i, t/v/n)}.

When combined with ((1.2.10)), this inequality completes the proof. O]

1.2.3 The Bregman Projection

If f is strictly convex on int dom f, then so is Dy (-, z). Therefore, if f is strictly convex
on intdom f and if K is a subset of X such that int dom f [ K # &, then there exists at
most one point projl. (x) € int dom f () K such that

Dy (proj}; (x) ,91:) = inf {Df (y,x) : y € intdom f ﬂ K} : (1.2.14)

This point (if any) is called the Bregman projection of x € intdom f onto K (cf. [45]). A
question of essential interest in the sequel is whether, and under which conditions concerning
the function f, the Bregman projection pro jf( (x) exists and is unique for each = € int dom f.
The following three conditions are sufficient for ensuring the existence and uniqueness of
the Bregman projection projl (z) for each z € int dom f.

(A1) The set dom f is closed with nonempty interior and f is Gateaux differentiable on
int dom f.

(A2) The function f is strictly convex and continuous on dom f.

(A3) For each x € int dom f and for any real number «, the sub-level set lev?! (z) defined
by
lev?s (v) = {y e dom f : Dy (y,7) < a}

is bounded.

Applying Proposition [1.1.10{v) and (vi), we deduce the following result (cf. [35, Corollary
1.1.6, page 8]).

Proposition 1.2.30 (Continuity of the Bregman distance). Let f : X — (—o0, +0] be a
convex function such that intdom f # . If f is continuous on intdom f, then, for any
x € intdom f, the function f°(x,-) is finite and Lipschitzian on X. Also, the function
D¢ (-, ) is locally Lipschitzian on int dom f. In particular, these statements hold when f

1s lower semicontinuous.

Now we prove that Conditions (A1)—(A3) guarantee that there exists a unique Bregman
projection for any x € int dom f (¢f. [36, Lemma 2.2, page 273]).
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Proposition 1.2.31 (Existence and uniqueness of the Bregman projection). Let f: X —
(—oo, +0] be a function which satisfies Conditions (A1)-(A3) and let K be a nonempty,
closed and convex subset of X such that int dom f (| K # &. Then the Bregman projection

projl. (x) exists and is unique for any x € int dom f .

Proof. Let z € intdom f () K and define r = Dy (z, ). Denote by C' the following intersec-
tion: int dom f () K ()lev?s (x). The set C' is nonempty, bounded, closed and convex and,
thus, it is weakly compact. The function Dy (-, z) is convex and continuous (see Propo-
sition and, therefore, weakly lower semicontinuous on the weakly compact set C.
Consequently, Dy (-, ) achieves its minimal value at a point of C'. This point obviously

satisfies
Dy (projﬁ (x) ,x) = inf {Df (y,x) : y € intdom f ﬂ K}

and it is the unique point with this property since Dy (-, x) is strictly convex. O]

Proposition shows that Conditions (A1)—(A3) are sufficient to ensure that the
Bregman projection operator & — projl (z) : intdom f — K is well defined for any
nonempty, closed and convex subset K of X such that intdom f (K # (. Verification
of these conditions, and especially of Condition (A3), in particular, may be, sometimes,
difficult. In the pervious section we proved several properties of totally convex functions.
This class of functions is also important here since any totally convex function which
satisfies Condition (A1) also satisfies Condition (A3).

The following result shows that in finite-dimensional spaces, functions which satisfy
Conditions (A1) and (A2) also satisfy Condition (A3). If the space is of infinite-dimension,
then totally convex functions which satisfies Condition (A1) also satisfy Condition (A3)
(cf. |36, Lemma 2.5, page 274]).

Proposition 1.2.32 (Property of totally convex functions). Let f : X — (—o0, +o0] be a
totally convex function which satisfies Condition (A1). Then f satisfies Condition (A3).
Moreover, if the Banach space X has finite dimension and, in addition to Condition (A1),
the function f also satisfies Condition (A2), then f is totally conver and the modulus of

total convexity vy (x,-) is continuous from the left on (0,4o00) for any x € X.

Proof. 1f the result does not hold, then for some « € R, there exists an unbounded sequence

. Dy . . ..
{un}, oy in levy? (x). Hence, for each nonnegative integer n, we have from Proposition

1.2.11(ii) that
a = Dy (up, 1) = vy (4, |z = un|) = |z —unf vy (2,1).

Since vy (x,1) > 0 and lim, e |7 — u,| = 00, it results that o cannot be finite and this is

a contradiction.
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Now suppose that X is of finite dimension and f is continuous and strictly convex on
the closed set dom f. Fix x € intdom f and ¢ € (0, +00). Note that the set

{yedom f: |z —y| =t}

is compact in X since it is bounded and closed. We also know that Dy (-, z) is continuous
on dom f (see Proposition [1.2.30). Consequently, there exists a point y € dom f with
| —y|| = t such that vy (z,t) = Dy (y,x). Since f is strictly convex on dom f, we have

from Proposition [I.1.10[iii) that
oo y—x) < fly) - f(z).

This implies that Dy (y,x) > 0 (see Remark [1.2.6). Hence vy (2,t) = Dy (y,x) > 0 and
this proves that f is totally convex.

Now, suppose that ¢ € (0,+0o0) and let {t,},.y < (0,+o0) be an increasingly sequence
that converges to ¢. For each nonnegative integer n, let y, € dom f be a point such
that ||z —y,| = t, and vy (x,t,) = Dy (yn,x). The sequence {y,}, .y is bounded since
Let
¥ = limy_0 Yn,. Then y € dom f and |z — g| = ¢. Since, for any k € N, v (2, 1) = vy (x,1,),

{t.},en converges. Hence, there exists a convergent subsequence {yy, },cn Of {Un},en-

and the sequence {vy (,t,)}, . is increasing, we get

ve(z,t) = lim vy (2,t,) = lim vy (2, t,,) = im Dy (yn,,z) = Df (§,x) = vy (x,1).

n—o0 - k—o0 - k—o0
Consequently, vy (x,t) = lim,, o V¢ (@, 1), i.e., vs (z,-) is continuous from the left at ¢. O

Proposition shows that if f satisfies Conditions (A1l)-(A3), then the Bregman
projection exists and unique. The next result shows that the Bregman projection exists
and is unique also under two different conditions (c¢f. [41, Proposition 4.1, page 21]). One
of the conditions is coercivity.

Definition 1.2.33 (Coercivity). A function f: X — (—o0,400] is called
(i) coercive if im0 f () = +00;
(ii) super-coercive if limy,)e (f () /|2]) = 4.

Proposition 1.2.34 (Another existence and uniqueness result). Let f : X — (—0, +o0]
be a strictly convex function on dom f. Let x € intdom f and let K < intdom f be
a nonempty, closed and convex set. If the sub-level sets levgf (x) are bounded for any
a € |0, +o0), then there exists a unique Bregman projection of x onto K with respect to f.

In particular, this happens if any of the following conditions hold:
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(i) f is totally convex at each point of dom f;
(i) f 1s super-coercive.

Proof. Since f is strictly convex on int dom f, so is Dy (-, ). This guarantees that there is
no more than one vector y satisfying (1.2.14)). Since the function Dy (-, z) is also convex,
lower semicontinuous and lev?’ () are bounded for any «a € [0, 4-c0), it results that D; (-, z)
has at least one minimizer in the convex set K, that is, the Bregman projection of x onto

K exists and is unique.

(i) Suppose that f is totally convex and that, for some a > 0, the set lev?’ (z) is
unbounded. Then there exists a sequence {y,},.y contained in lev2’ (z) such that
lim,, o |yn| = +o0. From the definition of the modulus of total convexity (see (1.2.6])),

for any = € int dom f and for any n € N such that ||y, — z| = 1, one has from Propo-

sition [1.2.11((ii) that
0> Dy () = vg (@ lgn —2l) = Iy —all vy (2. 1). (1.2.15)

Since f is totally convex at z, it results that v;(x,1) > 0. Therefore, by letting
n — oo in (1.2.15)) one gets a contradiction. Hence the set lev’s (x) is bounded for all

a € [0, 400).

(ii) Now suppose that f is super-coercive and that, for some o > 0, there exists a sequence

{Un}, e contained in lev?’ (z) such that lim, ,« [y.] = +o0. Then from Proposition

1.1.29(v) we get

az Dy (yn,x) = [ (yn) = [ (2) =V (@) yn —2)
= [ ) + [ (V] (2)) =<V [ (2) 90

Now from the Cauchy-Schwarz inequality we get

az f* (V@) + fyn) = [V @), [ynl

N VF @) + ] (% vy <x>||*) . (1.2.16)

Letting n — oo in (1.2.16)) one gets a contradiction. Hence the set lev2’ () is bounded
for all o € [0, +0). O

Similarly to the metric projection in Hilbert spaces, the Bregman projections have a vari-
ational characterization. These properties extend to the Bregman projection with respect
to totally convex and admissible functions (¢f. [41l Corollary 4.4, page 23]).
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Proposition 1.2.35 (Characterizations of the Bregman projection). Let f : X — (—o0, +0]
be an admissible function which is totally convex. Let x € intdom f and let K < int dom f
be a nonempty, closed and convex set. If x € K, then the following statements are equiva-

lent.
(i) The vector T is the Bregman projection of x onto K.

(ii) The vector T is the unique solution of the variational inequality

(Vf(x)=Vf(2),z—y)=0, Vye K. (1.2.17)

(iii) The vector & is the unique solution of the inequality

Dy (y,z) + Dy (2z,2) < Dy (y,2), Yye K.

Proof. (i) < (ii) Suppose that (i) holds. Then, for any v € K one has Dy (Z,z) < Dy (u, ).
In particular, this holds for w = (1 — 7) & + 7y for all y € K and for all 7 € [0, 1]. Since f is
strictly convex and continuous function (see Corollary so it is also true for Dy (-, y)
(see Proposition [1.2.30), one obtains from the subdifferential inequality (see (1.1.5)) that

0> Dy (&) = Dy (1 =7) i +79.9) > ([Dr ()] (1=7) & +79) .7 (2~ 1) ).
where [Dy (wy)] = Vf = Vf (y). Therefore, for any 7 € (0,1], one has
0=(Vf((l=7)2+71y) = V[(y),Z—y)
and, letting here 7 — 0T, one obtains because the function
VO =VIW).2—y

is continuous due to the norm-to-weak” continuity of the gradient Vf (see Proposition
1.1.21). Now, suppose that & € K satisfies (|1.2.17)). Then, for any y € K, one has again
from the subdifferentiability inequality (see ([1.1.5)) that

Dy (y,2) = Dy (2,2) 2 {[Dy ()] (2),y =) = (VF (2) = Vf () .y — ) > 0,

showing that # minimizes D; (y,-) over K, that is, Z = proj} (z).
(ii) < (iii) It is sufficient to observe from the three point identity (see (1.2.2)) that

Dy (#,2) + Dy (y, &) — Dy (y,2) =<V f (2) =V (2), & —y)
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for any y € K. O]

Computing Bregman projections may not be an easy task. In the special case where
f =1, pe (1,+0), and X is a uniformly convex and smooth Banach space (see Defini-
tion [I.1.33(i) and (iv)), Butnariu, Iusem and Resmerita found an explicit formula for the
Bregman projection onto hyperplane or half-space (cf. [36, Theorem 2, page 326]).

Proposition 1.2.36 (Bregman projection onto hyperplane). Let X be uniformly convex
and smooth Banach space and let f, = |-|*, p € (1,400). Denote

K={ze X :{ 2z =a},

where £ € X\ {O*} and o € R. The following statements are true.

(i) For any x € X the equation

<§, TE(BE+ J, (:c))> — (1.2.18)

has solutions [ such that sign = sign (o — (£, x)).

(ii) The Bregman projection projf{ (x) is given by
projk (z) = J, (B + J, (x)) (1.2.19)

with f € R being a solution of the equation (1.2.18)).

(iii) Formula (1.2.19) remains true when K is the half-space {z € X :{{,z) = a} and f € R
1s a nonnegative solution of ((1.2.18)).

Remark 1.2.37. As we already noted, when the Banach space X is a Hilbert space H and

f = |-|?, then the Bregman distance is the metric distance squared (see Remark .

Therefore in this setting the Bregman projection is exactly the metric projection. Here, for

each x € H and each nonempty, closed and convex subset K of H, the metric projection

Py (x) is defined as the unique point which satisfies
|z = Pk (z)]| = inf {|z —y[ -y e K}. o

The metric projection is characterized in the following way (cf. [11, Theorem 3.14, page
46]).

Proposition 1.2.38 (Characterization of the metric projection). Let K be a nonempty,

closed and convex subset of H. Given x € H and z € K, then z = Py () if and only if

{x —z,y—2)<0, YyekK.
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As a consequence we have the following properties of the metric projection (cf. [11,
Proposition 4.8, page 61]).

Corollary 1.2.39 (Properties of the metric projection). Let K be a nonempty, closed and

convex subset of H. The following statements are true.

(i) For any x,y € H we have

| Pxc (x) = P (y)|* < & =y, P () = P ()

(ii) For allx € H and y € K we have

lo = Pk (2))” < 2 =yl — |y — Px ()]

(iii) If K is a closed subspace, then Pk coincides with the orthogonal projection from
H onto K, that is, for any x € H, the vector x — Py (x) is orthogonal to K (i.e.,
{(x — Pg () ,y) =0 for each y € K ).

Remark 1.2.40 (Special cases of the metric projection). Let K be a nonempty, closed
and convex subset with a particulary simple structure. Then the projection Px has a closed

form expression as described below.

(i) If K ={xeH:|x—ul <r}is a closed ball centered at v € H with radius r > 0, then

(o—u)
4oz K
Py (2) = { SR A (1.2.20)

x, re K.

(i) If K = [a,b] is a closed rectangle in R™, where a = (ay,as,...,a,)" and b =

(b1, ba, . .. ,bn)T, then, for any 1 <i < n, Px (z) has the it coordinate given by
a;, x; < a;,
(Px (%)), =< i, ;€ [ai,bi], (1.2.21)
bi, €T; > bz

(ili) If K ={ye H :{a,y) = a} is a hyperplane, with a £ 0 and o € R, then

Pg () = v — —5—a. (1.2.22)



44 Preliminaries

(iv) If K ={yeH:{a,y) < a} is a closed half-space, with a # 0 and o € R, then

e (x> a
Pk (z) = el (1.2.23)
z, {a,z) < a.

(v) If K is the range of an m x n matrix A with full column rank, then Pk (x) =
A (A*A)_l A"z where A* is the adjoint of A. <&

The following example appears in [12], Definition 3.1, page 66].

Example 1.2.41 (Metric projection - intersection of two half-spaces). In the Hilbert space

setting, the orthogonal projection onto the intersection of two half-spaces
T = {ZL‘ eH: <CL17fL’> < b1,<a2,x> < bg} (al,ag € H,bhbg € R)

is given by the following explicit formula:

x, a<0and f <0,
x — (B/v) as, a <7 (B/v) and B >0,
PT (l’) =
r— (a/p) ay, f<7(a/u) and a > 0,
z + (a/p) (maz —vay) + (B/p) (way — pas) , - otherwise,
where here

™= <a17a2>7 H= HCL1||2, V= Ha2”27 p=pv—= 7‘-27 a = <CL1,$> — b andﬁ = <CL2,I‘> — by.
1.2.4 Properties of Bregman Distances

With an admissible function f : X — (—o0,400] (see Definition [1.2.1]), we associate the
bifunction W/ : dom f* x dom f — [0, +00] defined by

W x) = f(2) =&y + [ (6). (1.2.24)
Now we list several properties of the bifunction W/ (cf. [74, Proposition 1, page 5]).

Proposition 1.2.42 (Properties of W/). Let f : X — (—o0, +00] be an admissible function.

The following assertions are true.
(i) The function W7 (-, x) is convex for any x € dom f.

(ii) W/ (Vf(z),y) = Dy (y,z) for any x € intdom f and y € dom f.
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(iii) For any &,m € dom f* and x € dom f, we have
W (&) + (. (V) © —a) < W €+ ).

Proof. (i) This is clear since f is convex (see Remark [1.1.26(i)).

(ii) Let x € int dom f and let y € dom f. It is known from Proposition [1.1.29(v) that

f@)+ (V@) =(Vf (@),

Therefore
W (V[ (x),y) = fy) —VF@),p+f (V)
=)= Vf(@),y+KVSf(z),z)— f()]
=fW —f@)—<Vf@),y—a)
= Dy (y, @)

(iii) Let z € dom f be given. Define a function g : X~ — (—o0, +0] by g (&) = W/ (¢, z).
Then

V(©) =V (£ =) ©) =V (© -

Hence from the subdifferentiability inequality (see ([1.1.5))) we get

gE+m—9© = (Vi ©-n),

that is,
W (&) + (0 VI (@) <W! (g+n,2)

for all ¢&,m € dom f*. O]

In order to prove several properties of Bregman distances we first prove simple observa-
tion of strictly convex functions which is essential for our later study (cf. [74, Lemma 6.1,
page 14]).

Lemma 1.2.43 (Property of strictly convex functions). Let f : X — (—o0, 4] be a
strictly convex function and let {t;}~ | < (0,1) which satisfy Y»  t; = 1. Let {z;}1, be a

subset of int dom f and assume that

f (Z tw) = Ztif () . (1.2.25)

Then x1 =29 = ... = xN.
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Proof. Assume, by way of contradiction, that xy # z; for some k,l € {1,2,..., N}. Then

from the strict convexity of f we get

tk tl tk; tl
T + x| < Tr)+ —J (x1) .
f(tk—i-tl F tr + 1 l) tk+tlf( k) tk-l-tlf( l)

Using this inequality, we obtain

N
tr t
f(; ) f((k l)<tk+tlk tk+tll) Z >

i#k,l

< (tk + tl) f ( bk e+ b l) + Z tif (:EZ)

s xXr
ty + 1 tr + 1 b

<o) (T )+ e e)) + 3 6 )

b+l ikl

tr + 1
N
= Z tif ().
i=1
This contradicts the assumption (|1.2.25)). O

Using the previous technical result we now prove the following lemma which concerns
the Bregman distance (c¢f. [74, Lemma 6.2, page 15]).

Lemma 1.2.44 (Basic property of Bregman distances). Let f : X — (—o0,+0]| be a
Legendre function and let {t;}~, < (0,1) which satisfy S t; = 1. Let z € X and let

{2} | be a finite subset in int dom f such that
N N
i=1 i=1

Then x1 =29 = ... = xN.

Proof. Equality (1.2.26)) can be reformulated as follows (see Proposition [1.2.42(ii))

Dy (z, Vi (Z tVf (acl))) =W/ <Z tV f () ,z) = Ztin (z,m;). (1.2.27)

i=1

Now from the definition of W/ (see (1.2.24))) and the definition of the Bregman distance
(see (1.2.1))) we get that the second equality in ((1.2.27)) can be written as

F@+f <Z LtV f (fﬂi)) —<Z tVf(x),z )= th’ (f (2) = [ (@) =<V (i), 2 —xi)) .
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Thus
N N
*
f (Z LV f (ﬁ)) = > iV f (@) ) — f (22)
i=1 1=1

Since f (z;) + f* (Vf (2:)) = (V[ (2;),2;) for any 1 <i < N (see Proposition [L.1.29(v)),

we obtain v v
f (Z LtV f (xi)> = th’f* (Vf ().

Since f Legendre, f* is strictly convex on int dom f* and from Lemma |1.2.43[it follows that
Vf(z1) =Vf(ze2) =... =Vf(xy) and therefore 21 = 25 = ... = xy, as claimed. O

The following proposition will be very useful for proving our main results. This result
shows an important property of totally convex functions (c¢f. [96, Proposition 2.2, page 3]).

Proposition 1.2.45 (Convergence in the Bregman distance). Let f : X — (—o0, +o0]

be a convex function and take x € dom f. Then f s totally convex at x if and only if

limy, o0 Dy (Yn, x) = 0 implies that lim,, o |y, — x| = 0 for any sequence {y,}, . < dom f.
Proof. Suppose that f is totally convex at z (see Definition [1.2.6). Take {y,,}, oy < dom f
such that
7}1_1}010 Dy (Yn,z) = 0.
Since, by definition, vy (z, |y, — z|) < Dy (yn, x) for all n € N, it follows that
lim vy (z, |y, — z|) = 0. (1.2.28)
n—0oo

Suppose, by way of contradiction, that there exist a positive number £ and a subsequence
.~ of {y, such that |y,, — x| = € for all £k € N. It was shown in Proposition

Yny S keN Yn$nen Yny, p

1.2.11fiv) that the function v (z,-) is strictly increasing whenever = € int dom f. It is easy

to see that this result is still valid when x € dom f. Consequently, we get that
klim Ve (.l’, Hymc - l‘”) > Vy (:1;,5) > Vy (l’, 0) =0,
—00

contradicting ((1.2.28). Conversely, suppose that there exists ¢y > 0 such that v; (z,%y) = 0,

that is, there exists a sequence {y,} _ © dom f such that |y, — x| = t¢ and in addition

neN
limy, o0 D (Yn,x) = 0. Then lim,,_, ||y, — 2| = 0 yields ¢y = 0, a contradiction. Therefore,

the function f is totally convex at x € dom f. O

The following result (cf. [35, Lemma 2.1.2, page 67]) shows a strong connection between
the two concepts of sequential consistency (see Definition |1.2.20)) and of total convexity on
bounded subsets (see Definition (1.2.10)).
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Proposition 1.2.46 (Characterization of sequential consistency). A function f : X —

(—o0, + 0] is totally conver on bounded subsets if and only if it is sequentially consistent.

Proof. Suppose that f is totally convex on bounded subsets (see Definition and
suppose, by way of contradiction, that there exists two sequences {x,}, .y and {y,}, .y in
dom f and int dom f, respectively, such that {z,}, .y is bounded and lim, .o Dy (Y, z,) = 0
but {||y, — 2|}, .y does not converge to zero. Then, there exists a positive number o and
subsequences {, } ey Of {Zn},eny a0 {Un, }ren OF {Un ey, Such that o < |y, — 2, | for all

n € N. The set E of all x;’s is bounded since {x,}, .y is bounded. Therefore, for all n € N,
we have from Proposition [[.2.11|(iv) that

Df (ynk’xnk) = Uy (xnk’ ”ynk _mnk”) = Vf (xnkﬁa) = igg’/f (33,04),

which implies that inf,ep vy (, a) = 0 and, thus, contradicts our assumption.
Conversely, suppose, by way of contradiction, that there exists a nonempty and bounded
subset E of dom f such that inf,ep vf (,t) = 0 for some positive real number ¢. Then there

exists a sequence {z,}, . contained in E such that, for each positive integer n, we have

1 :
— > vy (2, t) = mf{Dy (y, @) ¢ Iy — 2a| = 2}

Therefore, there exists a sequence {y,} _ < dom f such that, for each integer n > 1, one

neN
has ||y, — x,| = t and Dy (yn,z,) < 1/n. The sequence {z,}, . is bounded because it is

contained in E. Also, we have that lim,,_,o Dy (yy, z,) = 0. Hence,
0<t=lim ||y, — 2, =0
n—o0

and this is a contradiction. O]

Now we prove several technical results which will be very useful in the proofs of our
main results (c¢f. [90, Lemma 3.1, page 31| and [74, Proposition 10, page 10]).

Proposition 1.2.47 (Boundedness property - left variable). Let f : X — (—o0,+o0]

be a Legendre and totally convex function. Let x € intdom f and {x,} c dom f. If

neN

{Dy (wn, )}, oy i bounded, then the sequence {x,}, . is bounded too.

Proof. Since the sequence {Dy (x,, )}, is bounded then there exists M > 0 such that
D¢ (z,,,x) < M for any n € N. Therefore, from (1.2.6]), the sequence {vy (z, |z, — z|)}
is bounded by M since

neN

ve(x, |z, —z|) < Dy (2, 2) < M. (1.2.29)

The function f is totally convex (see Definition|1.2.8]), therefore from Proposition |1.2.11iv)
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the function vy (z, -) is strictly increasing and positive on (0, o). This implies, in particular,
that vy (x,1) > 0 for all z € X. Now suppose, by way of contradiction, that the sequence

{,},,ey is not bounded. Then it contains a subsequence {z,, },y such that
lim |z, | = +oo.
k—aoo

Consequently, limy_, |2, — x| = +o0. This shows that {vy (z, |2, — z|[)},,y is not bounded.

Indeed, there exists some ky > 0 such that |z,, — x| > 1 for all & > ko and then, from

Proposition [1.2.11{(ii), we see

Y vy (2, 00, — 2]} > T e, — 2]y (2,1) = o5,

because, as noted above, vy (z,1) > 0. This contradicts (1.2.29). Hence the sequence

{2}, 15 indeed bounded, as claimed. O

Proposition 1.2.48 (Boundedness property - right variable). Let f : X — (—o0, 40| be
an admissible function such that Vf* is bounded on bounded subsets of intdom f*. Let
r € dom f and {x,}

{xn}neN'

neny © intdom f. If {Dy (x,2,)}, .y 15 bounded, so is the sequence

Proof. Let 8 be an upper bound of the sequence {Dy (z, x,)} Then from the definition

of W/ (see ([1.2.24)) and Proposition [1.2.42(ii) we obtain

F@) =<V (@) 2 + [ (Vf (20) = WV (20) ,2) = Dy (2, 2,) < B.

neN’

This implies that {Vf (z,)},y 15 contained in the sub-level set, lev® (8 — f (z)), of the
function ¢ := f* — (-, ). Since the function f* is proper and lower semicontinuous (see
Remark , an application of the Moreau-Rockafellar Theorem (see [7, Fact 3.1, page
623]) shows that ¢ is super-coercive (see Definition [1.2.33]ii)). Consequently, all sub-level
sets of ¢ are bounded. Indeed, if this is not the case then there is a sequence {,},  in

lev? (a) such that [|€,] — o0 as n — co. Then we have that

(&) _ @

<

16l lgal

This, since 1 is super-coercive, implies that the left-hand side converges to o0 as n — oo,

which is a contradiction since the right-hand side converges to zero.
Hence the sequence {Vf (2,)},oy is bounded. By hypothesis, Vf* is bounded on
bounded subsets of int dom f*. Therefore the sequence {z,, = Vf* (V f (2,)) }neN is bounded

too, as claimed. O
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Remark 1.2.49. The previous result can be also proved by combining known results. More
precisely, according to [7, Theorem 3.3, page 624], f is super-coercive (see Definition
(zz)) because dom V™ = X* and Vf* is bounded on bounded subsets of X*. From
[7, Lemma 7.3(viii), page 642] it follows that Dy (x,-) is coercive (see Definition[1.2.53(i)).
If the sequence {x,}, were unbounded, then there would exist a subsequence {xy, }, . With
|@n, | = © as k — co. This, since D¢ (x,-) is coercive, implies that D¢ (z,,,) — © as

k — oo, which is a contradiction. Thus {x,}, .y is indeed bounded, as claimed. &

Proposition 1.2.50 (Property of Bregman distances). Let f : X — R be a Legendre
function which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of X. Suppose that a sequence {xy}, o i bounded and {e,}, . is a sequence which
satisfies lim, o |en| = 0. If

lim Dy (zp41,2,) =0 (1.2.30)

n—aoo

then
lim Dy (xps1, 2, + €,) = 0.

n—oo

Proof. From Proposition |1.2.46] (1.2.30) and the fact that {x,},y is bounded, we have

lim |z,41 — 2,/ = 0. (1.2.31)
n—a0
It follows from the definition of the Bregman distance (see (|1.2.1))) that

Dy (zp,xn +e,) = fan) — f(xn+e,) —Vf(xn+en), 20— (2, +6€,))
= f(x,) — fon+e) +{Vf(x,+en),en).

The function f is bounded on bounded subsets of X and therefore Vf is also bounded
on bounded subsets of X (see Proposition [1.1.15). In addition, f is uniformly Fréchet

differentiable on bounded subsets of X and therefore f is uniformly continuous on bounded
subsets of X (see Proposition [1.1.22{i)). Hence, since lim,, 4 |e,|| = 0, we have

lim Dy (zy, z, +e,) = 0. (1.2.32)

n—oo

The three point identity (see ([1.2.2))) implies that

Df ($n+1axn + en) = Df (xn+la xn) + Df (l’n, Tp + en)
+ <vf ($n) - Vf (:Bn + en) y Tp4+1 — xn> .
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Since V f is bounded on bounded subsets of X, we get from ((1.2.30]), (1.2.31)) and (|1.2.32)

lim Df (:L‘n-‘rl, Tp + 671) =0,

n—o0

as required. H

The following result is frequently used in this thesis because of the usage of the total
convexity property to prove strong convergence when weak convergence is already known
(cf. [90, Lemma 3.2, page 31]).

Proposition 1.2.51 (Strong converges result). Let f : X — (—o0,+0] be an admissible
and totally convex function, xo € X and let K be a nonempty, closed and convex subset of
dom f. Suppose that a sequence {x,} c dom f is bounded and any weak subsequential

limit of {x,}

neN

belongs to K. If Dy (x,,x0) < Dy (projﬂ (x0) ,xo) for any n € N, then

neN

{z,}, oy converges strongly to projl. (o).

Proof. Denote projl. (zo) = @. The three point identity (see (T.2.2)) and the assumption
that D¢ (2, x0) < Dy (G, x0) yields

Dy (2, @) = Dy (¥n,20) + Dy (0, 0) —(V f (@) = Vf (z0) , 70 — Z0)
< Dy (@, 20) + Dy (wo, @) =<V f () = V[ (20) , 20 — o)
=(Vf (@) = V[(zo),u—z0) —(V[f(W) = Vf(xo),zn —x0)
=(Vf (@) = V[ (o), —zn). (1.2.33)

Since {z,},.y is bounded, it has weakly convergent subsequence {z,,},.y and denote its

weak limit by v. We know that v € K. It follows from ([1.2.33)) and Proposition [1.2.35(ii)
that

limsup Dy (zy,,0) < limsup(Vf (@) — V[ (xo), 0 —xn,) =<V f(a) = Vf(x),u—v)<0.

k—o0 k—o0

Hence

lim Dy (2, ,a) = 0.

k—o0
Since f is totally convex (see Remark [1.2.9)), Proposition [1.2.45( now implies that z,, — u
as k — co. It follows that the whole sequence {z,}, . converges strongly to @ = proj}[{ (x0),

as claimed. O]

Definition 1.2.52 (Weakly sequentially continuous). A mapping A : X — X" is called

weakly sequentially continuous if x, — x implies that Ax, — Ax.

Using this definition for the gradient V f leads to the following result (cf. [74, Proposition
9, page 10]).
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Proposition 1.2.53 (Weak convergence result). Let f : X — (—o0,+o] be a Legendre

function such that V f is weakly sequentially continuous. Suppose that a sequence {x,},

in int dom f is bounded and
lim Dy (u,x,) (1.2.34)

n—eo

exists for any weak subsequential limit u of {x,} Then {x,}, . converges weakly.

neN-

Proof. 1t is suffices to show that there is exactly one weak subsequential limit of {x,}, -

Since {z,}, . is bounded and X is reflexive, there is at least one weak subsequential limit of
{Zn},cn- Assume that u and v are two weak subsequential limits of {z,}, . From
we have that the limit

lim (Dy (u, z,) — D¢ (v, z,,))

n—o

exists. From the definition of the Bregman distance (see (1.2.1))) we get that

Dy (u,2n) = Dy (v,20) = [f () = f (2n) =V f (@) s u = 23]
—1f (0) = f(2n) =<V F (2n) ;0 = 20))]
= [ ) = f () +{Vf(@n), 0 —w

and therefore
lim < ; f ('xn) , U — u>
n—0o0

exists. Since u and v are weak subsequential limits of {z,} ., there are subsequences
{Tn, ey and {2}, oy Of {20} ,ey such that z,, — v and x,,, — v as k — o0 and m — oo,
respectively. Since V f is weakly sequentially continuous, we have that V f (z,, ) — V f (u)
and Vf (z,,) — V[ (v) as k — o0 and m — oo, respectively. Then we have

Vfw),v—uy=lim (Vf(zg,),v—u) = lim (Vf(z,),0—u
= lirréo<Vf(xnm),v—u> =(Vf),v—uy.
Thus (V[ (v) = Vf (u),v —uy = 0 implies that u = v since f is strictly convex because f
is Legendre. O

The following result will play a key tool in the proof of several results in this thesis.

Proposition 1.2.54 (Closed and convex half-space). Let f : X — R be an admissible
function. Let u,v € X. Then the set

K ={ze X :Dy(z,u) <Dy (z,0)}
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is a closed and convex half-space.

Proof. 1f K is empty then the result is obvious. Now assume that K is nonempty. Directly
from the definition of the Bregman distance (see ([1.2.1))) we can write the set K in the

following way:

K ={2e X :(Vf(v) =V[(u),z) <{Vf(u),uy =V f@),v)+[fu)—f)}

This of course proves that K is a half-space. We first show that K is closed. Let {z,}

neN

be a sequence in K which converges strongly to z. From the definition of the Bregman

distance (see ([1.2.1))), for any n € N, we have that

[ (zn)—f (w)—(Vf(u),z, —uy =Dy (zp,u) < Dy (2n,0) = f(2,)—f (0) <V f(v),2, —v),

that is,
f) = f(u) <{Vf(u),zn—u) =V (v), 20 —v).

Letting n — oo, we get that
f)=F W) <{Vf(u),z=u—=(Vf{),z-v),
that is,
f(2) = F(w) =V f(u),z=u) = Dy (z,u) < Dy (2,0) = f(2) = f(v) =<V (v),2 = v),

which means that z € K, this proves that K is closed. Now we show that K is convex. Let
21,29 € K and t € (0,1). Denote z; = tz; + (1 — ) 2. Then

f)=f(uw) <Vf(u),z —w =V ),z =)

and
f ) = f(u) <V (u), 2 —u)y =V f(v), 20— ).
If we multiply the first inequality by ¢ and the second by (1 — ¢) and summing up, then we
get
f)=fw) <<V, z—uy—(Vf{),z—uv,
that is,

fz) = f(w) =<V f(u),z—wy =Dy (2,u) < Dy (z,0) = f(2) = f (v) =V [ ()2 —v)

which means that z; € K. This proves that K is convex. O
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1.3 Operators

In this section we introduce and study several classes of nonexpansive operators. The
theory of nonexpansive operators in Banach spaces is a recent branch of nonlinear functional
analysis. It has flourished during the last hundred years with many papers, results, and
still many unsolved problems. The simplest and perhaps the most useful result in Fixed
Point Theory is the Banach fixed point theorem from 1922. The theorem holds for any
complete metric space, in particular for Banach spaces.

Let K be a nonempty and convex subset of a Banach space X. An operator T': K — K
is said to be nonexpansive (or 1-Lipschitz) if

|Tx = Ty| < |x—y| (1.3.1)

for all z,y € K. The operator T is called a strict contraction if its Lipschitz constant
smaller than 1. The Banach fized point theorem is the following result (cf. [56, Theorem
1.1, page 2]).

Theorem 1.3.1 (Banach’s fixed point theorem). Let K be a nonempty, closed, and convex
subset of a Banach space X. If T : K — K 1is a strict contraction, then it has a unique

fixed point p and lim,, . T"x = p for all x € K.

Remark 1.3.2 (Nonexpansive operator without fixed point). Theorem requires the
Lipschitz constant, L, of T to satisfy L < 1. If L =1, i.e., T" is nonexpansive (see ((1.3.1])),
then T need not have a fized point as the example T (x) = x + 1, x € R, shows. &

Definition 1.3.3 (Fixed point property). We say that a closed and convex subset K of X
has the fized point property for nonexpansive operators if every nonexpansive T : K — K

has a fized point.

Browder [28] proved in 1965 that if X is uniformly convex Banach space (see Definition
1.1.33|(iv)) and K is closed, convex and bounded, then K has the fixed point property.
Notice that uniqueness may not hold as the example T (z) = z, x € K = [0, 1], shows.

It turns out that nonexpansive fixed point theory in Hilbert spaces can be applied to the
solution of diverse problems such as finding zeroes of monotone mappings and solutions to
certain evolution equations, as well as solving convex feasibility (CFP), variational inequal-
ity (VIP) and equilibrium problems (EP) (these problems will be studied in full detail in
the following chapters of this dissertation). In some cases it is enough to assume that an
operator T : K — K is quasi-nonexpansive, that is,

lp—Tz| < |p— ] (1.3.2)

for all p € Fix (T") and = € K, where Fix (T') stands for the (nonempty) fized point set of T.
There are many papers that deal with methods for finding fixed points of nonexpansive
and quasi-nonexpansive operators in Hilbert spaces. Another class of operators which is
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very useful in Fixed Point Theory is the class of firmly nonexpansive operators. Recall that
an operator T': K — K is called firmly nonexpansive if

[Tz — Tyl? < (Tw — Ty, —y) (1.33)
for all z,y € K.

Remark 1.3.4. It is clear that the following implications hold:
firmly nonexpansive => nonerpansive = quasi-nonerpansive,
where the second implication is true only if Fix (T) # . &

When we try to extend this theory to Banach spaces we encounter some difficulties
because many of the useful examples of nonexpansive operators in Hilbert space are no
longer firmly nonexpansive or even nonexpansive in Banach spaces. For example, the
classical resolvent Ry = (I + A)™" of a maximal monotone mapping A : H — 2* and
the metric projection Pk onto a nonempty, closed and convex subset K of H (for more
details see the relevant chapters). There are several ways to overcome these difficulties.
The way we choose in this thesis is to use Bregman distances (see (1.2.1))) with respect to
convex functions instead of with respect to the norm. Then the definitions of nonexpansive,
quasi-nonexpansive and firmly nonexpansive will be defined with respect to the Bregman
distance instead of with respect to the norm.

These definitions are useful in the setting of Banach spaces since we have several ex-
amples of operators which satisfy them, for example, the Bregman projection and the
f-resolvent (see and (0.0.2), respectively). In addition, if we go back to Hilbert
space and take these new definitions with respect to the function f = (1/2) |-|?, then they
coincide with the usual definitions.

A naive way to define nonexpansive operator with respect to the Bregman distance is
by the following inequality

Dy (Tx,Ty) < Dy (,y)

for any x,y € K < intdom f.

But it turns out that this notion of nonexpansive operators with respect to Bregman
distances encounters several difficulties. This generalization does not satisfy any of the
properties that the classical nonexpansive operators do (for instance, the Bregman projec-
tion is not necessarily Bregman nonexpansive). Therefore it seems that the well-defined
notions with respect to the Bregman distance are firmly, strongly and quasi-nonexpansive.

1.3.1 Bregman Nonexpansive Operators

We fix an admissible function f (see Definition [1.2.1)) and let K and S be two nonempty
subsets of int dom f. We next list significant types of nonexpansivity with respect to the
Bregman distance (see |1.2.1]).
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Definition 1.3.5 (Bregman nonexpansivity). Let K and S be two nonempty subsets of
intdom f. We say that an operator T': K < intdom f — intdom f is:

(i) Bregman firmly nonexpansive (BFNE) if
Vf(Tz) =V f(Ty), Tz = Ty) <<Vf(x) =Vf(y), Tz - Ty) (1.3.4)
for any x,y € K, or equivalently,

D¢ (Tz,Ty) + Dy (Ty,Tx) + Dy (Tx,2) + Dy (Ty,y) < Dy (Tx,y) + Dy (Ty, x).

(1.3.5)
(ii) Quasi-Bregman firmly nonexpansive (QBFNE) with respect to S if
0<{(Vf(x)-Vf(Tz), Txr—pyVere K, peS, (1.3.6)
or equivalently,
Dy (p,Tz) + Dy (Tx,x) < Dy (p, ) . (1.3.7)
(i) Quasi-Bregman nonexpansive (QBNE) with respect to S if
Dy (p,Tx) < Dy (p,xz),Vxe K,peS. (1.3.8)

The class of Bregman firmly nonexpansive operators was introduced first by Bauschke,
Borwein and Combettes in [§] (they call those operators D ;-firmly nonexpansive).

The natural option for the set S in Definition [1.3.5]is the fixed point set of the operator.
Another option that seems to be important in applications is the asymptotic fixed point
set defined first by Reich in [8§].

Definition 1.3.6 (Asymptotic fixed point). A point u € K is said to be an asymptotic
fized point of T : K — K if there exists a sequence {x,}, . in K such that x, — u and

|z — Tx,| — 0 as n — co. We denote the asymptotic fized point set of T by Fix (T).

Remark 1.3.7 (Types of quasi-Bregman nonexpansivity). We will use the following par-

ticular cases.

(i) An operator which satisfies (1.3.7)) (or (1.3.8))) with respect to S := Fix (T') is called
properly QBFNE (or properly QBNE).

(ii) An operator which satisfies (1.3.7)) (or (1.3.8])) with respect to S := F/B((T) is called
strictly QBFNE (or strictly QBNE).

(iii) An operator which satisfies (1.3.7)) (or (1.3.8])) with respect to S := Fix (T') = Fix (T)
is called QBFNE (or QBNE).
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&

Another class of operators which was introduced in [46, [88] is the class of Bregman
strongly nonexpansive operators.

Definition 1.3.8 (Bregman strongly nonexpansive). We say that an operator T : K <
int dom f — intdom f is Bregman strongly nonexpansive (BSNE) with respect to S < dom f
if

D¢ (p,Tx) < Dy (p, x) (1.3.9)

forallpe S and x € K, and if whenever {z,}, . < K is bounded, p € S, and

neN

lim (Dy (p,zn) — Dy (p, Txy)) = 0, (1.3.10)
n—0o0
it follows that
lim Dy (Txy, x,) = 0. (1.3.11)
n—o0

Remark 1.3.9 (Types of Bregman strong nonexpansivity). We will use the following

particular cases.

(i) An operator which satisfies (1.3.9)—(1.3.11)) with respect to S :
properly BSNE.

(ii) An operator which satisfies (1.3.9)—(1.3.11)) with respect to S :

strictly BSNE (this class of operators was first defined in [8§]).

(iii) An operator which satisfies (1.3.9)—(1.3.11)) with respect to S := Fix (T') = Fix (T) s
called BSNE. &

Fix(T) is called

P<1\><(T) is called

The relations among all these classes of Bregman nonexpansive operators are summa-

rized in the following scheme.
strictly I:> strictly :> strictly
QBFNE BSNE QBNE
properly :> properly :> properly
QBFNE BSNE QBNE

Figure 1.3: Implications between types of Bregman nonexpansivity

Remark 1.3.10 (Particular cases - nonexpansivity). Assume that f = |-|* and the space
X is a Hilbert space H. In this case we have that Vf = 21 (where I is the identity
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operator) and Dj (y,x) = |z —y|* (see Remark . Thence, Definition (z')—(z'z'i)

with S = Fix (T) implies the known classes of nonexpansive operators. &

Definition 1.3.11 (Nonexpansivity). Let K be a subset of H. We say that an operator
T: K —His:

(i’) firmly nonexpansive (FNE) if

|Tx — Tyl <{x—y, Tz —Ty), Vo, yeH; (1.3.12)

(11°) quasi-firmly nonexpansive (QFNE) if
[Tz —p|* + [Tz — z|* < = —p|?, (1.3.13)
for any x € H and p € Fix(T), or equivalently,

0<{x—Tzx,Tx —py; (1.3.14)

(i1i’) quasi-nonexpansive (QNE) if

Tz —p|| < |z —p|, Vo eH, peFix(T). (1.3.15)

The analog of Definition for the particular case when f = ||-|*> and the space X
is a Hilbert space H is presented in the following definition. This latter class of operators
was first studied in [32].

Definition 1.3.12 (Strong nonexpansivity). Let K be a subset of H. We say that an
operator T : K — H is strongly nonezpansive (SNE) if it nonexpansive and for any two

bounded sequences {x,}, . and {yn}, o satisfying

lim (2, = yal| = [T2n = Tyal) = 0, (1.3.16)
it follows that
hn;lo ((xn — ypn) — (Txy, — Tyy)) = 0. (1.3.17)

Since the norm variant does not follow from the Bregman case as do the other classes
we emphasize the connection between the two classes of Bregman strongly nonexpansive
and strongly nonexpansive.

Remark 1.3.13 (Connection between BSNE and SNE operators). Let K be a subset of
H. When f = |-|> and S = Fix (T), Definition means that T : K — H is SNE
with respect to Fix (T) if T is QNE (see (1.3.15)) and if for any bounded sequence {z,}

neN
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satisfying
lim (|l = pl* = | Tz = p|?) =0 (1.3.18)

for all p e Fix (T), it follows that
lim |z, — Tx,| = 0. (1.3.19)
n—0oo

One is able to show that, in this case, strong nonexpansivity implies properly Bregman strong
nonexpansivity. Indeed, if T is SNE, the quasi-nonexpansivity is guaranteed by definition.
Now, given a bounded sequence {x,}, . satisfying (1.3.18)) for some p € Fix (T"), we have

lim (a, — p| — [T, — p]) = 0. (1.3.20)

By taking in Definition the sequence {y,}, oy to be the constant sequence defined by
Yn = p for all n € N, we see that (1.3.19) follows from (1.3.17)), so T is properly BSNE, as

clavmed. The converse does not hold in general, mainly because nonerpansivity is required.
Note that if S = l*:i\X(T), the previous tmplication is no longer true. However, in the
finite dimensional case, H = R", if T is continuous, then Fix (T) = Fix (T'). This happens,
in particular, when T is SNE. Therefore, in finite dimensions, any SNE mapping (called
paracontraction in [40)]) is also strictly BSNE.
To sum up, we can say that Bregman strong nonexpansivity turns out to be a general-

ization of strong nonexpansivity. &

Definition 1.3.14 (Asymptotically regular). An operator T : X — X is called asymptoti-

cally reqular if for any x € X we have

lim [Tz — T x| = 0. (1.3.21)

n—o0

1.4 Monotone Mappings

Definition 1.4.1 (Notions of mappings). Let A : X — 2X" be q mapping.

(i) The domain of A is the set

domA={reX: Az # J}.

(ii) The range of A is the set

ranA = {{ € Ax : x € dom A} .
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(iii) The graph of A is the subset of X x X defined by

graph A = {(:v,{)eX x X" :feAx}.

Definition 1.4.2 (Monotone mapping). Let A: X — 2%" be a mapping.
(i) The mapping A is said to be monotone if for any x,y € dom A, we have
EeAxr and neAdy = & —nx—y)=0. (1.4.1)
(ii) The mapping A is called strictly monotone if the inequality in (1.4.1) is strict whenever
Tr#Y.

Example 1.4.3 (Monotonicity of the subdifferential mapping). Let f : X — (—o0, +a0]| be

*
a proper anda convexr Junciion. e suoaitfferentia mappmg . — See eftnition
d ti The subdi tial ng Of + X — 2% Definiti

is monotone since for any x,y € domdf, any £ € df (x) and for any n € of (y), we
have from the subdifferential inequality (see (L.1.5))) that

f—f@)=&y—2) and f(z)—f(y) =Mz —y).

Summing up these two inequalities we get that (£ —n,x —yy = 0 for any x,y € domdf,
that is, 0f is a monotone mapping (see (1.4.1))). If f is a strictly convex function then 0f
is strictly monotone. Indeed, if £ € Of (x) then again from (1.1.5) we obtain

fla+tiy—a)—f@)=2¢rs+t(y—a)—z) Yi>0, yelX.

Hence

oy ) — i LE =)~ F @)

N0 t

From Proposition[1.1.10(ii) we get that
<€,y—£€><fo(£lj',y—l’) <f(y)_f(x)

><£7y_$>7 yEX

In the same way, if n € 0f (y), then {n,x —y) < f°(y,x —y) < f (z) — f (y). Adding these
two inequalities and we get that

&—nx—yy>0, Va,yedomdf.

Hence Of is a strictly monotone mapping (see Definition[1.4.3(ii)).



Iterative Methods for Solving Optimization Problems 61

Example 1.4.4 (Monotonicity of an increasing one variable function). Increasing function

f: R — R determines a single-valued monotone mapping which is defined by Ax = {f (z)}.

Definition 1.4.5 (Inverse mapping). Let A : X — 2% pe mapping. The inverse mapping
A1 XT 52X s defined by

Al ={re X:¢e Ax}.

Remark 1.4.6 (Monotonicity of inverse mapping). A mapping A : X — 9X" is monotone

if and only if the inverse mapping A~" is monotone. <&

Definition 1.4.7 (Demi-closed). A mapping A : X — 9X" s called demi-closed at = €
dom A if

Tp — T

&, € Axy, = (e Ax. (1.4.2)

&n —§
Definition 1.4.8 (Hemicontinuous). The mapping A : X — X* is called hemicontinuous
if for any x € dom A we have

+t,yedomA, ye X
© talf = QOMAL Y } — A(z +thy) — A, (1.4.3)

lim,, o t,, = 0T

Definition 1.4.9 (Maximal monotone). A mapping A : X — 9X" s called mazimal
monotone if it is monotone and there does not exist a monotone mapping B : X — X"
such that graph A & graph B.

Remark 1.4.10 (Maximal monotonicity of the inverse mapping). Note that a mapping

A: X — 9% is mazimal monotone if and only if A~' is mazimal monotone mapping. <
Let A be a monotone mapping. A maximal monotone mapping A such that graph A

graph A is called a maximal monotone extension of A.

Proposition 1.4.11 (Maximal monotone extension). If A : X — 92X s a monotone

mapping, then there exists at least one mazimal monotone extension A : X — X" of A.

In the case of demi-closed and monotone mappings which are closed- and convex-valued
(that is, Ax is closed and convex for any x € dom A), any two maximal monotone extensions
differ on the boundary of their domain only. This means that if the domain of a demi-closed
and monotone mapping A which is closed- and convex-valued, is an open set, then it has a
single maximal monotone extension (cf. [I, Lemma 2.2, page 7]).

Proposition 1.4.12 (Uniqueness of maximal monotone extension). Let A : X — 2% " be a
monotone and demi-closed mapping. If x € intdom A and if Ax is closed and convezx, then

any mazimal monotone extension A of A satisfies Ax = Ax.
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The following result provides a characterization of maximal monotone mappings.

Proposition 1.4.13 (Characterization of maximal monotonicity). A mapping A : X —

9X* is mazimal monotone if and only if

Y (y,n) € graph A

<§—n,x—y>>0} = (€ Axn.

Corollary 1.4.14 (Maximal monotonicity implies demi-closedness). Any mazimal mono-

tone mapping A : X — 9X* is demi-closed.

Maximal monotone mappings are with closed and convex values as shown in the following
result (cf. [82, page 105]).
Proposition 1.4.15 (Closed and convex values). If a mapping A : X — 9X* s mazimal

monotone then, for any x € dom A, the set Az is closed and convex in X

Definition 1.4.16 (Surjectivity). A mapping A : X — 92X is called surjective if for each

element € € X~ there exists an element x € dom A such that £ € Az, i.e., tanA = X" .

The following result gives a characterization of maximal monotone mappings by means
of surjectivity (cf. [47, Theorem 3.11, page 166]).

Proposition 1.4.17 (Surjectivity result). Let X be a strictly convex and smooth Banach
space and let A : X — 9X" be a monotone mapping. Then A is a mazximal monotone
mapping if and only if A+ Jx is surjective.

The following is a generalization of this result (¢f. [15, Corollary 2.3, page 59]).

Proposition 1.4.18 (General surjectivity result). Let A: X — 9X™ be a monotone map-
ping. Assume that f : X — R is a Gateaux differentiable, strictly conver, and cofinite
function. Then A is mazimal monotone if and only if ran (A + Vf) = X*.

Among the most important examples of maximal monotone mappings are the subdif-

ferential of proper, convex and lower semicontinuous functions. Maximal monotonicity of
such subdifferentials was shown in [08] (see also [82], Theorem 2.13, page 124]).

Proposition 1.4.19 (Maximal monotonicity of the subdifferential mapping). Let f be
a proper, convex and lower semicontinuous function. Then the subdifferential mapping

*
of : X — 2% is mazimal monotone.

Definition 1.4.20 (Sum of monotone mappings). The sum of two mappings Ay : X — X"
and Ay : X — 29X s defined by

%] ifx ¢ (dom Ap) () (dom Ay)

(Al + Ag) T = . y
Ajx + Asx ifz e (dom Ap) () (dom As)
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where the addition defined by
Az + Agr = {E+n: e Ajx,ne Ayx}.

Remark 1.4.21. Note that the set of all monotone mappings is closed under addition. <

In the spirit of the previous remark, the problem of under which conditions, the sum of
two maximal monotone mappings is again a maximal monotone mapping is essential and
is of interest for many researchers. For instance, we present the following result in this
direction (cf. [82, Theorem 3.6, page 142]).

Proposition 1.4.22 (Maximality of the sum of two mappings). Let A : X — 2X" and

B:X — 2% be two mazimal monotone mappings. If
intdomAﬂdomB #* O,

then the sum A + B is maximal monotone too.

Corollary 1.4.23 (Maximality of the sum of two subdifferential mappings). Suppose that
f:X — (-0, +0] and g : X — (—o0, +o0] are two proper, convex and lower semicontin-
uous functions, such that the domain of one of them intersects the interior of the domain
of the other. Then

O(f+g)(x)=0f(x)+ dg(x) Vzredom(f+g).

The following concept of monotonicity generalizes the classical notion.

Definition 1.4.24 (T-monotonicity). Let A : X — 2" pe g mapping, K < dom A and let
T : K — X be an operator. We say that the mapping A is monotone with respect to the

operator T', or T-monotone, if
0<{—nTz—Ty) (1.4.4)

for any x,y € K, where £ € Ax and n € Ay.

Clearly, when T' = I the classes of monotone and [-monotone operators coincide.

Definition 1.4.25 (Set-valued indicator). The set-valued indicator of a subset S of X is
defined by
{0}, reS5;

Ig:z+—
&, otherwise.

The concept of T-monotonicity can also be defined by using this set-valued indicator
(as kindly suggested by Heinz H. Bauschke).
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Remark 1.4.26 (T-monotonicity via set-valued indicator). A4 mapping A : X — 2% " s
T-monotone if and only if T o (A_l + ]IA(K)) s monotone. <&

Remark 1.4.27 (Other T-monotonicity concept). An unrelated concept of a T-monotone

operator can be found in several papers of Calvert (see, for example, [13]). &
Remark 1.4.28 (d-accretive). Let F': X — X be an operator which satisfies
0<{Ux(x)—Jx(y),Fz— Fy) (1.4.5)

for any x,y € dom f. An operator F which satisfies inequality (1.4.5)) is called d-accretive

(see [2]). Clearly in our terms Jx is F-monotone whenever F is d-accretive. &

1.4.1 Bregman Inverse Strongly Monotone Mappings

This class of mappings was introduced by Butnariu and Kassay (see [38]). We assume that
the Legendre function f (see Definition [1.2.7)) satisfies the following range condition:

ran (Vf —A) Sran VY. (1.4.6)

Definition 1.4.29 (Bregman inverse strongly monotone). Let Y be a subset of X. A
mapping A : X — 92X s called Bregman inverse strongly monotone (BISM for short) on
the set Y if

Y () (dom A) () (idomf) # & (1.4.7)
and for any x,y € Y () (intdom f) and § € Ax, n € Ay, we have
(e=n VI (V@) ==V (Vi) -n)=0. (1.4.8)

From the definition of the bifunction W/ (see (1.2.24])) it is easy to check that (1.4.8) is
equivalent to

W&V (VF (@)= 9) + W (mVF" (VF () =) < W (&, V" (VF (5) =)
+ W (0. VF" (VF (@) -9).

Remark 1.4.30 (Particular cases of BISM). The BISM class of mappings is a generaliza-
tion of the class of firmly nonexpansive operators in Hilbert spaces (see (1.3.12))). Indeed,
if f = (1)2)|-|?, then Vf = Vf* = I, where I is the identity operator, and (1.4.8) becomes

E=—nz—E6—(y—mn) =0, (1.4.9)
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that is,
|6 —nl* <z —y, & —n). (1.4.10)

In other words, A is a (single-valued) firmly nonexpansive operator.

It is interesting to note that if, instead of the function f = (1/2)||-|°, we take the Hilbert
space H with the Legendre function (1/(20)) |-|* for some positive real number o, then
the inequality in becomes the usual a-inverse strongly monotone operator, that is,
operator which satisfies

a|Te = Ty|* <{(Tw—Ty,z—y)

forall z,y e K. &

The following example shows that a BISM mapping might not be maximal monotone
(see [60, Example 1, page 1324]).

Example 1.4.31 (BISM mapping which is not maximal monotone). Let K be any proper,
closed and convex subset of X. Let A: X — 2% e any BISM mapping with dom A = K
such that Ax is a bounded set for any x € X. Then A is not maximal monotone. Indeed,
K = K # X, which means that bdr K = cl K\int K # . Now for any x € bdr K we
know that Az is a nonempty and bounded set. On the other hand, Ax is unbounded whenever
A is maximal monotone, since we know that the image of a point on the boundary of the
domain of a maximal monotone mapping, if non-empty, is unbounded because it contains
a half-line.

A wvery simple particular case is the following one: X is a Hilbert space, f = (1/2)||*
(in this case BISM reduces to firm nonexpansivity (see Remark , K is a nonempty,
closed, convexr and bounded subset of X (e.g., a closed ball) and A is any single-valued
BISM operator on K (e.g., the identity) and & otherwise.

Problem 1. Since a BISM mapping need not be maximal monotone, it is of interest to

determine if it must be a monotone mapping.

Remark 1.4.32 (BISM is not necessarily FNE). It is important to note that a mapping
A (even in a Hilbert space provided that f is not (1/2)|-]*) does not have to be firmly
nonezxpansive (see ) in order to be BISM on'Y (see, for example, [38, pages 2108-
2109)). &



Chapter 2

Fixed Point Properties of Bregman

Nonexpansive Operators

In this chapter we present properties of Bregman nonexpansive operators from the point
of view of their fixed points. We will present properties of the fixed point set of Bregman
nonexpansive operators. In addition, existence results (sufficient and necessary conditions)
are presented too. A characterization of BFNE operators is presented. It leads us to finding
many examples of BFNE operators in Euclidean spaces and in Hilbert spaces.

2.1 Properties of Bregman Nonexpansive Operators

We will start with the following simple property (¢f. [91, Lemma 15.5, page 305]) of the
fixed point set of properly QBNE operators (see Definition and Remark |1.3.7]).

Proposition 2.1.1 (Fixed point set is closed and convex). Let f : X — (—oo, +o0] be a
Legendre function. Let K be a nonempty, closed and convex subset of int dom f, and let
T : K — K be a properly QBNE operator. Then Fix (T) is closed and conver.

Proof. 1f Fix (T') is empty then the result follows immediately. Otherwise we assume that
Fix (T') is nonempty. We first show that Fix (T') is closed. To this end, let {x,}, .y be a

sequence in Fix (T") such that z,, — & as n — oo. From the definition of strictly QBNE

operator (see (1.3.8) it follows that
D¢ (x,,TZ) < Dy (x4, T) (2.1.1)

for any n € N. Since f is continuous at z € K < intdom f (see Corollary(1.1.7)) and z,, —

66
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as n — o0, it follows that

lim Dy (x,,Tz) = lim [f (z,) — f (T2) =V f(TZ), 2, — T7)]

n—0o0 n—o0

— [/ (@) - J (T%) (V[ (T7) & ~ T®)] = D; (&,Ta).
On the other hand, replacing T'x with Z, one gets

lim Dy (z,,Z) = Df (z,2) = 0.

n—0

Thus implies that D (z,77) = 0 and therefore it follows from Proposition
that £ = TZ. Hence Z € Fix (T') and this means that Fix (T') is closed, as claimed.

Next we show that Fix (7") is convex. For any z,y € Fix(7T') and t € (0,1), put z =
tr + (1 —t)y. We have to show that Tz = 2. Indeed, from the definition of the Bregman
distance (see ) and the definition of strictly QBNE operator (see ) it follows
that

Di(2,T2)=f(2)— f(Tz) —(Vf(Tz),2—T=z)
= f(2) = f(T2) =XVf(Tz) te + (1 —t)y = Tz)
= f(2)+tDs(x,T2) + (1 —t) Dy (y, Tz) —tf () — (1 —1t) f (v)
< fE) +tDp(x,2) + (1 =) Dy (y,2) = tf (x) = (1 = 1) [ (y)

=(Vf(2),z—te—(1—t)y) = 0.

Again from Proposition it follows that Tz = z. Therefore Fix (T) is also convex, as

asserted. O]

Next we show that if f is an admissible function (see Definition which is bounded
and uniformly Fréchet differentiable on bounded subsets of X (see Definition [1.1.20[(ii)),
and T is a BFNE operator (see Definition [L.3.5[(i)), then the fixed point set of 1" coincides
with the set of its asymptotic fixed points (¢f. [91, Lemma 15.6, page 306]).

Proposition 2.1.2 (Sufficient condition for lfgc(T) = Fix(T)). Let f : X — R be an ad-
missible function which is uniformly Fréchet differentiable and bounded on bounded subsets
of X. Let K be a nonempty, closed and convex subset of X and let T : K — intdom f be
a BFNE operator. Then Fix (T) = Fix(T).

Proof. The inclusion Fix (T') < F/Eq(T) is obvious. To show that Fix (7) o F/‘i\x(T), let
u e Fix (T') be given. Then, from Definition we get a sequence {z,}, in K such that
both x,, — w and |z, — Tx,| — 0 as n — co. Since f is bounded and uniformly Fréchet

differentiable on bounded subsets of X, V f is uniformly continuous on bounded subsets of
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X (see Proposition [1.1.22((ii)). Hence |V f (T'z,) — Vf (z,)|, — 0 as n — oo and therefore

lim (VF (Ta,) = Vf () .5 = 0 (2.12)
for any y € X, and

because {z,}, .y is bounded as a weakly convergent sequence. On the other hand, since T

is a BFNE operator (see (1.3.4)), we have

0< D¢ (Txy,u) — Df (Txn, Tu) + Dy (Tu,x,) — Dy (Tu, Txy,) . (2.1.4)

From the three point identity (see (1.2.2))) and (2.1.4]) we now obtain

D¢ (u,Tu) = Dy (T, Tu) — Dy (Twp,u) — <Vf( )=V f(Tu),Tx, —u)
< Dy (Tu,x,) — Dy (Tw, Txy,) —{Vf(u) = Vf(Tu), Tz, —uy
= [/ (Tu) = f (n) =V f (20) , Tu — 2n)] =
[f (Tu) = f (Tzn) = (Vf(T2), Tu — Ty
—(Vf(u) =V f(Tu), T, —uw)
= f(Tx,) — f(xn) =<V f (), Tu—2,)+{Vf(Tx,),Tu—Tx,)
—(Vf(u) =V f(Tu), T, —w)
—[f (@) = [ (Tn) =V (Tx) 2 = Tap)] =XV f (Tan) 20 — T

—Vf(xn),Tu—xp,) +<{Vf(Tx,),Tu—Tx,)
—(Vf{u)—-Vf (TU) Ty —u)
= —D¢ (xn, Txy) =V f (Tx,) 2, — Txy) =<V f(x,),Tu—x,)
+{Vf(Tx,), Tu—Tx,) —<Vf(u)—Vf(Tu),Tr, —u)
—(Vf(Tx,),xp—Tx,) —(Vf(x,), Tu—x,)
+{Vf(Tx,), Tu—Tx,) —<Vf(u)—Vf(Tu), Tz, —u)
(

=(Vf(xn) = Vf(T2,),x, —Tuy —{Vf
—(Vf(u)=Vf(Tu),z, —u).

u) = Vf(Tu), Tz, — x,)

From ([2.1.2)), (2.1.3)), and the hypotheses that both z,, — w and ||z, — Tx,| — 0 as n — o0,
we get that Dy (u, Tu) < 0. Consequently Dy (u,Tu) = 0 and from Proposition it
follows that Tu = u. That is, u € Fix (T), as required. ]

Remark 2.1.3 (BFNE is BSNE). From Proposition it follows that if an admissible



Iterative Methods for Solving Optimization Problems 69

function f : X — R is uniformly Fréchet differentiable and bounded on bounded subsets of
X, then any BFNE operator is also a BSNE operator (see Figure . &

Now we obtain necessary and sufficient conditions for BFNE operators to have a (com-
mon) fixed point in general reflexive Banach spaces. We begin with a theorem for a single
strictly QBNE operator; hence it also holds for a BFNE operator.

Proposition 2.1.4 (Necessary condition for Fix (T) to be nonempty). Let f : X —
(—o0, +00] be a Legendre function such that V f* is bounded on bounded subsets of int dom f.
Let K be a nonempty subset of intdom f and let T : K — K be a strictly QBNE operator.
]f@( (T') is nonempty, then {T™y}, . s bounded for each y e K.

Proof. We know from the definition of strictly QBNE operators (see (|1.3.8])) that

Dy (p,Ty) < Dy (p,y)

for any p € Fix (T') and y € K. Therefore

Dy (p, T"y) < Dy (p,y)

for any p € 1*:1\X(T) and y € K. This inequality shows that the nonnegative sequence
{Ds (p,T™y)}, o is bounded. Now Proposition [1.2.48| implies that the sequence {1™y}

is bounded too, as claimed. [

neN

A result in this spirit for properly QBNE operators was first proved in [91, Theorem
15.7, page 307].

Corollary 2.1.5 (Necessary condition for Fix (7") to be nonempty). Let f : X — (—0, +0]
be a Legendre function such that Vf* is bounded on bounded subsets of int dom f~. Let K
be a nonempty subset of intdom f and let T : K — K be a properly QBNE operator. If
Fix (T') is nonempty, then {T"y}, . is bounded for each y € K.

Proof. Follow the arguments in the proof of Proposition and replace p € Fix (T) with
p € Fix (T). O
For an operator T : K — K, let S, (2) := (1/n) >)7_, T*z for all z € K. The next result
give a sufficient condition for BENE operators to have a fixed point (cf. [91, Theorem 15.8,
page 310]).
Proposition 2.1.6 (Sufficient condition for Fix (T') to be nonempty). Let f : X —
(—o0, 40| be an admissible function. Let K be a nonempty, closed and conver subset
of intdom f and let T : K — K be a BFNE operator. If there exists y € K such that

|Sn ()| = 00 as n — oo, then Fix (T') is nonempty.



70 Fixed Point Properties of Bregman Nonexpansive Operators

Proof. Suppose that there exists y € K such that |S, (y)|| - o as n — oo. Let x € K,
ke N and n € N be given. Since T is BENE (see (1.3.4))), we have

Dy (T*'y, Tx) + Dy (Tz, T*'y) < Dy (Tx, T"y) + Dy (T* 'y, ) . (2.1.5)
From the three point identity (see ([1.2.2))) we get that

Dy (T*"*'y, Tx) + Dy (T2, T*"'y) < Dy (Tx,T"y) + Dy (T*"'y,Tx) + Dy (Tw, x)
+{(Vf(Tz) =V f(z),T"""y—Tz).

This implies that
0< Dy (Tx,z) + Dy (Tx,T") — Dy (T, T*'y) + (Vf (Tz) =V [ (z), Ty — Tx).

Summing up these inequalities with respect to £ =0,1,...,n — 1, we now obtain
n—1
0<nDs;(Tx,z)+ D¢ (Tx,y) — Ds (Tx, T"y) + <Vf (Tx) =V f(x), Z TH+ Yy — nT:p>
k=0

where T° = [ is the identity operator. Dividing this inequality by n, we have
1
0< Dy (Tw,z) + —[Dy (Tw,y) = Dy (T, Ty)] + <V f (T) = V[ (@), S (y) = Tx)

and
0< Dy (Tx,x) + %Df (Tx,y) +{Vf(Tz) -V f(x),S.(y)—Tx). (2.1.6)

Since |, (y)|| - o as n — oo by assumption, there exists a subsequence {S,, (y)},oy of
{Sn (y)},,en such that S, (y) = ue K as k — o0. Letting k — o in (2.1.6)), we obtain

0< Dy (Ta,x) +{Vf(Tx)—Vf(x),u—Tz). (2.1.7)
Setting x = w in (2.1.7)), we get from the four point identity (see ([1.2.3])) that

0<Ds(Tu,u) +{Vf(Tu)—Vf(u),u—Tu)
= Dy (Tu,u) + Dy (u,u) — Dy (u, Tu) — Dy (Tu,uw) + Dy (Tu, T'u)
= —Dy (u,Tu).

Hence Dy (u,Tu) < 0 and so D¢ (u,Tu) = 0. It now follows from Proposition that
Tu = u. That is, u € Fix (T"). O

Remark 2.1.7 (Non-spreading). As can be seen from the proof of Proposition the
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result remains true for those operators which only satisfy (2.1.5)). In the special case where
f=/2) |-|?, such operators are called non-spreading. For more information see [69]. <
We remark in passing that we still do not know if the analog of Proposition for
nonexpansive operators holds outside Hilbert space (cf. [84, Remark 2, page 275]).
The following corollary brings out conditions for the fixed point property of BFNE
operators (cf. [91], Corollary 15.11, page 309]).
Corollary 2.1.8 (Fixed point property of BFNE operators). Let f : X — (—oo, +o0] be
an admissible function. Every nonempty, bounded, closed and convex subset of int dom f

has the fixed point property for BFNE self-operators.

In order to prove a common fixed point theorem, we need the following lemma.

Lemma 2.1.9 (Common fixed point - finite family). Let f : X — (—o0, +o0] be an admis-
sible function. Let K be a nonempty, bounded, closed and convex subset of int dom f. Let
{11, T, ..., Ty} be a commutative finite family of N BFNE operators from K into itself.
Then {T\,Ts,..., TN} has a common fized point.

Proof. The proof is by way of induction over N. We first show the result for the case
N = 2. From Proposition and Corollary 2.1.8] Fix (T7) is nonempty, bounded, closed
and convex. It follows from T} o Ty = Ty o T that if u € Fix (T}), then we have T} o Tou =
Ty oTiu = Tyu. Thus Tyu € Fix (T7). Hence the restriction of T, to Fix (77) is a BFNE self-
operator. From Corollary T, has a fixed point in Fix (77), that is, we have v € Fix (T})
such that Tyv = v. Consequently, v € Fix (T1) [ Fix (T3).

Suppose that for some N > 2, F = ﬂf\il Fix (T;) is nonempty. Then F' is a nonempty,
bounded, closed and convex subset of K and the restriction of Ty, to F' is BFNE self-
operator. From Corollary , T 41 has a fixed point in F. This shows that F' (| Fix (T 1)
is nonempty. This complete the proof. [

Using Lemma [2.1.9] we finally prove the following common fixed point theorem for a
commutative family of BENE operators (cf. [91, Theorem 15.12, page 309]).

Theorem 2.1.10 (Common fixed point - infinite family). Let f : X — (—o0, 4] be an
admissible function. Let K be a nonempty, bounded, closed and convex subset of int dom f.
Let {T,} cq be a commutative family of BFNE operators from K into itself. Then the

family {T,},cq4 has a common fized point.

Proof. From Proposition we know that each Fix (T,,), o € A, is closed and convex sub-
set of K. Since X is reflexive and K is bounded, closed and convex, K is weakly compact.
Thus, to show that [ ., Fix (T,) is nonempty, it is sufficient to show that {Fix (7,,)}
has the finite intersection property. From Lemma we know that {Fix (T,)}
this property. Thus the proof is complete. [

acA

wea has



72 Fixed Point Properties of Bregman Nonexpansive Operators

Now we present two important properties of strictly BSNE operators (see Definition
1.3.8) which were proved in [88, Lemma 1, page 314] and [88, Lemma 2, page 314]. Both
results deal with the composition of N strictly BSNE operators. We start with the following
result.

Proposition 2.1.11 (Asymptotic fixed points of strictly BSNE operators). Let f: X — R
be a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex
on bounded subsets of X such that V" is bounded on bounded subsets of intdom f*. Let
K be a nonempty subset of X. If{T;: 1 <i < N} are N strictly BSNE operators from K
into itself, and the set

ﬁzﬂ{fﬁc(ﬂ):l<i<l\f}

is not empty, then Fix (Tyo--oTy) < F.

Proof. Let u € F. Given z € Fix (T), Definition implies that there exists a sequence

{z,},y © K converging weakly to x such that
lim |z, — Tx,| = 0. (2.1.8)
n—o0

we first note that since the function f is bounded on bounded subsets of X, the gradient
V f is also bounded on bounded subsets of X (see Proposition [1.1.15)). Thus the sequences
{z,},ony and {Vf (Tx,)}, oy are bounded. Since f is uniformly Fréchet differentiable on

bounded subsets of X, it is also uniformly continuous on bounded subsets of X (see Propo-

sition [1.1.22(i)) and therefore

lim (f (Tx,) — f(x,)) = 0. (2.1.9)

n—oo0

In addition, from Proposition [1.1.22(ii) we obtain that V f is also uniformly continuous on
bounded subsets of X and thus

lim |V f (T%,) - Vf(z,)]|, =0. (2.1.10)
n—o
From the definition of the Bregman distance (see ([1.2.1])) we obtain that

Dy () = Dy (0, T = [f (1) = f () = (Vf () s —,)]
—[f (W) = f(Tzn) =V (T2n)  u—Txy)]
= F () = f (50) =V (5) s — 20} + (VS (Tirg) u— Ty
= f(Tx,) — f () =V f(xy) = Vf(Tx,),u—x,)
+{Vf(Txzy),xp—Tx,).
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Hence from the fact that both the sequences {z,}, . and {Vf(Tx,)}, . are bounded,

along with (2.1.8)), (2.1.9) and (2.1.10)) we obtain that

lim (Dy (u,x,) — Dy (u,Tx,)) = 0. (2.1.11)

n—aoo

Set y, = Ty_q0---0Tx, so that Tyy, = Tx,. From the first part of the definition of
strictly QBNE operator (see (1.3.9)) we get

D¢ (u,Tx,) = Df (u, Tny,) < Dy (u,yn) < Dy (u, x,,) . (2.1.12)

Hence from (2.1.11)) we get that

lim (D¢ (u,yn) — Dy (v, Tny,)) = lim (D (u,2,) — Dy (u, Tx,)) = 0. (2.1.13)

n—aeo n—o0

Since {,}, oy is bounded and both f and V f are bounded on bounded subsets of X, we have
that {Dy (u, ) }nen is also bounded. Therefore if follows from (2.1.12)) that {Dy (u, yn)}nen

is bounded too. Since V" is bounded on bounded subsets of int dom f~ it follows from
Proposition [1.2.48| that {y,}, .y is bounded. This together with (2.1.13)) implies that

lim Df (TNyna yn) = O,
n—oo

because Ty is strictly BSNE (see Definition [1.3.8)). Since {y,}, oy is bounded, Proposition
1.2.46| now implies that lim, e ||y, — Tvys|| = 0. Consequently,

nh_r)%o |z =Ty -1 00T, = 7}1_{{)10 |Zn — Yl < 1}1_{{.10 (|lzn — Tap| + [lyn — Tnynl) = 0.

This implies, on one hand, that the sequence {y,},.y also converges weakly to z and
thus z € Fix (Ty), and on the other hand, that = € F/i\x(TN,l o---0T)). Repeating the
same argument we obtain that z € @((Tl) forany ¢+ = 1,2,...,N — 1, thence x € ﬁ, as

asserted. O]

The next result shows that the composition of N strictly BSNE operators is also strictly
BSNE operator.
Proposition 2.1.12 (Composition of strictly BSNE operators). Let f : X — R be a
Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of X such that V f~ is bounded on bounded subsets of int dom f*. Let I be
a nonempty subset of X. Let {T;:1<i < N} be N strictly BSNE operators from K into
itself and let T'= Ty o Ty_10---0Ty. If the sets

ﬁ:ﬂ{@(n);lszsN}
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and P/‘Bc(T) are not empty, then T is also strictly BSNE.

Proof. Letu € 151\X(T) and z € K, then the first part of the definition of strictly BSNE

operator (see ([1.3.9))) is satisfied because u € F by Proposition [2.1.11| and since any strictly
BSNE operator is strictly QBNE (see Figure . Assume that u € Fix (1) and {xp},, 18

a bounded sequence such that

lim (Dy (u,x,) — Dy (u,Tx,)) = 0.

n—oo

In order to prove the second part of the definition of strictly BSNE operator (see ([1.3.11])),
note that for any i = 2,3,..., N, we have from ({1.3.9) that

0< Dy (u,Ti—yo0---0oTyay,)— Dy (u,TyoT;—y 0 0Tiay,) < Dy (u,x,) — Dy (u, Txy,),
and using the same arguments as in the proof of Proposition [2.1.11] we get

lim Dy (Tio Ty o oTiw,, Tioyo---0Tx,) =0,

n—o0

where the sequence {T; j0---0 Tlxn}neN is bounded. Now Proposition [1.2.46|implies that

lim [|T;0Ti—y0---oTay —Tisyo---oTiz,| =0
n—00

for each ¢ = 2,3,..., N. Since
|xn — Ty < |wn — Tha,|| + |Thzn — Too Thay||+ -+ + [|[Ty—1 0Ty 0--- 0 Thx, — T,

we get that

lim |z, — Tx,| = 0.
n—0oo

The function f is bounded on bounded subsets of X and therefore V[ is also bounded
on bounded subsets of X (see Proposition [1.1.15)). Thus both the sequences {x,},y and

{Vf(Tx,)},cy are bounded. Since f is also uniformly continuous on bounded subsets of
X (see Proposition [1.1.221)), we have that

lim (f (Ta,) = f () = 0.

n—aoo

So from the definition of the Bregman distance (see ([1.2.1])) we obtain that

lim Dy (Txp,x,) = 0.

n—aoo

Hence T is strictly L-BSNE, as asserted. [
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In applications it seems that the assumption Fix (T') = Fix (T') imposed on the operator
T is essential for the convergence of iterative methods. In Proposition [2.1.2] we gave suf-
ficient condition for BFNE operators to satisfy this condition (see also Remark . In
the following remark we show that this condition holds for the composition of N strictly
BSNE operators where each operator satisfy this condition.

Remark 2.1.13 (Property of the composition). Let f : X — R be a Legendre function
which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of
X such that V" is bounded on bounded subsets of int dom f*. Let I be a nonempty subset
of X. Let {T;: 1 <i < N} be N strictly BSNE operators and let T =Ty oTy 1 0---0Tj.
If F = ({Fix(T;) : 1 <i < N} and Fix(T) are nonempty, then T is also strictly BSNE
with Fix (T) = Fix (T'). Indeed, from Proposition we get that

Fix (T) < Fix (T) < ﬂ{l@c(Ti) 1<i< N} = ({Fix(T}) : 1 <i < N} < Fix (7)),
which implies that fgc(T) = Fix (T, as claimed.

In the following result we prove that any BSNE operator is asymptotically regular (cf.
[74, Proposition 11, page 11]).

Proposition 2.1.14 (BSNE operators are asymptotically regular). Assume that f : X —
(—o0, +0] is a Legendre function which is totally convex on bounded subsets of int dom f
and assume that Vf* is bounded on bounded subsets of intdom f*. Let K be a nonempty
subset of intdom f. Let T be a strictly (properly) BSNE operator from K into itself such
that ﬁB((T) # & (Fix (T) # &). Then T is asymptotically reqular.

Proof. Assume that T is strictly BSNE. Let u € Fix (T) and let € K. From (1.3.9) we
get that
Dy (u,T""'z) < Dy (u,T"z) < ... < Dy (u,Tx).

Thus lim,_, Dy (u, T™x) exists and the sequence {Dy (u, T"x)}, _ is bounded. Now Propo-
sition [1.2.48| implies that {I™z}, _y is also bounded for any z € K. Since the limit

lim,,_,oo Dy (u, T"x) exists, we have

lim (D (u,T"z) — Dy (u, T""'z)) = 0.

n—aoo

From the definition of strictly BSNE operator (see (1.3.10) and ([1.3.11))) we get

lim Dy (T"*'z,T"z) = 0.

n—oco
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Since {T"x}, .y is bounded, we now obtain from Proposition |1.2.46| that

lim HT”+1 — T”xH = 0.

n—o0

In other words, T is asymptotically regular (see Definition [1.3.14)). The proof when T is
properly BSNE is identical when we take u € Fix (T). O

Definition 2.1.15 (Block operator). Let f : X — (—oo, +00| be a Legendre function. Let
{T, : 1 <i < N} be N operators from X to X and let {w;}> , < (0,1) satisfy XN  w; = 1.
Then the block operator corresponding to {T;: 1 <i < N} and {w; : 1 <i < N} is defined
by

Tp:=Vf (i w;V f (:n)) : (2.1.14)

The following inequality will be essential in our next results. From Proposition [1.2.42{1)
and (ii) we have

Dy (p, Tpz) = Dy <p, v <Z w;V f (Tix)>> =w! (Z w;Vf (T;x) ,p>

i=1

N
Z H(Vf (Tix), ZwlDf (p, Tyx) (2.1.15)

=1

In our next result we prove that the block operator defined by ([2.1.14)) is properly QBNE
when each T}, 1 <i < N, is properly QBNE (c¢f. [74, Proposition 12, page 16]).

Proposition 2.1.16 (Block operator of properly QBNE operators). Assume that f : X —
(=00, +0] is a Legendre function and let {T;: 1 <i < N} be N properly QBNE operators
from X into X such that F' = ({Fix(T;) : 1 <i < N} # . Let {w}~, < (0,1) which
satisfy Zf\il w; = 1. Then Ty is properly QBNE with respect to F' = Fix (Tg).

Proof. Let pe F. Since each T}, i = 1,2,..., N, is properly QBNE (see (1.3.8))), we obtain

from ([2.1.15]) that

N N
D¢ (p,Tpx) < Z w; D¢ (p, Tix) < Z w; D¢ (p,x) = Dy (p, x) (2.1.16)

i=1
for all x € X. Thus Tg is a properly QBNE operator with respect to F. Next we show
that Fix (T) = F.

The inclusion F' < Fix (1) is obvious, so it is enough to show that Fix (T5) < F. To
this end, let u € Fix (Tg) and take k € {1,2,...,N}. For all p € F, such that p # u, we
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obtain from ([2.1.15)) that

N
Dy (p,u) = Dy (p, Tpu) < Y, wiDy (p, Tyu) < > w;Dy (p,u) + w Dy (p, Tiu) .
=1 £k

Therefore
w Dy (p,u) = (1 -, wi) Dy (p,u) < wp Dy (p, Tru)
i#k
that is,
wp Dy (p,u) < wpDy (p, Txu) .

Since wy, > 0, it follows that Dy (p, ) < Dy (p, Txu). On the other hand, since T}, is properly
QBNE and p € F < Fix (1)), we have that D (p, Tju) < Dy (p,u). Thus Dy (p,u) =
Dy (p,Tyu) for all ke {1,2,...,N}. Hence

Dy (p, v (Z w;V f (ﬂu))) = D¢ (p,Tpu) = Dy (p,u) = Zwin (p, Tyu). (2.1.17)

i=1

Now Lemma [1.2.44] implies that Thu = Thu = ... = T,,u. Therefore u € F. O

In the following result we prove that the asymptotic fixed point set of the block operator
is a subset of the intersection of the asymptotic fixed point sets of the strictly BSNE
operators generating the block operator (c¢f. [74, Proposition 13, page 17]).

Proposition 2.1.17 (Asymptotic fixed point of the block operator). Let f : X — R be a
Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of X. Let K be a nonempty subset of X. If each T;, 1 = 1,2,...,N, is a
strictly BSNE operator from X into itself, and the set

~

F:zﬂ{lf&(Ti):1<i<N}
is not empty, then Fix (Tg) < E.

Proof. Let u € F and let z € fgc(TB). Then, from the definition of asymptotic fixed
point (see Definition [1.3.6), there exists a sequence {x,},y which converges weakly to x
such that lim,,_,o ||z, — Tpx,| = 0. Since the function f is bounded on bounded subsets
of X, V[ is also bounded on bounded subsets of X (see Proposition [I.I.15). So the
sequences {z,} .y and {Vf(Tpz,)}, . are bounded. Since f is also uniformly Fréchet

differentiable on bounded subsets of X, it is uniformly continuous on bounded subsets of
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X (see Proposition [1.1.22(1)), and therefore

lim (f (Tpan) — f (2,)) = 0. (2.1.18)

n—eo

In addition, from Proposition [1.1.22((ii) we obtain that V f is also uniformly continuous on
bounded subsets of X and thus

lim |[Vf (Tgr,) — Vf (za)|, = 0. (2.1.19)
n—o0
From the definition of the Bregman distance (see ((1.2.1))) we obtain that

Dy (u,2n) = Dy (u, Tpn) = [f (u) = f (2n) =<V f (2n) 0 — 20)]
= [f () = f (Tsan) = (Vf (Tpxn) ,u — Tay)]
= [ (Tpay) = f (2n) =V f (2n) 0 — 20)
+{Vf (Tpxy),u—Tpr,)
= [ (Tpxn) = f (wn) =<V f (20) = VI (Tpaa)  u— 20)
+<{Vf (Tpxy),xn — TpTy).

Since lim,_,o |2, — Tpx,|| = 0, the sequences {z,},  and {V f (Ts(z,))}, .y are bounded,

(2.1.18) and (2.1.19)), we obtain that

lim (D¢ (u,,,) — D¢ (u, Tgz,)) = 0. (2.1.20)

n—o0

Since each operator T;,7 = 1,2,..., N, is strictly BSNE, we deduce from ([1.3.9)) and (2.1.15))
that for any k =1,2,..., N,

N
Dy (u, Tpz,) < Z w; Dy (u, Tix,) = wi Dy (u, Tz,) + Z w; Dy (u, Tixy,)
i=1 i#k

< wi Dy (u, Tx,) + Z w; Dy (u, z,)
ik
= w, Dy (u, Tyx,) + (1 —wy) Dy (u, )
= wy, (Dy (u, Tyx,) — Dy (u, ) + Dy (u, x,,) .

Hence, for any k € {1,2,..., N}, we have from ([2.1.20)) that

lim wy (D (u, z,,) — Dy (u, Tjyx,,)) < lim (Dy (u, ) — Dy (u, Tpzy,)) = 0.

n—ao n—ao



Iterative Methods for Solving Optimization Problems 79

Thence
lim (Dy (u,z,) — Dy (u, Tx,)) = 0

n—o0
for any k € {1,2,...,N}. Since each operator T;, i = 1,2,..., N, is strictly BSNE and
{z,}, ey 15 bounded, we get from ((1.3.10]) and (1.3.11)) that

lim Dy (T, x,) = 0.

n—eo

Since f is totally convex (see Definition [1.2.8) and {z,}, .y is bounded, it follows from
Proposition that

lim |Tix, — z,| = 0.
n—a0

This means that = belongs to @{(TZ) because we also know that z, — x as n — oo.
Therefore z € F', which proves that Fix (Ts) © F, as claimed. O

Now we prove that the block operator of strictly BSNE operators also is a strictly BSNE
operator (cf. [74, Proposition 14, page 18]).

Proposition 2.1.18 (Block operator of strictly BSNE operators). Let f : X — R be a
Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of X. Assume that V" is bounded on bounded subsets of int dom f*. If
each T;, 1 = 1,2,..., N, is a strictly BSNE operator from X into itself, and the sets

ﬁ::ﬂ{ fi\x(Ti):l<i<N}
and P/‘i\X(TB) are not empty, then Tg is also strictly BSNE.

Proof. If u € Fix (Tg), then u € F by Proposition [2.1.17 Therefore the fact that each T},
i=1,2,..., N, is strictly BSNE, with respect to Fix (T;), implies that ((1.3.9)) holds for T
and any x € X.

Now we assume that there exists a bounded sequence {z,}, . in X such that

lim (D¢ (u,x,) — D¢ (u, Tpx,)) =0

n—e0

and therefore, as we proved in Proposition [2.1.17] we get

lim (D¢ (u,x,) — Dy (u, Tiz,)) =0

n—o0

for any i € {1,2,..., N}. Since each T;, i = 1,2,..., N, is strictly BSNE and u € @((TB) c
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Fix (T;), it follows from ([1.3.10]) and (1.3.11)) that

lim D¢ (Tizy,, z,) = 0.

n—0oo

Since f is totally convex and {z,},.y is bounded, it follows from Proposition [1.2.46| that
lim |Tix, — z,| = 0.
n—aoo

Since f is bounded and uniformly Fréchet differentiable on bounded subsets of X, it follows
from Proposition [1.1.22(ii) that V f is uniformly continuous on bounded subsets of X and
thus

lim |Vf (Tyza) = Vf (@), = 0.

n—o0

By the definition of the block operator (see (2.1.14))), we have

N
Vf (Tpxn) — Vf(2,) Z (Vf (Tizn) — Vf (2,))

and therefore
lim |V f (Tgz,) — Vf (a:n)||* =0. (2.1.21)
n—o0

On the other hand, from the definition of the Bregman distance (see (|1.2.1))) we obtain
that

D¢ (Tgwy,xn) + Dy (xn, Tpzy) =V f (Tpxn) — Vf(x,), Tpr, —xp). (2.1.22)

Note that each sequence {T;x,} 1 =1,2,..., N, is bounded because so is the sequence

neN? ‘
{0}, and lim,, o, |Tiz, — 2, = 0. Since Vf and Vf* are bounded on bounded subsets

of X and intdom f~, respectively, it follows that {T'sx,}, oy 1s bounded too. Whence,

combining (2.1.21)) and (2.1.22]), we deduce that

lim (Dy (Txy, xn) + Dy (20, Tpz,)) = 0.

n—aco
Therefore
lim Dy (T, x,) = 0.
n—o0
This means that ((1.3.10) implies (1.3.11]) for Tz and this proves that Ty is strictly BSNE,
as required. O

When we generate a block operator from properly BSNE operators, we have that its
fixed point set is the intersection of the fixed point sets of the operators generating the
block operator (cf. [74, Proposition 15, page 19]).
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Proposition 2.1.19 (Block operator of properly BSNE operators). Let f : X — R be a
Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of X. Assume that Vf is bounded on bounded subsets of intdom f~. If
each Ty, 1 =1,2,..., N, is a properly BSNE operator from X into itself, and the set

F = {Fix(T}) : 1 <i < N}

is not empty, then Ty is also properly BSNE and F = Fix (Tg).

Proof. On the one hand, since each T}, i = 1,2,..., N, is properly BSNE, it is also properly
QBNE (see Figure . Then the fact that F' # ¢ makes it possible to apply Proposition
so that F' = Fix (Tg) and T} is properly QBNE, that is, it satisfies inequality
for any p € Fix (Tp).

On the other hand, given a bounded sequence {x,}, . such that, for any v € Fix (1),
we have

lim (Dy(u,x,) — Dy (u, Tpz,)) =0,

n—aco

analogously to the argument used in Proposition [2.1.18] one is able to deduce that

lim Dy (Tpxy, z,) = 0.

n—o

Thus Tp is indeed properly BSNE, as asserted. [

2.1.1 Characterization of BFNE Operators

In this section we establish a characterization of BENE operators. This characterization
emphasizes the strong connection between the nonexpansivity of 7" and the monotonicity
of S, where

Sp:=Vf—(Vf)oT. (2.1.23)

Results in this direction have been known for a long time. We cite the one of Rockafellar
[T00] from 1976 and the one of Bauschke, Wang and Yao [15] from 2008.

Proposition 2.1.20 (Characterization of firmly nonexpansive operators). Let K be a sub-
set of a Hilbert space H and let T : K — H be an operator. Then T is firmly nonexpansive
if and only of I — T is T-monotone.

Proposition 2.1.21 (Property of BENE operators). Let K be a subset of X and let T :

K — X be an operator. Fiz an admissible function f: X — R and set
Ap:=VfoT 1 —VFf.

If T is BFNE, then Ar is monotone (this operator is not necessarily single-valued,).
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Motivated by these results, we offer the following characterization (cf. [25, Theorem 3.3,
page 167]).

Theorem 2.1.22 (Characterization of BENE operators). Let K < intdom f and suppose
that T : K — intdom f for an admissible function f : X — (—o,+o]. Then T is BFNE
if and only if Sy =V f —(V[f)oT is T-monotone.

Proof. Suppose that T is BENE (see Definition [1.3.5(i)). Take x,y in K and denote & =
St (xz) and n = St (y). Then by the definition of St (see (2.1.23))) we obtain

Vi(Tz) =V f(x)=¢ and Vf(Ty)=Vf(y)—n (2.1.24)
Since T is BENE, we have from that
Vf(Tz) =V (Ty),Te = Ty) <{Vf(x) =V[(y), Te-Ty). (2.1.25)
Now, substituting on the left-hand side of (2.1.25]), we obtain
(Vi)=& = (Vfy)—n),Te=Ty) <{(Vf(x) =Vf(y),Te =Ty,

which means that
0<{Sr(x) = Sr(y),Te —Ty).

Thus St is T-monotone (see Definition . Conversely, if S is T-monotone, then
0 <{Sr(z) = Sr(y), Te —Ty)
for any x,y € K and therefore from we have
0<{(Vf(z)=Vf(Tz) = (Vf(y) =Vi(Ty) Tz =Ty,
which means that
(Vf(Tw) =V f(Ty), Tz —Ty) <{Vf(x) =Vf(y), Tz = Ty)
for any x,y € K. In other words, T is indeed a BFNE operator. O]

Remark 2.1.23 (Theorem [2.1.22] implies Proposition [2.1.20)). It is clear that when X
is a Hilbert space and f = |-|*, BFNE operators are firmly nonexpansive operators (see

Remark|1.3.10) and in this case S = I —T. Therefore Proposition|2.1.20} is an immediate
consequence of Theorem |2.1.22, O
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Remark 2.1.24 (Theorem [2.1.22] implies Proposition [2.1.21). If T' is a BFNE operator,
then St is T-monotone by Theorem |2.1.23. Take £ € Ar (x) and n € Ar(y). From the

definition of Ar (see (2.1.21)) we get & = Vf(z) — Vf(z), where Tz = z, and n =
Vf(w)—Vf(y), where Tw =vy. Hence

E=nr—y)=Vf(z)=Vi(Tz2) = (Vf(w) =V[f(Tw),Tz—Tw)
=St (2) = St (w), Tz — Tw)

=0

for all z,y € dom Ar, and so Ar is monotone (see Definition[1.4.9(i)). Hence Proposition
2.1.21) follows from Theorem [2.1.22, &

Motivated by our characterization (see Theorem [2.1.22]), we now show that the converse
implication of Proposition [2.1.21]is also true (c¢f. |25, Proposition 3.6, page 168]).

Proposition 2.1.25 (Another characterization of BFNE operators). Let K < intdom f
and suppose that T : K — intdom f for an admissible function f: X — R. The mapping
Ar is monotone if and only if T' is BFNE.

Proof. If T'is BFNE then from Proposition [2.1.25( we get that Ay is monotone (see Defini-
tion M(l)) Conversely, suppose that A7 is monotone. Then for any x,y € dom A, we

have

for any £ € Ay (z) and n € A7 (y). Let w,2 € K. Set £ =V f(z) — V[ (), where Tz = x,
and n = Vf(w) — Vf(y), where Tw = y. We have from the monotonicity of Ay (see

(A1) that
0< (VS (2) = Vf (@) = (V] (w) = VI () 2 — v).

which means that

V(@) =Vfy),r—y) <{Vf(z) =Vf(w),z—y).

Thus
(Vf(Tz)=Vf(Tw),Tz—Tw) <{Vf(z) = Vf(w), Tz —Tw)
and so 7' is a BFNE operator (see Definition [1.3.5(1)), as asserted. O

Remark 2.1.26 (Comparison between these two characterizations). Our characterization

of BFNE operators is based on a new type of monotonicity, the T-monotonicity (see Def-
inition |1.4.24), which seems to be harder to check than the classical monotonicity (see
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Definition (2)) On the other hand, our mapping St is defined without any inverse
operation, and hence is easier to compute. In the case of the mapping Ar, similar com-

putations seem to be much harder because of the presence of the inverse operator T—!.
<&

2.1.2 Examples of BFNE Operators in Euclidean Spaces

In this section we use Theorem [2.1.22| to present various examples of BFNE operators in
Euclidean spaces. Indeed, we have already seen that BFNE operators can be generated
from T-monotone mappings. Moreover, the notion of T-monotonicity can be simplified in
the case of the real line.

Remark 2.1.27 (The real line case). If X = R and both T' and St are increasing (de-

creasing), then St is T-monotone. &
The next remark allows us to explicitly produce BEFNE operators.

Remark 2.1.28 (Characterization of BFNE operators on the real line). Let f : R —
(=00, 40| be an admissible function and let K be a nonempty subset of int dom f. From
Theorem we know that an increasing (decreasing) operator T is BFNE if St is
also increasing (decreasing). If, in addition, T is differentiable on int K, then S} = f" —
(.

We conclude that a differentiable operator T' : K — intdom f is BFNE on K with
respect to an admissible twice-differentiable function f as soon as

OgT’(x)gL(x)

ST (2))
for all x € int K. &

The following result gives sufficient conditions for an operator T to be BFNE with

respect to the Boltzmann-Shannon entropy BS (see (1.2.8)). We use the term BS-BFNE
for operators 7' : K — (0, +o0) which are BENE with respect to BS (c¢f. [25, Proposition
4.12, page 174]).

Proposition 2.1.29 (Conditions for BS-BFNE). Let K be a nonempty subset of (0, +0o0)
and let T : K — (0, +00) be an operator. Assume that one of the following conditions holds.

(i) T is increasing and T (x) /x is decreasing for every x € int K.

(ii) T is differentiable on int K and its derivative T satisfies

0<T (2) < L) (2.1.26)

for every x € int K.
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(iii) T is decreasing and T (x) /x is increasing for every x € int K.

(iv) T is differentiable on int K and its derivative T' satisfies

T (x)

T

<T'(z) <0
for every x € int K.
Then T is an BS-BFNE operator on K.

Proof. This result follows immediately from Theorem [2.1.22] and Remark [2.1.2§] O

Remark 2.1.30. The only solution of the differential equation

is T (z) = ax for any a € R, but in our case o € (0, +00) since T () € (0, +0) for any
re K c (0,+w). &

Using the conditions provided in Proposition [2.1.29] we give examples of BS-BFNE
operators (cf. [25, Example 4.14, page 174]).

T (x) Domain
ar+ p «,f € (0,+0) (0, +00)
z’ pe(0,1] (0, +0)

ar—a? pel,+x) ac(0,+0) ] (0,(a/p)" o)

alogr «a€[0,+m) le, +0)
sin x (0,7/2]
ae”  «a € (0,+00) (0,1]

Table 2.1: Examples of BS-BFNE operators

The following result gives sufficient conditions for an operator 7' to be BENE with respect
to the Fermi-Dirac entropy FD (see (1.2.9)). We use the term FD-BFNE for operators
T : K — (0,1) which are BENE with respect to FD (cf. [25, Proposition 4.16, page 176]).

Proposition 2.1.31 (Conditions for FD-BFNE). Let K be a nonempty subset of (0,1)
and let T : K — (0,1) be an operator. Assume that one of the following conditions holds.
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(i) T is increasing and

1s decreasing for every x € int K.

(ii) T s differentiable and its derivative T' satisfies

oeryTTe)
for every x € int K.
(iii) T is decreasing and
T (z)(1-2x)
x (1 =T (z))

1s increasing for every x € int K.

(iv) T is differentiable on int K and its derivative T" satisfies

T (2) (1 - T (2))

x(l—x) <T (@) <0

for every x € int K.

Then T s an FD-BFNE operator on K.

Proof. This result follows immediately from Theorem [2.1.22] and Remark [2.1.28]

Remark 2.1.32. The only solution of the differential equation

T(x)(1=T(x))
x(l—x)

T (z) =

18
ax

T(z) = (1—2z+ ax)

for any a € R, but in our case a € (0, +00) since T (z) € (0,1) for any x € K < (0,1).
Using Proposition [2.1.31}, we now give examples of FD-BFNE operators (c¢f. [25, Ex-

ample 4.18, page 177]).

In the following table we summarize sufficient conditions on the operator 7" to be BFNE

with respect to various choices of functions f.

Remark 2.1.33 (Product constructions). For each i = 1,2,...,n, let f; : R — R be an

admissible function, and define the function F : R™ — R by

F(.I'l,l'z?...,l'n) :Zfl(l'l)

]

&
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T (x) Domain
a ae(0,1) | (0,1)

ar «ae€(0,1)] (0,1)

P pe(0,1] | (0,1)

sin x (0,1]

Table 2.2: Examples of FD-BFNE operators

f(z) | Domain Condition

BS () |(0,4x0) 0< T () <T@

FD(z) | —(0,1) | 0<7'(z) < T221=T@)

z(l—x)

cosh(z
cosh z R 0<T'(z) < cosh(T((az))
22/2 R 0< T (2) <1
4 ?
z*/4 R 0<T'(®) < 7oy
e’ R 0< T (2) €

—log (z) | (0,+) | o0<T@ <™’

Table 2.3: Conditions for T to be a BFNE operator

For each i = 1,2,...,n, let K; be a nonempty subset of intdom f;. Let T : X | K; —
X intdom f; be an operator which is defined by T = (Tt,...,T,), where T; : K; —
intdom f; for each 1 <i < n. If each T;, i = 1,... n, satisfies the hypotheses of Theorem
then the operator T is BFNE with respect to F on X_, K;. <&



Chapter 3

Iterative Methods for Approximating
Fixed Points

In this section the function f is always assumed to be admissible (see Definition [1.2.1)). Let
K be a nonempty, closed and convex subset of a Banach space X and let T': K — K be
an operator. Iterative methods are often used to solve the fixed point equation Tz = =z.
The most well-known method is perhaps the Picard successive iteration method when T is
a strict contraction (see (1.3.1])). Picard’s iterative method generates a sequence {z,}, .y
successively by the following algorithm.

Picard Iterative Method
Initialization: z, € K.
General Step (n=1,2,...):

Tpt1 = Ty, (3.0.1)

A sequence generated by the Picard iterative method converges in norm to the unique fixed
point of 7. However, if T is not a strict contraction (for instance, if 7' is nonexpansive
(see (1.3.1)) even with a unique fixed point), then Picard’s successive iteration fails, in
general, to converge. It suffices, for example, to take for 7" a rotation of the unit disk
in the plane around the origin of coordinates (see, for example, [72]). Krasnoselski [70],
however, has shown that in this example, one can obtain a convergent sequence of successive
approximations if instead of 7" one takes the auxiliary nonexpansive operator (1/2) (I +T'),
where I denotes the identity operator of X, i.e., a sequence of successive approximations
which is defined by the following algorithm.

Krasnoselski Iterative Method
Initialization: z, € K.
General Step (n=1,2,...):

1
Tut1 = 5 (I+T)x,. (3.0.2)

88
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It is easy to see that the operators T and (1/2) (I + T') have the same fixed point set, so
that the limit of a convergent sequence defined by Algorithm (3.0.2]) is necessarily a fixed
point of T'.

However, a more general iterative scheme is the following (see [72]).

Mann Iterative Method
Input: {a,} . < (0,1).
Initialization: z, € K.
General Step (n=1,2,...):

Tpa1 = @y + (1 — ) Ty (3.0.3)

In an infinite-dimensional Hilbert space, the Mann iterative method has only weak conver-
gence, in general, even for nonexpansive operators (see [14], 55]). Therefore, many authors
have tried to modify Mann’s iteration process in order to obtain strong convergence for non-
expansive operators (see also [58]). One way to get strong convergence in Hilbert spaces is
to use the method proposed by Haugazeau in [60].

Haugazeau Iterative Method
Initialization: z, € H.
General Step (n=1,2,...):

yn:Txm
H,={zeH {tp—Yn,Yn—2) =
Qn="{zeH :{ryp—2z,00—Tp)=

i’ (3.0.4)

Tn+l = PHann (xO) .

Haugazeau proved that a sequence {z,}, which is generated by Algorithm con-
verges strongly to a fixed point of 7. Later many authors studied and developed this
method (in the context of Hilbert spaces see, for example, [9] [105], and in Banach spaces
see, for example, [10] 48] [54]).

In the next sections we present several methods for finding fixed points of operators
in reflexive Banach space which generalize previously mentioned results. We focus our
study on explicit methods (which we call iterative methods or algorithms) except for one
result about approximation of fixed point for BFNE operators by an implicit method (see
Theorem . Our algorithms allow for computational errors in some cases and find
common fixed points of finitely many operators.

3.1 Picard’s Iteration for Bregman Nonexpansive Operators
The main result in this section is the following one (cf. [74, Theorem 4.1, page 12]).

Theorem 3.1.1 (Picard iteration). Let f : X — (—o0,+00]| be a Legendre function such
that Vf* is bounded on bounded subsets of intdom f*. Let K be a nonempty, closed and
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convex subset of intdom f and let T : K — K be a strictly QBNE operator. Then the

following assertions hold.
(i) If Fix () is nonempty, then {T"x}, .y is bounded for each x € K.

(i) If, furthermore, T is asymptotically regqular, then, for each x € K, any weak subse-
quential limit of {T"x} _y belongs to Fix (T).

neN

(iii) If, furthermore, V f is weakly sequentially continuous, then {T"x} _y converges weakly

to an element in Fix (T') for each x € K.
Proof. (i) This result follows directly from Proposition [2.1.4]

(ii) Since {T"x}, .y is bounded (by assertion (i)), there is a subsequence {T"*z},_ which
converges weakly to some u. Define z,, = T"z for any n € N. Since T is asymptotically
regular, it follows from Definition [1.3.14|that |z, — T'z,|| — 0 as n — co. Therefore we

have both z,, — v and |z,, —Tx,, | — 0 as k — oo, which means that u € Fix (T).

(iii) From assertion (ii) and since T is strictly QBNE, we already know (part of the proof of
Proposition [2.1.4) that the limit lim,,_,o, D (u, T"x) exists for any weak subsequential
limit u of the sequence {T"z}, . The result now follows immediately from Proposition

L2531 O

Corollary 3.1.2 (Picard iteration for BSNE operators). Let f : X — (—o0, 4] be a
Legendre function which is totally convex on bounded subsets of X. Suppose that V[ is
weakly sequentially continuous and YV f* is bounded on bounded subsets of int dom f*. Let
K be a nonempty, closed and conver subset of intdom f. Let T : K — K be a BSNE
operator such that Fix (T') = Fix (T) # &. Then {T"z},  converges weakly to an element
in Fix (T) for each x € K.

Proof. The result follows immediately from Theorem [3.1.1] and Proposition [2.1.14] O]

Remark 3.1.3 (The case Fix (T) # Fix (T)). If Fix (T) # Fix(T), but Fix(T) # &,
then we only know that, for a strictly BSNE operator T', {T"x},  converges weakly to an
element in F/l\X(T) for each x € K. This result was previously proved in [88, Lemma 4,

page 315] under somewhat different assumptions. &

Remark 3.1.4 (Picard iteration for BENE operators). Let f : X — R be a function which

s uniformly Fréchet differentiable and bounded on bounded subsets of X . From Proposition

and Corollary[3.1.4 we get that Theorem holds for BFNE operators. It is well
known that in Hilbert spaces, the Picard iteration of firmly nonexpansive operators (see

(1.3.12)) ) converges weakly to a fixed point of the operator (see, for instance, [56]). O
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Remark 3.1.5 (Common fixed point - composition case). Let f : X — (—o0,+0]| be
a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex
on bounded subsets of X. Suppose that V f is weakly sequentially continuous and Vf~ is
bounded on bounded subsets of int dom f*. Let K be a nonempty, closed and convex subset
of int dom f.

Let {T; : 1 <i < N} be N BSNE operators such that ﬁ;((ﬂ) = Fix (T;) # & for each
1 <i< NandletT = Ty oTy_qy0---0T,. From Proposition and Remark
we obtain that if (\{Fix(T;):1<i< N} # &, then T is also BSNE such that
Fix (T) = Fix(T) = ({Fix (T}) : 1 <i < N}.

From Theorem we now get that {T"x},  converges weakly to a common fized point
of the family of BSNE operators. Similarly, if we just assume that each T; is strictly BSNFE,

with @((Tl) # &, 1 <i < N, then we get weak convergence of the sequence {T"x},  to
a common asymptotic fized point. &

As a consequence of the previous result, we now see that the Picard iteration provides a
method for approximating common fixed points of a finite family of BSNE operators. We
can also use the block operator (see Definition [2.1.15]) for finding common fixed point.

Remark 3.1.6 (Common fixed point - block operator case). Let f : X — (—oo, +0] be
a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex
on bounded subsets of X. Suppose that Vf is weakly sequentially continuous and V" is
bounded on bounded subsets of int dom f*.

Let {T;: 1 <i < N} be N BSNE operators such that Fix (T;) = Fix (T}) # & and let
Tg be the block operator defined by (2.1.14). If F := ({Fix(T;) : 1 <i < N} and Fix (Tp)
are nonempty, then from Proposition we know that Tg is BSNE. Furthermore, from
Proposition we get that

Fix (Tp) < Fix (Ts) © F < Fix (Tg),

which implies that Fix (T) = Fix (Tg) # &.
Therefore, Theorem applies to guarantee that {Tjx},  converges weakly to an

element in F under appropriate conditions. &

3.2 Mann’s Iteration for Bregman Nonexpansive Operators

In this section we study a modification of the Mann iterative method (see Algorithm
(3.0.3)), which is defined by using convex combinations with respect to a convex func-
tion f, a concept which was first introduced in the case of Euclidean spaces in [46].



92 Iterative Methods for Finding Fixed Points

f-Mann Iterative Method

Input: f: X — Rand {a,}, < (0,1).
Initialization: zo € X.

General Step (n=1,2,...):

Tni1 = VI (Vi (z,) + (1 —a,)VF(Tz,)). (3.2.1)

Remark 3.2.1 (Particular case). When the Banach space X is a Hilbert space and f =
(1/2) ||| then Vf = Vf* = I and the f-Mann iterative method is exactly the Mann
iterative method (see Algorithm (3.0.3) ). &

In the following result we prove weak convergence of the sequence generated by the f-Mann
iterative method (c¢f. [74, Theorem 5.1, page 13]).

Theorem 3.2.2 (f-Mann iteration). Let T : X — X be a strictly BSNE operator with
@((T) # . Let f: X — R be a Legendre function which is totally convexr on bounded
subsets of X. Suppose that Vf is weakly sequentially continuous and Vf* is bounded on
bounded subsets of int dom f~. Let {zn},en be a sequence generated by the f-Mann iterative
method (see Algorithm ([3.2.1)) where {an}, oy < [0,1] satisfies limsup,,_,, oo, < 1. Then,

for each xg € X, the sequence {x,}, . converges weakly to a point in Fix (T).

Proof. We divide the proof into 3 steps.

Step 1. The sequence {x,}, .y is bounded.

Let p € Fix (7). From Proposition [1.2.42(i) and (ii), and the first part of the definition
of strictly BSNE operator (see ((1.3.9)) we have for all n € N,

Dy (p,5ns1) = Dy (1, VF" @V f () + (1 = an) V. (T,)))
= W (@, V[ (25) + (1 = ) Vf (Tz,) ,p)
< W/ (Vf (22) ) + (1 a) W (Vf (Tz,) .p)
= 0, Dy (p. ) + (1 — o) Dy (p. Tz,
< 0, Dy (p. 1) + (1 ) Dy (p. z,)
= Ds(p,xy) . (3.2.2)

+
+

This shows that the nonnegative sequence {Dy (p, z,)}, .y is decreasing, thus bounded, and
lim,, e Dy (p, x,) exists. From Proposition |1.2.48 we obtain that {x,}, .y is bounded, as

claimed.

Step 2. Every weak subsequential limit of {x,},y belongs to Fix (T).



Iterative Methods for Solving Optimization Problems 93

For any p € Fix (T') we see, from the first inequality of (3.2.2)), that

Dy (p,#ni1) < Dy (pyxn) + (1= an) (Dg (p, Txn) = Dy (p, 20)) -

Hence
(1= ) (Dy (p. ) = Dy (p.T,)) < Dy (p.20) = Dy (pr ) (32.3)

for all n € N. We already know that lim,,_,o Dy (p, x,,) exists. Since limsup,,_,,, a, < 1, it
follows that

lim (D (p., ) — Dy (p. Tx,)) = 0.

n—aco

Now, since T is strictly BSNE and p € Fix (T'), we obtain

lim Ds (Txp,x,) = 0.

n—aoo

Since {,}, .y is bounded (see Step 1), Proposition |1.2.46| implies that
lim Tz, — x,| = 0.
n—0

Therefore, if there is a subsequence {x,, },. of {%n}, oy Which converges weakly to some
ve X as k — o, thenvel*“/i\x(T).

Step 3. The sequence {x,}, . converges weakly to a point in Fix (T).

Since V f is weakly sequentially continuous (see Definition , the result follows im-
mediately from Proposition[I.2.53]since lim, 0 Dy (u, 2,,) exists for any weak subsequential

limit u of the sequence {z,} _y by Step 2. O

neN

Corollary 3.2.3 (f-Mann iteration for BSNE operators). Let T': X — X be a BSNE
operator such that Fix (T') = Fix (T) # . Let f: X — R be a Legendre function which is
totally convex on bounded subsets of X . Suppose that V f is weakly sequentially continuous
and V f* is bounded on bounded subsets of int dom f*. Let {zn},cn be the sequence generated
by Algorithm (3.2.1), where {a,}, .y < [0,1] satisfies limsup,,_,,, oo, < 1. Then, for each

xg € X, the sequence {x,}, .y converges weakly to a point in Fix (T').

Remark 3.2.4 (Particular case of f-Mann iteration). If f = (1/2) ||| and X is a Hilbert
space, then both V f and Vf* are the identity operator, and Algom'thm coincides with
the Mann iteration (see Algorithm ) In this case the weak convergence of which
for nonexpansive operators is well known, even in more general Banach spaces, under the
assumption that Y, oy (1 —oy,) = o0 (see [84)). &

Remark 3.2.5 (Common fixed point - composition case). Let f : X — R be a Legendre
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function which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of X. Suppose that Vf is weakly sequentially continuous and Vf* is bounded on
bounded subsets of int dom f~ .

Let {T;: 1 <i< N} be N BSNE operators such that Fix (T}) = Fix (T;) # & for each
1<i<NandletT =TyoTy_10---0Ty. Then from Proposition and Remark
we obtain that, if (V{Fix (T;):1<i< N} # &, then T is also BSNE such that
Fix (T) = Fix (T) = ({Fix (T}) : 1 <i < N}.

Now from Theorem we get that a sequence {x,}, .y generated by Algorithm ([3.2.1))
for T =TyxoTyx y0---0T) converges weakly to an element in ({Fix (T;) : 1 <i < N} for
each xg € X.

In the case where each T;, i =1,...,N, is strictly BSNE with Fix (T;) # &, a sequence
{z,},on generated by Algorithm forT =Ty oTyn_10---0T) weakly converges to a
common asymptotic fized point of the family {T; : 1 <i < N} whenever such a point exists.

&

Remark 3.2.6 (Common fixed point - block operator case). Let f : X — (—oo, +0] be
a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex
on bounded subsets of X. Suppose that Vf is weakly sequentially continuous and V" is
bounded on bounded subsets of int dom f*.

Let {T;:1 < i< N} be N BSNE operators such that Fix (T;) = Fix (T;) # & and let Tp
be the block operator defined by (2.1.14)). If F := ({Fix (T}) : 1 <i < N} and Fix (I) are
nonempty, then from Propositions we know that Ty is BSNE. Furthermore, from
Proposition we get that

Fix (Tg) < Fix (Tg) « F < Fix (T5),

which implies that F/i\X(TB) =Fix(Tg) # &.
Therefore, Theorem applies to guarantee the weak convergence of a sequence {x,},
generated by Algorithm (3.2.1)) for T'= Ty to an element in F. O

3.3 Haugazeau’s Iteration for Bregman Nonexpansive Operators

Let T': X — X be an operator such that Fix (7') # ¢J. A first modification of Algorithm
(3.0.4) to general reflexive Banach spaces has been proposed by Bauschke and Combettes
[10]. More precisely, they have introduced the following algorithm (for a single operator).
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f-Haugazeau Iterative Method
Input: f: X - R.
Initialization: zo€ X.

General Step (n=1,2,...):

Yn = Txna
Hy,={2€ X :{Vf(2,) =V (yn),
Qn=1{2€ X :(Vf(x0) = V[ (22),

Tp+1 = prOanan (Io) :

[SIEN
<
3

<0},
<0) (3.3.1)

Remark 3.3.1 (Particular case). Where the Banach space is a Hilbert space and f =
(1/2) |-I?, Algorithms ([3.0.4) and ([3.3.1) coincide. <&

Now we present our modification of Algorithm for finding common fixed points
of finitely many QBFNE operators (see (1.3.6])). Our algorithm allows for computational
errors. More precisely, let T; : X — X, i =1,2,..., N, be QBFNE operators and denote
F =Y, Fix(T;) # &. We study the following algorithm.

Minimal Norm-Like Picard Iterative Method
Input: f: X — (—w,4+00] and {¢'} < X,i=1,2,...,N.
Initialization: z, e X.

General Step (n=1,2,...):

neN

(Y ="Ti (20 +e,),

H, ={ze X :(Vf(zn+e,)=Vf(y), 2=y, <0},
{ H,:=NY,H, (3.3.2)
Qn={2€X :(Vf(xo) —Vf(xn),z—x,) <0},

\ Tn+1 = prOanﬁQn (ZL‘()) .

Let T': X — X be an operator such that Fix (T') # . Another modification of Algorithm
in Hilbert spaces has been proposed by Bauschke and Combettes [9]. They intro-
duce, for example, the following algorithm (see [9, Theorem 5.3(ii), page 257] for a single
operator and A, = 1/2).

Bauschke-Combettes Iterative Method
Initialization: z, € H.
General Step (n=1,2,...):

yn:Txm
Co=AzeH:|yn— 2| < |on— 2]},
Qn=1{zeH:{xrg—p,2z— 1, <0},

Tni1 = Po,nqn (20) -

(3.3.3)

We introduce the following modification of the Bauschke-Combettes iterative method.
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f-Bauschke-Combettes Iterative Method
Input: f: X — (—o0, +0].

Initialization: zo€ X.

General Step (n=1,2,...):

yn:Txna
Cn={2€X:Ds(2,yn) < Dy(2,2,)},
Qn=1{2€ X :(Vf(xg) = Vf(xn),z—x,) <0},

Tpy1 = prOanan ('TO) :

(3.3.4)

Remark 3.3.2. When the Banach space is a Hilbert space and f = (1/2) ||-||°, Algorithms

(13.3.3) and (3.3.4) coincide. &

Now we present a modification of Algorithm for finding common fixed points of
finitely many QBNE operators. Our algorithm allows for computational errors. More
precisely, let T; : X — X, ¢ = 1,2,...,N, be N QBNE operators such that F' :=
NN, Fix (T;) # &. We study the following algorithm.

Minimal Norm-Like Bauschke-Combettes Iterative Method
Input: f: X > Rand {¢!} < X,i=1,2,...,N.
Initialization: zo€ X.

General Step (n=1,2,...):

neN

( ?JézTi(iUnJFef@%

Cl={2€ X :Ds(z,y}) <Dy (2,2, + €.},
G =Y, (3.3.5)
Qn=1{2€ X :(Vf(xg) =Vf(xyn),z—x,) <0},

\ Tntl = Projchn (o) -

3.3.1 Convergence Analysis

Since the proofs that these algorithms generate sequences which converge strongly to a
common fixed point are somewhat similar, we first prove several lemmata which are common
to all the proofs and then present the statements and the proofs of our main results.

In order to prove our lemmata, we consider two more general versions of these algorithms.
More precisely, we consider the following two algorithms.
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Input: f: X — R and {¢’}
Initialization: z, e X.
General Step (n=1,2,...):

cX,i=12,...,N.

neN

(Y =Sh (T +63),

H, ={ze X :(Vf(xn+e,)=Vf(y),z =y, <0},
 H, =Y, 0, (3.3.6)
Qn ={2€ X :(Vf(xg) —Vf(x,),z—x,) <0},

\ Tnt+1 = prOanan (‘TO) :

Input: f: X — R and {¢’}
Initialization: z, e X.
General Step (n=1,2,...):

cX,i=1,2,...,N.

neN

(Y =5 (Tn +ep),

C, ={2€ X : Dy (2,4,) < Dy (2,2, + €},

 Chi=NY, 0 (3.3.7)
Qn={2€X :(Vf(xo) —Vf(x,),z—x,) <0},

\ Tn+1 = pl“Ojoann (xo) .

Here S’ : X — X are given operators for each 1 = 1,2,..., N. All our lemmata are proved
under several assumptions, which we summarize in the following condition.

Condition 1. Let S? : X - X, i =1,...,N and n € N, be QBNE operators such that
Q=N NV, Fix(S1) # @ . Let f: X — R be a Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of X. Suppose that
V" is bounded on bounded subsets of int dom f*. Assume that, for eachi=1,... N, the

sequence of errors {e} . © X satisfies lim,_, |}, = 0.

Now we prove a sequence of lemmata. We start by proving that both algorithms are
well defined.

Lemma 3.3.3. Assume, in addition to Condition[l], that each Si : X — X,i=1,2,...,N
and n € N, is a QBFNE operator. Then Algorithm (3.3.6)) is well defined.

Proof. The point 3!, is well defined for each ¢ = 1,2,..., N and n € N. Hence we only have
to show that {x,}, .y is well defined. To this end, we will prove that the Bregman projection
onto H, ()@ is well defined (see (1.2.14))), that is, we need to show that H, ()@, is a
nonempty, closed and convex subset of X for each n € N (see Proposition . Let
n € N. Tt is not difficult to check that H’ are closed half-spaces for any ¢ = 1,2,..., N.

Hence their intersection H,, is a closed polyhedral set. It is also obvious that @), is a closed
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half-space. Let uw € Q). For any i = 1,2,..., N and n € N, we obtain from the definition of
QBFNE operator (see ([1.3.6])) that

<Vf (ajn + 6;) - Vf (y;) y U — y:z> < Oa

which implies that u € H!. Since this holds for any i = 1,2,..., N, it follows that u € H,.
Thus Q < H, for any n € N. On the other hand, it is obvious that Q < @y = X.
Thus Q < Hy()Qo, and therefore x; = proijOmQO (x0) is well defined. Now suppose that
Qc H, 1(\Q,_1 for some n = 1. Then z, = prOJ'}Z,WmQW1 (x0) is well defined because
H,—1 () Q@n-1 is a nonempty, closed and convex subset of X. So from Proposition [1.2.35(ii)

we have

(Vf(xo) = Vf(wn),y—2)<0
for any y € H,, 1()Qn,_1. Hence we obtain that Q < @Q,,. Therefore Q < H, () Q, and so

H, [ Q. is nonempty. Hence z,,; = proj{{ann (x0) is well defined. Consequently, we see

that Q < H, [ Q, for any n € N. Thus the sequence we constructed is indeed well defined
and satisfies Algorithm ([3.3.6)), as claimed. O

Lemma 3.3.4. Algorithm (3.3.7)) is well defined.

Proof. The point 4 is well defined for each i = 1,2,..., N and n € N. Hence we only have to
show that {z,}, .y is well defined. To this end, we will prove that the Bregman projection
onto C, (@, is well defined (see (1.2.14))), that is, we need to show that C,[)Q, is a
nonempty, closed and convex subset of X for each n € N (see Proposition. Let n e N.
It follows from Proposition that C? are closed half-spaces for any i = 1,2,..., N.
Hence their intersection C), is a closed polyhedral set. It is also obvious that @), is a closed
half-space. Let u € 2. For any ¢ = 1,2,..., N and n € N, we obtain from the definition of
QBNE operator (see (|1.3.8)) that

Dy (u,v}) = Dy (u, S}, (zn + €),)) < Dy (u,x, + €),)

which implies that u € C. Since this holds for any 7 = 1,2,..., N, it follows that u € C,.
Thus 2 < C), for any n € N. The rest of the proof is identical to the proof of Lemma |3.3.3
by replacing H,, with C,. O]

From now on we fix an arbitrary sequence {z,}, .y which is generated by Algorithm

(3.3.6) or by Algorithm (3.3.7)).

Lemma 3.3.5. The sequences {Dy (2n,x0)}, o {Zntnen and {y} i=1,2,...,N, are

bounded.

neN’
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Proof. Denote by A, the intersection H, n @), in the case of Algorithm and the
intersection C,, N @,, in the case of Algorithm . It follows from the definition of
Q). and from Proposition |1.2.35(ii) that projén (x9) = x,. Furthermore, from Proposition
1.2.35((iii), for each u € €, we have

Dy (z,,%0) = Dy (projén (x0) ,xo) < Dy (u,z9) — Dy (u,projén (:Ug)) < Dy (u, o) .

Hence the sequence {Dy (2, 20)},,y is bounded by Dy (u, z) for any u € 2. Therefore by
Proposition [1.2.47 the sequence {z,}, .y is bounded too, as claimed.

Now we will prove that each sequence {y.}, ., ¢ = 1,2,..., N, is bounded. Let u € Q.

From the three point identity (see (1.2.2)) we get

D¢ (u,xy + €,) = Dy (u, ) — Dy (T, + €5, xn) + <V f (2, + €n) = Vf (22) ,u — (xn + €))
< Dy (u, ) +{Vf(xn+en) = Vf(rn),u— (z,+e,)). (3.3.8)

We also have
D¢ (u,x,) = Dy (u, projﬁn_l(:co)) < Dy (u, xp)

because of Proposition [1.2.35(iii) and since Q@ < A, ;. On the other hand, since f is

uniformly Fréchet differentiable and bounded on bounded subsets of X, we obtain from

Proposition [1.1.22(ii) that
lim [V f (2, +e,) = Vf(zn)], =0
n—aoo0

because lim,,_,« |e,|| = 0. This means that if we take into account that {z,}, . is bounded,
then we get
lim (Vf(z,) = Vf(xy+e,),u—(x,+e,))=0. (3.3.9)
n—o0

Combining these facts, we obtain from (3.3.8) that {Dy (u,z, + €,)},,y is bounded. Using
the inequality

Df (u,yﬁl) < Df (u,xn + en) )
we see that {D; (u, y’)}

follows from Proposition [1.2.48| O

ey 18 bounded too. The boundedness of the sequence {y?}, .y now

Lemma 3.3.6. For anyi=1,2,..., N, we have the following facts.

(i)
lim |yi — (2, +€,)| = 0. (3.3.10)

n—0
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lim [Vf (y,) = Vf (20 +6,)], =0. (3.3.11)
(i)
im (f () = f (20 +¢,)) = 0. (3.3.12)

Proof. Since x,,1 € @),, and projén (x0) = Ty, it follows from Proposition |1.2.35(iii) that

Dy <9€n+1,p1"0j£2n (5Uo)> + Dy (projé;n (o) ,flfo) < Dy (w541, 70)

and hence
Dy (zpi1,2n) + Dy (24, 20) < Dy (2141, 20) - (3.3.13)

Therefore the sequence {Dy (x,,%0)}, oy is increasing and since it is also bounded (see

Lemma [3.3.5)), lim,, oo Dy (2, 7o) exists. Thus from (3.3.13) it follows that

lim Dy (xp41,2,) = 0. (3.3.14)

n—ao0
Proposition [1.2.50| now implies that
lim Dy (241,20 + €),) = 0. (3.3.15)

n—ao0

Now we split our proof into two parts according to the differences between Algorithms

and . In both cases we will prove that lim, . Dy (241, 95) = 0.
(i) For any i = 1,2,..., N, it follows from the inclusion x,,; € H’ that
(VF (20 +€) =V (4h) T —yhy < 0. (3.3.16)
The three point identity (see (1.2.2)) now implies that

Df ($n+l>y;) = Df (anrla Tp + 6;) - Df (y:pfl:n + 621)
+{Vf(znte€,) =V (), Tni1 — yp)
< Dy (@ng1, 20 +€h) + <V f (2 + ) =V (), Tnsr — Yy ) -

From ([3.3.16|) we get that
Df (anrla y;) < Df (anrla Tn + 6;) 3

hence ([3.3.15)) leads to lim, o Df (2p41,y5) = 0.
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(ii) For any i = 1,2,..., N, it follows from the inclusion z,,; € C? that
Df (xn-i-lu y;L) < Df (ITL-‘rla Tp + 6;) :
Hence from ([3.3.15)) it follows that lim,, . D (2541, y;) = 0.

Since {y}}, .y is bounded (see Lemma |3.3.5), Proposition [1.2.46| now implies that

lim Hy; — anH =0.
n—0o0

Since {z,}, .y is bounded (see Lemma |3.3.5)), it follows from Proposition (1.2.46/and (3.3.14)
that

lim Hy; — anH = 0.
n—oo

Therefore, for any 7 = 1,2,..., N, we have

i = ) < Jim Gl = ] + e = 2l) =0

Since lim,, . |€!,| = 0, it also follows that

lim Hy; — (In + e;) H = 0.

n—eo

The function f is uniformly Fréchet differentiable and bounded on bounded subsets of X.
Hence from Proposition [1.1.22(ii) we get

lim [V () =V (20 + )], =0

for any ¢ = 1,2,...,N. Finally, since f is uniformly Fréchet differentiable on bounded

subsets of X, it is also uniformly continuous on bounded subsets of X (see Proposition

[1.1.22(i)) and therefore
lim (f (3/711) —f (q:n + 62)) =0

n—aco

forany ¢ =1,2,..., N. O]

Lemma 3.3.7. If any weak subsequential limit of {x,} belongs to ), then the sequence

neN
{zn}, ey converges strongly to proj{2 (x0).

Proof. From Proposition it follows that Fix (S?) is closed and convex for each i =
1,2,...,N and n € N. Therefore {2 is nonempty, closed and convex, and the Bregman
projection proj{2 is well defined. Since z,,1 = projéann (x9) and € is contained in K in
both cases (see Lemmas [3.3.3| and [3.3.4]), we have Dy (2,41, %0) < Dy (@, x). Therefore
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Proposition [1.2.51f implies that {z,}, . converges strongly to @ = projd, (o), as claimed.
0]

Now we prove the convergence of the Minimal Norm-like Picard Iterative Method (see
Algorithm (3.3.2)).

Theorem 3.3.8 (Convergence of Algorithm (3.3.2)). Let T; : X — X, i=1,2,..., N, be
N QBFNE operators such that F := (X, Fix(T;) # &. Let f : X — R be a Legendre
function which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of X. Suppose that Vf* is bounded on bounded subsets of intdom f*. Then, for
each xy € X there are sequences {x,}, . which satisfy Algorithm . If, for each
i =1,2,...,N, the sequence of errors {e.}, . < X satisfies lim, .o |€}] = 0, then each

such sequence {x,}, . converges strongly to projh (xo) as n — 0.

Proof. We denote S¢ :=T; for any i = 1,2,..., N and all n € N. Therefore Q = F. We see
that Condition [1| holds and therefore we can apply our lemmata.

From Lemmata |3.3.3 and [3.3.5 any sequence {z,}, .y which is generated by Algorithm

(3.3.2) is well defined and bounded. From now on we let {z,}, be an arbitrary sequence
which is generated by Algorithm (3.3.2)).

We claim that every weak subsequential limit of {z,}, . belongs to F. From Lemma

neN
B.3.6l we have
B[54 )] = lim 55 (o ) = (o4 )]
= lim [T (2 +€,) = (za +€,)[ =0 (3.3.17)
for any ¢ = 1,2,...,N. Now let {z,,},.y be a weakly convergent subsequence of {x,},.x

and denote its weak limit by v. Let 2} = x,, + €},. Since z,, — v and €/, — 0 as k — o0,

it is obvious that for any ¢ = 1,..., N, the sequence {zﬁlk}keN

We also have limy_,q |T;z5 — 2. | = 0 by (3.3.17). This means that v € Fix (T}) for any
i=1,2,...,N. Since each T; is a QBFNE operator, it follows that v € Fix (7;) for any
t=1,2,...,N. Therefore v € F, as claimed.

Now Theorem [3.3.8 is seen to follow from Lemma [3.3.7 O]

also converges weakly to v.

Now we prove the convergence of the Minimal Norm-Like Bauschke-Combettes iterative
method (see Algorithm (3.3.5)). The analysis of this algorithm was first done in [92]
Theorem 1, page 126].

Theorem 3.3.9 (Convergence of Algorithm (3.3.5))). Let T; : X — X, i =1,2,...,N,
be N QBNE operators such that F := (1, Fix(T}) # &. Let f : X — R be a Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex on bounded
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subsets of X. Suppose that Vf* is bounded on bounded subsets of intdom f*. Then, for
each xy € X there are sequences {x,}, . which satisfy Algorithm (3.3.5). If, for each

i =1,2,...,N, the sequence of errors {e.}, .y = X satisfies lim,_,q |€}] = 0, then each

such sequence {x,}, . converges strongly to proj? (x0) as n — 0.

Proof. We denote S? :=T; for any i = 1,2,..., N and all n € N. Therefore ) = F. We see
that Condition (1| holds and therefore we can apply our lemmata.

By Lemmata [3.3.4) and [3.3.5, any sequence {z,},.y Which is generated by Algorithm
is well defined and bounded. From now on we let {z,}
which is generated by Algorithm (3.3.5).

The rest of the proof is identical to the proof of [3.3.8| n

nen e an arbitrary sequence

3.4 An Implicit Method for Approximating Fixed Points

In this section we prove a strong convergence theorem of Browder’s type for BFNE operators
(see Definition |1.3.5)) with respect to a well chosen function (¢f. [01, Theorem 15.13, page
310]).

Theorem 3.4.1 (Implicit method for approximating fixed points). Let f : X — R be a
Legendre, totally convex function which is positively homogeneous of degree o > 1, uniformly
Fréchet differentiable and bounded on bounded subsets of X. Let K be a nonempty, bounded,
closed and convex subset of X with 0 € K, and let T' be a BFNFE self-operator. Then the

following two assertions hold.
(i) For each t € (0,1), there exists a unique uy € K satisfying u, = tTuy.
(ii) The net {us};e(,y converges strongly to proj}];ix(T) (Vf5(0)) ast —> 1.

Proof. (i) Fix t € (0,1) and let S; be the operator defined by S; = tT. Since 0 € K and
K is convex, S; is an operator from K into itself. We next show that S; is a BFNE
operator (see (L.3.4)). Indeed, if z,y € K, then, since T' is BFNE (see (L.3.4)), it
follows from Proposition that

(Vf(Sw) =V (Sy), S — Sy =tV f (Tx) =V f(Ty), Te —Tyy  (3.4.1)
<t"(Vf(z)=Vf(y),Tz—Ty)
= t*NVf (2) = VI (y), S — Sy
<(Vf(x) =Vf(y),Six— Sy).

Thus S; is also BENE (see ([1.3.4)). Since K is bounded, it follows from Corollary
that S; has a fixed point. We next show that Fix (S;) consists of exactly one
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point. If u,u" € Fix (S;), then it follows from (3.4.1]) that

(Vfw)=Vf@W),u—uy={(Vf(Su)—Vf(Su),Su— Sy (3.4.2)
<t NV S (u) = V@), Su— S’y
=tV f () = V() u—u).

From ([3.4.2) and the monotonicity of V f (see Example [1.4.3)), we have
Vf(w) = Vf{),u—u)=0

Since f is Legendre (see Definition , then f is strictly convex and hence V f is
strictly monotone (see again Example and therefore u = u/. Thus there exists
a unique u; € K such that u, = Syuy.

Let {t,}
all n € N. From Propositions [2.1.1] and [2.1.6] Fix (T") is nonempty, closed and convex.

.y be a sequence in (0, 1) such that ¢, — 17 as n — . Put z,, = v, for

Thus the Bregman projection projlﬂiix(T) is well defined. In order to show that u; —
projgix(T) (Vf* (0)) as ¢ — 17, it is sufficient to show that x, — projﬁix(T) (Vf* (0))
as n — 0. Since K is bounded, there is a subsequence {xy, }, . Of {#n},y such that
T, — v as k — oo. By the definition of z,, we have ||z, — Tx,| = (1 —t,) |Tz,|
for all n € N. So, we have that |z, — Tx,| — 0 as n — oo and hence v € F/l\X(T)
Proposition 2.1.2]now implies that v € Fix (T'). We next show that z,,, — v as k — .
Let y € Fix (T') be given and fix n € N. Then, since T' is BENE, we have from ({1.3.4)

that
NVf(Tz,) =Vf(Ty), Tx, —Ty) <{Vf(xn) = Vf(y), Tz, —Ty).

That is
Since

Vi(x,)=Vf(Tz,)=Vf({t,Tx,)—Vf(Tx,)
=10V (Tx,) =V (Tx,) = (8" = 1) VS (Tz,),

we have
0<{(ta "t =1)Vf(Tay), Ty —y).

This yields
0<{(=Vf(Tx,),Tr, —y) (3.4.3)
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and
VI =Vf(Tzn),y =T, <(Vf(y),y—Tw,). (3.4.4)

Since z,, — v and z,, — Tz, — 0 as k — oo, it follows that T'z, — v as k — o0.

Hence from (3.4.4) we obtain that

hIle sup <Vf (y) o Vf (Txnk) Y = Tmnk> < hIle sup <vf (y) Y = Txnk> (345)
—00 — 00

= <Vf(y) ,y—U>.
Substituting y = v in ((3.4.5)), we get

0 < limsup{Vf(v) =Vf (Tz,,),v—Tz,)<O0.

k—0o0
Thus
]}im (Vf(w)=Vf(Tz,,),v—Tx, )=0.
—00
Since

D¢ (v,Txy,) + Dy (Txy,,v) ={(Vfv)=Vf(Tz,,),v—Tx,),

it follows that
klgrolo D¢ (v, Txy,) = klgrolo D¢ (Txy,,v) = 0.

Since f is totally convex (see Definition , Proposition now implies that
Tx,, — v as k — oo. Finally, we claim that v = projéixm (Vf* (O)) Since Vf is
norm-to-weak” continuous on bounded subsets (see Proposition , it follows that
Vf(Tx,,)— Vf(v)as k — oo. Letting k — oo in (3.4.3)), we obtain

0<(=Vf({v),v—y)

for any y € Fix (7). Hence

0< (VI (VI ) - VI @), 0-y)

for any y € Fix (T"). Thus Proposition |1.2.35(ii) implies that v = proj}];iX(T) (Vf* (0)).
Consequently, the whole net {u:},c( ) converges strongly to projéiX(T) (V f (0)) as
t — 1. This completes the proof. U

Remark 3.4.2 (Browder’s type result for nonexpansive operators). Early analogs of The-
orem for nonexpansive mappings in Hilbert and Banach spaces may be found in
[30, 58, [85].
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We specialize Theoremmm the case where f = |-|* and X is a uniformly smooth and
uniformly convex Banach space (see Definition [1.1.33). In this case the function f = |-|*

is Legendre (¢f. [7, Lemma 6.2, page 639]) is bounded and uniformly Fréchet differentiable
on bounded subsets of X. According to Proposition [1.2.18] since X is uniformly convex, f
is totally convex. Thus we obtain the following corollary. As a matter of fact, this corollary
is known to hold even when X is only a smooth and uniformly convex Banach space (see

[69]).
Corollary 3.4.3 (Particular case). Let X be a uniformly smooth and uniformly convex
Banach space. Let K be a nonempty, bounded, closed and convex subset of X with 0 € K,

and let T be a BFNE self-operator with respect to |-|>. Then the following two assertions
hold.

(i) For each t € (0,1), there exists a unique uy € K satisfying u, = tTuy.

2
1§

(ii) The net {us}e(1y converges strongly to projgy . (0) ast — 1"



Chapter 4

Iterative Methods for Approximating

Zeroes

A problem of interest in Optimization Theory is that of finding zeroes of mappings A :
X — 2X* Formally, the problem can be written as follows:

Find z € X such that 0 € Az. (4.0.1)

This problem occurs in practice in various forms. For instance, minimizing a convex and
lower semicontinuous function f : X — (—o0,+], a basic problem of optimization,
amounts to finding a zero of the mapping A = Jf, where 0f (z) stands for the subdif-
ferential (see Definition [I.1.12{iii)) of f at the point € X. Finding solutions of some
classes of differential equations can also be reduced to finding zeroes of certain mappings
A X —2Y7

One of the most important methods for solving consists of replacing in
the case of a Hilbert space, H, with the fixed point problem for the operator R4 : H — 2%
defined by

Ra:=(I+A)~".

When H is a Hilbert space, and provided that A satisfies some monotonicity conditions,
the classical resolvent R4 of A is single-valued, nonexpansive and even firmly nonexpansive
(see and , respectively) which ensure that its iterates z, 1 = Rax,, based on
Picard’s method (see Algorithm and Remark, converge weakly, and sometimes
even strongly, to fixed points of the resolvent R4 which are necessarily zeroes of A (see
[100]) as we will explain later on in this chapter. As in the case of fixed point problems,
when X is not a Hilbert space, or if A fails to be monotone, the convergence of the iterates
of R4 to a fixed point of R4 and, thus, to a solution of , is more difficult to ensure
(see [41]).

One way to overcome this difficulty is to use, instead of the classical resolvent, a new
type of resolvent which first introduced by Teboulle [108] in 1992 for the subdifferential
mapping case and one year later by Eckstein [51] for a general monotone mapping (see also
146, 88, B]). If f : X — (—o0, 400] is an admissible function (see Definition [I.2.1]), then the

107
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f-resolvent is the operator Res£ : X — 2% given by
Res’, .= (Vf + A" o Vf. (4.0.2)

It is well defined when A is monotone and int dom f [ dom A # . Moreover, similarly to
the classical resolvent, the fixed points of Res£ are solutions of . This leads to the
question whether, and under which conditions concerning A and f, the iterates of Resfl
approximate fixed points of Res’;. Some partial results in this direction are already known
(see [41]).

In this section we present several methods for finding zeroes of maximal monotone
mappings which improve and generalize previous results. The literature contains several
other methods for finding zeroes of monotone mappings. See, for example, [4], 13| 4], 37,
471, [42], 138, 82, 39], 51, 811 [76], 78, 100, 10T] and the references therein. Many of them are
fixed point methods which calculate fixed points of the resolvent.

In the next sections we are motivated by the methods proposed in Chapter [3|for approxi-
mating fixed points. We describe various methods for finding zeroes of monotone mappings
and prove convergence theorems for these methods. In the following result we see that any
monotone mapping with bounded effective domain has zeroes (c¢f. [89, Lemma 4.1, page
480]).

Proposition 4.0.4 (Zeroes of mappings with bounded domains). If A : X — 2X* s q

mazimal monotone mapping with a bounded effective domain, then At (O*) # .

Proof. Let {e,}
A + e,Jx is surjective for any n € N because A is a maximal monotone operator (see
Proposition [1.4.17). Therefore, for any n € N, there exists z,, € dom A such that 0° e
(A + enJx) x,. Consequently, for any n € N, there are &, € Az, and 7, € Jx (z,) such

L De asequence of positive numbers which converges to zero. The mapping

that &, + €,m, = 0°. Therefore from the definition of the normalized duality mapping (see
(1.1.10)) we have

lim &, = lim &, [n,[, = lim &, [z, — 0
n—00 n—00 n—o

because {xn},cy is a bounded sequence. Hence there exists a subsequence {xy,},y of
{z,}, ey Which converges weakly to some zy € X. Since A is monotone (see (|1.4.1)), we

have
=&V —2p)=0, VkeN (4.0.3)

for any (v,() € graph A. Letting k& — o0 in (4.0.3]), we obtain {((,v —xz¢)y = 0 for all
(v,¢) € graph A and from the maximality of A it follows that zo € A~ (0%) (see Proposition
1.4.13). Hence A~' (0%) # &, as claimed O
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4.1 Properties of f-Resolvents
Let A: X —2X hea mapping such that

int dom f [ | dom A # &, (4.1.1)

Remark 4.1.1 (Particular case of f-resolvents). If K is a nonempty, closed and convex
subset of X, then the indicator function tx of K, that is, the function

L () =

0 ifre K
+o0o ifré¢ K,

is proper, conver and lower semicontinuous, and therefore v exists and is a maximal
monotone mapping with domain K (see Proposition . The operator Res;, is exactly
the Bregman projection onto K with respect to f which we already defined in (1.2.14)). As

we already noted there, this operator is denoted by projf(.

Now, we present several properties of f-resolvents which will be used later (cf. [8,
Proposition 3.8, page 604]).

Proposition 4.1.2 (Properties of f-resolvents). Let f : X — (—o0,+0]| be an admissible
function and let A : X — 2%* pe a mapping. The following statements hold.

(i) dom Res’, < int dom f.
(i) ranRes, < int dom f.
(ili) Fix (Resﬁ) = intdom f (A~ (0%).

(iv) Suppose, in addition, that A is a monotone mapping and f|mtdom f 5 strictly convex

(and, in particular, if f is Legendre). Then the following hold.

(a) The operator Res', is single-valued on its domain.
b) The operator Res’, is BFNE.
( P A

(c) Suppose that
ranVf Cran(Vf + A). (4.1.2)

Then dom Resf; = intdom f and Fix (Res£> 18 convex set.

Proof. (i) It is clear from ([1.2.5) that

domResz1 — dom (Vf+ A oVf < domVf = int dom f.
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(ii) Again we have from (1.2.5)) that

ran Res’,  ran (Vf + A)"' = dom (Vf + A)
= dom Vf [ |dom A = dom Vf = int dom f.

(ili) From assertion (i) we have Fix (Resﬁ) c intdom f and we know that 0* € Ax if and

only if z € Resﬁx for any x € int dom f, indeed,

0" e Az = Vf(z) € Az + Vf (z) = (Vf + A) (2)
sze(Vf+A) " (Vf(z)) = Resz.

Hence, we have
int dom f ﬂ At (O*> = int dom f ﬂ Fix (Resﬁ) = Fix (Res£> .

(iv) Suppose that A is a monotone mapping and flintdom ¢ is strictly convex.

(a) Fix z € dom Res/, and {u,v}  Res/;z. Then (1.3.4) implies that
Vi) =Vf©),u-v)<0.

But the converse inequality is also true since V f is monotone (see Example|1.4.3)).
The function f is strictly convex on int dom f. Thus V f is strictly monotone on
int dom f (see again Example [1.4.3). Since {u,v} € intdom f, we obtain that

u ="v.

(b) In view of assertions (i) and (ii), we have to show that (1.3.4)) is satisfied for any
x,y € dom Res’;. Then from the definition of the f-resolvent (see (4.0.2))) we have

that Vf (z) =V f (Resﬁx) €A (Resﬁx) and Vf (y)—Vf (Resiy) €A (Resf‘y).
Indeed, if z € dom Res’, then we have that
Reshz = (Vf+ A) ' oVf(z) & (Vf+ A) (Resﬁx) =Vf(x)
< Vf(x)-Vf (Res£x> =A (Resﬁa:) ,
and the same for y € dom Resﬁ. Consequently, since A is monotone (see (1.4.1)),

we have (¢ —n,x —y) = 0 for any £ € Az and for any 1 € Ay. Therefore, we get
that

<Vf (x) = Vf <Res£x> — (Vf (y) =V f (Resf;y» ,Resﬁaz — Res£y> > 0;
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thus,

<Vf (Resf;x) - Vf (Resﬁy) ,Resf;a: — Resfly>
< <Vf () =V (y) ,Resga: — Resf;y> .

Hence the operator Resfi1 is BFNE.

(¢) Suppose that (£.1.2) holds. Then we have that ran Vf < dom (Vf + A)™" and
therefore from (|1.2.5) we get

dom Resﬁ =dom V f = int dom f.

Indeed, from assertion (i) we have that dom Res£ < intdom f. It remains to
show that intdom f < dom Resﬁ. For any x € intdom f we have from (4.1.2))
that Vf (z) € dom(Vf+ A)~" and, therefore, (Vf + A)' o Vf(z) # & that
is Res’, (r) # @&, it means that domRes, > domVf = intdom f. In view of
assertion (b) of (iv) above and Proposition [2.1.1f (see also Figure , Fix (Res£>

is closed and convex. O

The following result gives two other conditions which guarantee that an f-resolvent of
a maximal monotone mapping satisfies dom Resf; = intdom f (cf. |8, Corollary 3.14, page
606]).

Proposition 4.1.3 (Sufficient conditions for dom Res’, = int dom f). Let f : X — (—0, +0]
be an admissible function and let A > 0. Suppose that A : X — 9X" s @ mazimal monotone
mapping such that A~ (O*) # (. If one of the following conditions holds:

(i) ran V f is open and dom A < int dom f;
(ii) f 1s Legendre and dom A < int dom f,
then dom Res{ 4 = intdom f.

Corollary 4.1.4 (f-resolvent with full domain - case I). Let f : X — R be a Legendre
function and let A : X — 9X* be a mazimal monotone mapping such that A1 (O*) # .
Then dom Res{A = X. If f is also cofinite, then dom Res{A = X implies that A is maximal

monotone.

The following result presents another property of maximal monotone mappings with
possibly empty zeroes set (cf. [8, Theorem 3.13(iv), page 606]).

Proposition 4.1.5 (f-resolvent with full domain - case II). Let f : X — (—o0, +0] be

*
an admissible function and let X > 0. Suppose that A : X — 2% is a mazimal monotone
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mapping such that dom A < intdom f and satisfies . If f is Legendre and cofinite
then dom Res{A =X.

The next result shows the strong connection between resolvents of monotone mappings
and BFNE operators (¢f. [15, Proposition 5.1, page 7]). In this connection see Section
2.1.1] for another characterization.

Proposition 4.1.6 (Characterization of BENE operators). Let f : X — R be a cofinite
and Legendre function. Let K be a subset of X, T : K — X be an operator and set
Ap =V foTt —Vf. Suppose that A : X — 9X* is a mazimal monotone mapping. The

following assertions hold.
(i) The f-resolvent Res’:lT is exactly T and A~ (0") = A7' (07).
(ii) If T is BFNE, then Ar is monotone.
(i) If T is BFNE, then K = X if and only if Ar is maximal monotone.

Proof. (i) From the definition of Ar we get that

Ap=VfoT ' =Vfeo Ap+Vf=VfoT ' (Ar+V) " =(VfoT )™
S (Ar+ V) ' =ToVf ' le (Ar+Vf) ' oVf=ToVfloVf=T

I
< Resy, =T.
It is easy to check that A= (0") = A" (07).
(ii) Take (u,§) and (v,n) in graph Ar. Then

feAru=VfoT lu—Vf(u)e+Vf(u)eVfoT  u
sue(VioT™)  (€+Vf(w)su=ToV ™ (E+Vf(w)),

and analogously v = T o Vf~! (n + Vf (v)). Since T is BFNE, we know from ([1.3.4))
that

(Vf (1) = Vf (v) 1 —v)

=V (T oV €+ V(W) =V (ToVf 0+ Vf@),u—v)
<V (VS E+V W) =V (T 4+ Vf (v) ,u—v)

= (E+VF (W) — (1 + V() ,u—0),

that is, (¢ —n,u —v) = 0 which means that 7" is monotone (see (|1.4.1))).
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(iii) Suppose that 7" is BENE. By assertion (ii), Ar is monotone. Using assertion (i) and
. . . . . o

Corollary , we obtain that Az is maximal monotone if and only if dom Resy =
domT = K = X. =

4.2 Examples of f-Resolvents

As we explained, any BENE operator is an f-resolvent (see (4.0.2))) of a monotone mapping
(see Proposition[4.1.6(ii)). Since f-resolvents play an important role in the analysis of opti-
mization problems, in the following subsection we provide several examples of f-resolvents
with respect to different choices of admissible functions f, for example, the Boltzmann-
Shannon entropy (see (1.2.8)) and the Fermi-Dirac entropy (see (1.2.9)).

4.2.1 Examples of BS-Resolvents

Let A: (0,+90) — R be a monotone mapping. Then the BS-resolvent of A is

Res5S := (log+A) " olog.

Remark 4.2.1 (Another formulation of the BS-resolvent). We can also write the BS-

resolvent as follows:

-1

Res5® = (((log +A)7 o log)fl) = ((log)™" o (log JrA))f1 = (e(log“‘))fl,
where (e(log +A)) (z) = 2e®) . This naturally leads us to the Lambert W function. &
Recall [24], 26] that the Lambert W function, W, is defined to be the inverse of z — xe”

and is implemented in both Maple and Mathematica. Its principal branch on the real axis
is shown in Figure [4.1] Like log, it is concave increasing, and its domain is (—1/e, +00).

1

05

05 1 15 F] 25

05

41

Figure 4.1: The Lambert W function
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We now give several examples of BS-resolvents.

Example 4.2.2 (BS-resolvents in the real line). (i) IfA(z) = o, a € R, then Rest® (z) =
e x forallz e R, .

In particular, if « = 0 then Res5° (z) =z, z e R,
(ii) If A(z) = az + B, a, BE R, then Res® (z) = (1/a) W (ae Pz) for all x € R, .
Hence, if a = 1 and =0, then Res5® (z) = W (z), ze Ry, .
(iii) If A(z) = alog (z), a € R, then Res8® (z) = 20+ for all x e R,
Therefore, if o = 1 then Rest® (z) = /z, z € R, .
(iv) If A(z) = a?/p, p > 1, then Rest® (z) = (W (a?))? for all z e R,
Thus, if p = 2 then Res5® (2) = /W (22), z e R, .

(v) If A(x) = W (aa?), a € R and p = 1, then

1

Rt () = (ps) T (Wil + )

alp+1

forallze R, .
Therefore, if « = 2 and p = 1, then Res5® (z) = VIVW(4r), e Ry, %

We now present an example of a BS-resolvent in R2.

Example 4.2.3 (BS-resolvent in R?). Let BS; (z,y) := xlog (z) + ylog (y) —x —y. Thus
VBS; (z,y) = (log(z),log(y)). Let 6 € [0,7/2] and consider the rotation mapping Ay :

R? — R2 defined by
_ [cos® —sin®) (=
Ap(z,y) <sin(9) cos(6) ) <y>

In particular, the BS-resolvent of the rotation mapping Ay, is the operator
Res™ i= (VBSs + Arpp) o (VBS,).

We claim that the inverse of VIBSy + Ay jo uniquely exists. To see this, note that for any

z,y € (0, +00), we have
] _
(VBS, + Ay [ 7] = (8@ ).
y log (y) +
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Thus we have to show that for any (z,w) € R?, there exist unique x,y € (0, +00) such that

z =log(x) —y and w =log (y) + x. These two equations can be written as

xT

VPP and oy =e“ "

T =€

e ]

Therefore, x = e° . This equation has indeed a unique solution in (0,+w0). To check

this, define a function f :[0,4+0) —> R by f(z) =z — e "*2. Then it is easy to see that
f(0) = —e""* <0 and lim,_, ;o f (x) = +00. Since the function f is continuous, it has at

least one root. On the other hand,
f/ (,I) =1— ee“’*z-‘rz (_ew—m) =1+ ee“’*z-i-w—x-‘rz > 0.

This means that f has exactly one root, which is the unique solution of the equation x =

e "% The general case is similar but less explicit.

4.2.2 Examples of FD-Resolvents

Let A:(0,1) = R be a monotone mapping. Then the FD-resolvent of A is
Resi? := (FD' + A)~ o FD,
where in this case FD' (z) = log (z/ (1 — z)) and therefore (FD') ™" (z) = e/ (1 + 7).

Remark 4.2.4 (Another formulation of the FD-resolvent). We can also write the resolvent

in the following way:

1

N -
Res”D = <((ﬂ>’ s ofD’) > - ((ﬂ)’)*l o (FD' + A))
c(FD+A) !
- (1 +6(]:D’+A)) ’

o(FD'+4) reA@)
1+ eFD'+4) () = 1 — 2+ zeAl@)’

Several examples of FD-resolvents follow.

where

Example 4.2.5 (FD-resolvents in the real line). (i) If A(z) = o, a € (0, +0), then

T

R FD _
esa (@) r+e*(l—ux)

., xe(0,1).

If a = 0, then Res,® (z) = x, x € (0,1).
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(ii) If A(x) =log(x), then

Fp, T — V4T — 322
Resy” (z) = =1
for all x € (0,1).
(iii) If A(z) =log (1 — x), then
x
Res’,” (z) = T2

for all x € (0,1).
(vi) If A(z) = 2log (1 — x), then

_ 1—2z—+b22 -6z +1

Res’,” (z) = =1

for all x € (0,1/5].

Finally, the next table lists f-resolvents with respect to various choices of functions f.
Here, for simplicity, we denote Res/, = ¢~".

f(z) [ Domain 9(x)
BS(x) | (0,+x) zeA®)
FD(z) | (0,1) SO

2?/2 R z + A(z)
zt/4 R (2% + A(x))Y/3
e’ R log(e” + A(x))
—log(x) | (0, +0) =2 A@)

Table 4.1: Examples of f-Resolvents

4.2.3 Examples of f-Resolvents in Hilbert Spaces

Following [15, Example 9.6, page 71], we consider the function f, : H — R defined by
fp(z) = 713 |«]|”, where H is a Hilbert space and p € (1,400). So the conjugate of f, is the

function f: (y) = é||y||q, where ¢ is the conjugate exponent of p, that is, 1/p + 1/q = 1.

Then, for any y # 0, we have that Vf; (y) = |y|“*y. Consider A = I, the identity
mapping, and denote the f-resolvent of A by

T, = Res? .= (Vf, + 1) ' o V/,.
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Then

T _ 0 itz=20
P ky(z)x ifx#0,

where k, (z) € (0,1) is the unique solution to the equation

kP4 kPP =1

4.3 Iterative Methods Based on Haugazeau’s Algorithm

A well-known method for finding zeroes of monotone mappings in Hilbert space is the
celebrated Proximal Point Algorithm.

Proximal Point Algorithm
Input: {)\,}, . < (0, 400).
Initialization: z, € H.
General Step (n=1,2,...):

Tng1 = Ra,a () = (1 + MA) 2y (4.3.1)

This algorithm was first introduced by Martinet [75] and further developed by Rockafellar
[100], who proves that the sequence generated by Algorithm converges weakly to
an element of A™!(0) when A~!(0) is nonempty and liminf, ,, A, > 0. Furthermore,
Rockafellar [100] asks if the sequence generated by Algorithm converges strongly.
For general monotone mappings a negative answer to this question follows from [55]; see also
[14]. In the case of the subdifferential this question was answered in the negative by Giiler
[57], who presented an example of a subdifferential for which the sequence generated by
Algorithm (4.3.1)) converges weakly but not strongly; see [14] for a more recent and simpler
example. There are several ways to generalize the classical proximal point algorithm (see
Algorithm (4.3.1))) so that strong convergence is guaranteed.

In Chapter |3 we have studied several algorithms for approximating fixed points of Breg-

man nonexpansive operators. In the following sections we modify these methods in order
to find zeroes of monotone mappings.

4.3.1 The Solodov-Svaiter Iterative Method

Solodov and Svaiter [105] modified the classical proximal point algorithm (see Algorithm
4.3.1))) in order to generate a strongly convergent sequence (in this sense see also Algorithm
3.0.4)). They introduced the following algorithm.
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Solodov-Svaiter Proximal Point Algorithm
Input: {\,}, . < (0, 400).

Initialization: z, € H.

General Step (n=1,2,...):

Ozvn+ﬁ(yn—9§n), UnEAyna
H,={2€H :{vy,z—yn) <0},
Qn={zeH:{xg—xn,2—x,) <0},

‘T'n«"rl = PHann (1’0) N

(4.3.2)

They prove that if A~!(0) is nonempty and lim inf,,_,, A, > 0, then the sequence generated
by Algorithm (4.3.2)) converges strongly to P4-1(p). Kamimura and Takahashi [64] general-
ized this result to those Banach space X which are both uniformly convex and uniformly
smooth (see Definition [1.1.33(iii) and (iv)). They introduced the following algorithm.

Kamimura-Takahashi Proximal Point Algorithm
Input: {\,}, . < (0,400).

Initialization: zoe X.

General Step (n=1,2,...):

O* :5n+ ﬁ(JX (yn) _JX (xn))a SnEAyna
H,={2€ X : {vy, 2 — yn) < 0},
Qn={2¢€X : {Ux(x9) — Ix (xn), 2 — xp) < 0},

12
Tpy1 = pfOJyLan (o) -

(4.3.3)

They prove that if A~! (O*) is nonempty and liminf,, 5 A, > 0, then the sequence gener-
ated by Algorithm (4.3.3]) converges strongly to proj[fl (o) (x0).

We study an extension of Algorithms (4.3.2)) and (4.3.3)) in all reflexive Banach spaces
using a well-chosen convex function f. More precisely, we consider the following algorithm

introduced by Bauschke and Combettes [10] (see also Garciga Otero and Svaiter [54]).

Bauschke-Combettes Proximal Point Algorithm I
Input: f: X — Rand {\,}, . < (0, +0).
Initialization: z, e X.

General Step (n=1,2,...):

0" :§n+ﬁ(vf (yn) - Vf (xn))> §n € Ayn,
H,={z€ X :{&,z—yn) <0},
Qn=1{2€ X :(Vf(xg) = Vf(xy),z—x,) <0},

Tpy1 = prOjéann (.’13‘0) :

(4.3.4)

Algorithm (4.3.4) is more flexible than Algorithm (4.3.3)) because it leaves us the freedom
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of fitting the function f to the nature of the mapping A (especially when A is the sub-
differential of some function) and of the space X in ways which make the application of
Algorithm (4.3.4)) simpler than that of Algorithm (4.3.3). It should be observed that if

X is a Hilbert space H, then using in Algorithm (4.3.4) the function f = (1/2)|-|?, one
obtains exactly the classical proximal point algorithm (see Algorithm ) If X is not
a Hilbert space, but still a uniformly convex and uniformly smooth Banach space X (see
Definition (iii) and (iv)), then setting f = (1/2) ||-|* in Algorithm (4.3.4)), one obtains
exactly Algorithm (4.3.3). We also note that the choice f = (1/2)]-|" in some Banach
spaces may make the computations in Algorithm quite difficult. These computa-
tions can be simplified by an appropriate choice of f. For instance, if X = ¢ or X = LP
with p € (1, 40), and f, = (1/p) ||-|" in Algorithm (4.3.4), then the computations become
simpler than those required in Algorithm (4.3.3]), which corresponds to f = (1/2) HH2
We study the following algorithm when Z := (i, A7 (0%) # @.

Minimal Norm-Like Proximal Point Algorithm I

Input: f: X —» R, {\,} < (0,40) and {n.} _, i=1,2,...,N.
Initialization: z, e X.

General Step (n=1,2,...):

(=& + 5 (VW) = V(). & €A,

H, ={ze X :{(§,z~y,) <0},

{ H, =N, H, (4.3.5)
Qn ={2€ X :{(V[(zo) = V[(zs),2—zn) <0},

Note that if ¢, = 0%, then
Y, = Resf\c%Ai ().

Now we will prove a convergence result for Algorithm (4.3.5)) (¢f. [89, Theorem 3.1, page
477)).

Theorem 4.3.1 (Convergence result for Algorithm (4.3.5)). Let 4; : X — 2X*, i =
1,2,...,N, be N mazximal monotone operators such that Z := ﬂf\il Ai_l (0*) # . Let
f: X — R be a Legendre function which is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of X. Then, for each xy € X, there are sequences {x,},

which satisfy Algorithm ([4.3.5). If, for each i = 1,2,..., N, liminf, ., A > 0, and the

sequence of errors {n.},y © X satisfies limy, o AL k|, = 0 and limsup,, ., (n, ¥4 <0,

then each such sequence {x,} _ converges strongly to proj} (o) as n — 0.

Proof. Note that domV f = X because dom f = X and f is Legendre (see Definition
1.2.7). Hence it follows from Proposition 4.1.4{that dom Res{ 4 = X. Denote S’ := Resf\ci A
Therefore from Proposition [4.1.2)(iv)(b) and Figure [L.3) we have that each S! is BENE and
thus QBFNE. We also have that 2 = Z and that Condition [I] holds.




120 Iterative Methods for Finding Zeroes

We split our proof into three steps.
Claim 1: There are sequences {x,}, . which satisfy Algorithm (4.3.5)).

Proof. As a matter of fact, we will prove that, for each o € X, there exists a sequence
{4}, ey Which is generated by Algorithm ([.3.5) with n} = 0" for all i = 1,2,..., N and
n e N. In this case y’, = S (z,,). Therefore our claim follows directly from Lemma [3.3.3]

From now on we fix an arbitrary sequence {z,}, . satisfying Algorithm (4.3.5). It is
clear from the proof of Claim 1 that Z < H, ()@, for each n € N.

Claim 2: The sequences {Dy (xy,%0)}, oy and {Ty},, oy are bounded.

Proof. It is easy to check that the proof of the facts that {D; (x,,%0)}, o and {z,}

are bounded proceeds exactly as in the proof of Lemma |3.3.5|

neN

Claim 3: Every weak subsequential limit of {x,},y belongs to Z.

Proof. It follows from the definition of @),, and Proposition [1.2.35(ii) that projén (xg) =
Tp. Since X, 1 € @Qy, it follows from Proposition |1.2.35(iii) that

Dy <$n+1,pf0jén (%)) + Dy (projén (o) ,580) < Dy (Tn41, 7o)
and hence
Df (ZL‘n+1, ZL‘n) + Df ([L’n, ZL’()) < Df ($n+1, 270) . (436)
Therefore the sequence { Dy (2, o)}, .y I8 increasing and since it is also bounded (see Claim

2), lim,,_,oo Dy (2, o) exists. Thus from (4.3.6) it follows that

lim Dy (p41,2,) = 0. (4.3.7)

n—0eo

Since {x,}, oy is bounded (see Claim 2), Proposition [1.2.46/ now implies that
lim ||z,11 — x,]| = 0.
n—aoo
For any i = 1,2,..., N, it follows from the three point identity (see ((1.2.2))) that

Dy (wn41,20) — Dy (yfu l"n)

= D (zni1,00) + VI (@) =V (42) ¥l — Tns1)

= V(@) = V(W) un = 1) = 0 (& —m0) s Un — Tnsr)
= A & = Tn1) = X (s Y — T ) = =N (s U — )
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because z, 1 € H:. We now have

Df (yi” xn) D xn-i—la CCn </\n77n7 yn xn+1>
D (xn-i-l; xn + )‘Z <7]n7 yn> - <)‘1Ln;m xn+1>
D (xn-i-la CCn + )‘Z <7]n7 yn> + H/\M?n‘

N

|z ] -
Hence

lim sup Dy (yfﬂ xn) < limsup Dy (Tp11, Tn)

n—ao n—aoo

+ limsup \}, {n}, yh > + hm 1sup H)‘nnnH |Zna1] -

n—oo

Since limy, o A, [|7;,[, = 0, limsup, ., (n,, y;,) < 0 and ([&.3.7)), we sce that

lim sup Dy (y;,xn) < 0.

n—o0

Hence lim,,_,o, Dy (y5, x,) = 0. Since {z,}, .y is bounded (see Claim 2), Proposition |1.2.46
again implies that lim, .o |y%, — 2, = 0. Since the function f is bounded and uniformly
Fréchet differentiable on bounded subsets of X we get from Proposition [1.1.22(ii) that

lim [V (@) = Vf ()], = 0.

Since lim inf,, . Aj, > 0 and lim, . [|7;]|, = 0, it follows that

lim [€], = lim — LV @) - O F (41) +ni],

—)OOA

*®

< tim - (|VF @) = 97 ()], + [],) = 0. (43.8)

forany ¢ =1,2,..., N.

Now let {x,, },.y be a weakly convergent subsequence of {z,}, . and denote its weak
limit by v. Then {yi, },_ also converges weakly to v for any i = 1,2,..., N. Since &, € Ay,
and A; is monotone (see (1.4.1])), it follows that

for all (z,7n) € graph A;. This, in turn, implies that (n,z —v) = 0 for all (z,7) € graph A;.
Therefore, using the maximal monotonicity of A; (see Proposition [1.4.13]), we now obtain
that ve A;* (0*) for each = 1,2,..., N. Thus v € Z and this proves Claim 3.

Now Theorem [4.3.1] is seen to follow from Lemma B.3.7] O
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Suppose now that the mappings A;, i = 1,2,..., N, have no common zero. If {z,} .y
is a sequence satisfying Algorithm (4.3.5)), then lim, .o |,| = +oco. This is because if
{z,},n Were to have a bounded subsequence, then it would follow from Claim 3 in the
proof of Theorem that the mappings A;, i = 1,2,..., N, did share a common zero. In
the case of a single zero free mapping A, we can prove that such a sequence always exists
(cf. [89, Theorem 4.2, page 481]).

Theorem 4.3.2 (Algorithm is well-defined - zero free case). Let A : X — 2X" he
a mazimal monotone mapping. Let f : X — R be a Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of X. Then, for
each xg € X, there are sequences {x,}, . which satisfy Algorithm with N = 1. If

liminf, 0 Ay > 0, and the sequence of errors {n,} _ < X* satisfies lim, 0 Ay, ||77n||=I= =0

neN

and limsup,,_,o, (N, Yny < 0, then either A~ (O*) # & and each such sequence {z,}

neN

converges strongly to projfzr1 oF (1) as n — o0, or A™! (O*) = (& and each such sequence

{zn}, ey satisfies lim,, o [|2,| = 400.

Proof. In view of Theorem , we only need to consider the case where A~* (O*) = .
First of all we prove that in this case, for each xy € X, there is a sequence {z,}, .y which
satisfies Algorithm (4.3.5)) with 7, = 0" for all n € N.

We prove this by induction. We first check that the initial step (n = 0) is well defined.

The proximal subproblem
* 1
0" € Az -+ (V] () = ¥/ (@)
0

always has a solution (o, &) because it is equivalent to the problem z = Resf\c0 4 (o) and

this problem does have a solution since dom Res{ 4 = X (see Propositions|1.2.13{and [4.1.5)).

Now note that Qg = X. Since H, cannot be empty, the next iterate x; can be generated;
it is the Bregman projection of zy onto Hy = Qo[ ) Ho.

Note that whenever z,, is generated, y, and &, can further be obtained because the
proximal subproblems always have solutions. Suppose now that x,, and (y,, ,) have already
been defined for n = 0,1,...,n. We have to prove that z;; is also well defined. To this

end, take any 2y € dom A and define
p:=max{|y, — 2| :n=0,1,..., 1}

and
0, — <p+1
+00, otherwise.

Then h : X — (—oo,+0o0] is a proper, convex and lower semicontinuous function, its
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subdifferential dh is maximal monotone (see Proposition [1.4.19). Define A’ = A + 0h,
which is also maximal monotone (see Proposition [1.4.22)). Furthermore,

A'(z)=A(z) foral |z—z|<p+1

Therefore &, € A'y, for n = 0,1,..., 1. We conclude that x,, and (y,,&,) also satisfy the
conditions of Theorem applied to the problem 0* € A’ (x). Since A’ has a bounded
effective domain, this problem has a solution by Proposition [£.0.4, Thus it follows from
Claim 1 in the proof of Theorem that x;.1 is well defined. Hence the whole sequence
{z,}, o is well defined, as asserted.

If {xn},,cy Were to have a bounded subsequence, then it would follow from Claim 3 in the
proof of Theorem that A had a zero. Therefore if A™! (O*) = ¥, then lim,,_,q ||z, | =
+00, as asserted. [

Algorithm is a special case of Algorithm (4.3.5) when N =1 and 7, = 0" for all

n € N. Hence as a direct consequence of Theorem we obtain the following result (cf.
[54] and [89, Theorem 5.1, page 482]).

Corollary 4.3.3 (Convergence result for Algorithm (4.3.4)). Let A : X — 2X" e a
maximal monotone mapping. Let f : X — R be a Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of X, and suppose
that liminf,_,x A, > 0. Then for each xy € X, the sequence {x,},.y generated by Algo-
rithm is well defined, and either A™! (0*) # & and {x,}, . converges strongly to

proji_l(o*) (z0) asn — o, or A1 (0") = & and lim, o |,| = +o0.

Notable corollaries of Theorems[4.3.1]and [4.3.2|occur when the space X is both uniformly
smooth and uniformly convex (see Definition [I.1.33(ii) and (iv)). In this case the function
f = |-I” is Legendre (cf. [7, Lemma 6.2, page 24]) and both bounded and uniformly Fréchet
differentiable on bounded subsets of X. According to Proposition [1.2.21] f is sequentially
consistent since X is uniformly convex and hence f is totally convex on bounded subsets
of X. Therefore Theorems |4.3.1{ and [4.3.2| hold in this context and lead us to the following
two results (c¢f. [89, Theorem 5.2, page 482] and [89, Theorem 5.3, page 483]) which, in
some sense, complement in [64, Theorem 8] (see also [105, Theorem 1, page 199]).

Corollary 4.3.4 (Convergence result for Algorithm ) Let X be a uniformly smooth
and uniformly convexr Banach space and let A : X — 9X" be @ mazimal monotone map-
ping. Then, for each xy € X, the sequence {x,}, . generated by Algorithm s well
defined. If liminf, ., A\, > 0, then either A~! (O*) # & and {x,}, . converges strongly to
projki(o*) (z0) asn — o0, or A1 (0%) = & and lim, s |,[ = +o0.

Corollary 4.3.5 (Convergence result for Algorithm (4.3.2))). Let H be a Hilbert space and

let A: X — 2% be a mazimal monotone mapping. Then, for each xo € H, the sequence
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{z,}, oy generated by Algorithm (4.3.2) is well defined. If liminf, ,i, A, > 0, then either
A7H(0) # & and {x,},,o converges strongly to Pa-1(gy (x0) asn — o0, or A1 (0) = & and
lim,, o0 0] = +00.

These corollaries also hold, of course, in the presence of computational errors as in
Theorems [4.3.1] and [£.3.21

Let g : X — (—00, 4] be a proper, convex and lower semicontinuous function. Using

Theorems [4.3.1] and [4.3.2] for the subdifferential of g, we obtain an algorithm for finding a
minimizer of g (¢f. [89, Proposition 6.1, page 483]).

Corollary 4.3.6 (Application of Algorithm - finding minimizers). Let g : X —
(—o0, +0] be a proper, convex and lower semicontinuous function which attains its mini-
mum over X. If f : X — R is a Legendre function which is bounded, uniformly Fréchet
differentiable, and totally convexr on bounded subsets of X, and {\.},cy @5 a positive se-
quence with liminf, ., A, > 0, then, for each xo € X, the sequence {x,}, generated by
Algorithm with A = dg converges strongly to a minimizer of g as n — 0.

If g does not attain its minimum over X, then lim, . |2, | = +o0.

Proof. The subdifferential dg of g is a maximal monotone mapping because g is a proper,
convex and lower semicontinuous function (see Proposition [1.4.19). Since the zero set of
0g coincides with the set of minimizers of g, the result follows immediately from Theorems

4.3.1land [4.3.21 O

Next we prove a result similar to Theorem {4.3.1] but with a different type of errors than
those in Algorithm (4.3.5).

Minimal Norm-Like Proximal Point Algorithm II
Input: f: X - Rand {e,}, < X,i=1,2,...,N.
Initialization: zo € X.

General Step (n=1,2,...):

-

Yl = Res{mi (x, +¢€),

H, :{ZEX:<Vf(:vn+eﬁl)—Vf(yfl),z—yfz><0},

S H, =L, H, (4.3.9)
Qn=1{2€ X (V[ (20) = V[(xn),z—xy) <0},

\ 'Tn+1 = proij’lLﬁQ’VL (:'EO) :

Theorem 4.3.7 (Convergence result for Algorithm (4.3.9)). Let 4; : X — oX* i =
1,2,..., N, be N mazximal monotone mappings such that Z := ﬂf\il At (O*) # (5. Let
f X — R be a Legendre function which is bounded, uniformly Fréchet differentiable
and totally convexr on bounded subsets of X. Suppose that V[ is bounded on bounded

subsets of intdom f*. Then, for each xy € X, there are sequences {z,}, oy Which satisfy



Iterative Methods for Solving Optimization Problems 125

Algorithm (4.3.9). If, for each i = 1,2,..., N, liminf, ,, A\ > 0, and the sequence of

7

errors {eb}, v © X satisfies lim,,_,q €,

| = 0, then each such sequence {x,}, .y converges

strongly to projé (x0) as n — 0.

Proof. Note that domV f = X because dom f = X and f is Legendre (see Definition
1.2.7)). Hence it follows from Proposition 4.1.4{that dom RGS{A = X. Denote S’ := Res{i A
Therefore from Proposition [4.1.2(iv)(b) and Figure [L.3) we have that each S: is BENE and
hence QBFNE. We also have 2 = Z and we see that Condition [1| holds so that we can

apply our lemmata.

From Lemmata [3.3.3[ and [3.3.5, any sequence {z,}, which is generated by Algorithm

(4.3.9) is well defined and bounded. From now on we let {z,} _ be an arbitrary sequence
which is generated by Algorithm (4.3.9)).

We claim that every weak subsequential limit of {z,}, .y belongs to Z. From Lemma

[3.3.6l we have
lim [V (y,) = Vf (20 +6,)], =0,

for any ¢+ = 1,2,..., N. The rest of the proof follows as the proof of Theorem [4.3.7] m

Following the same arguments as in the proof of Theorem [£.3.2] we can prove the following
result.

Theorem 4.3.8 (Algorithm is well-defined - zero free case). Let A : X — 2% be
a mazimal monotone mapping. Let f : X — R be a Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of X. Suppose that
Vf* is bounded on bounded subsets of intdom f*. Then, for each xo € X, there are
sequences {x,}, . which satisfy Algorithm with N = 1. Ifliminf, ,, A\, > 0, and the
sequence of errors {e,}, oy © X satisfies lim,_, €, = 0, then either At (O*) # & and each
such sequence {x,}, . converges strongly to proj’;r1 o () as n — oo, or A7 (0*) =

and each such sequence {x,}, . satisfies lim, o |2, = +o0.

The following algorithm allows for computational errors of the kind of Algorithm (4.3.9))
but in a different way and with a weaker condition. The following algorithm combines the
proximal point algorithm and the Mann methods (see Algorithm (3.0.3])). More precisely,
we study the following algorithm when 7 := ﬂfil A7H(0%) # @.
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Minimal Norm-Like Proximal Point Algorithm III

Input: f: X > R, {\N}neNc (0,4) and {a’,}neNc [0,1],i=1,2,...,N
and {e,}, . < X.

Initialization: zoe X.

General Step (n=1,2,...):

Zn=V[" (V[ (@) + (1 —an) Vfen)),

0 =g (V) -V ), 6 e A,
Hy, ={ze X :{§,,z—y,) <0},

H, = ﬂf\il Him

Qn=1{2€ X (V[ (x) =Vf(2n),2—x,) <0},

Tl = proijan (o) -

(4.3.10)

Theorem 4.3.9 (Convergence result for Algorithm (4.3.10))). Let A; : X — 2X*, 1 =
1,2,...,N, be N mazximal monotone mappings such that Z := ﬂfil AZ-_1 (O*) # . Let
f X — R be a Legendre function which is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of X. Suppose that Vf* is bounded on bounded subsets
of intdom f*. Assume that {a,}, .y < [0,1] satisfies lim, o, = 1 and {e,}, oy s the
sequence of errors which satisfies |e,| < M (M is a positive constant) and liminf,,_,q A} >
0,7=1,2,..., N, then, for each g € X, each such sequence {x,}, .y generated by Algorithm
(4.3.10) converges strongly to projé (x9) as n — .

Proof. Note that domV f = X because dom f = X and f is Legendre (see Definition
. Hence it follows from Proposition that dom Resf\c 4 = X. It is easy to check
that ¢y, = Res{i 4, (#n). Following the arguments in the proof of Theorem {.3.1{ we get that
there are sequerilces {,}, ey Which satisfy Algorithm and {x,}, .y is bounded.

Now we will prove that every weak subsequential limit of {z,} _ belongs to Z. Again

neN

following the same arguments as in the proof of Theorem we get that

lim Dy (p+1,2,) = 0.

n—oo
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For any i = 1,2,..., N, it follows from the three point identity (see ((1.2.2))) that

Dy (proj’l;% () ,xn) — Dy (y:“xn)
= Dy (proij;-L () yn) + <Vf (wn) = V£ (43) ¥ — Projiy (l"n)>
> <Vf (20) =V f (43,) ¥ — Proify, (fvn)>

= <AZ€Z,yZ} — projy. (ﬂcn)> >0
because projl,; (x,) € Hi. Since, in addition, 7,41 € HY, we also have

Df (-TnJrla xn) = Df (pro‘]jt}rzL (wn) 7xn) = Df (yfw xn) .

Hence lim, o D¢ (y, z,) = 0. Since {z,}, .y is bounded, Proposition [1.2.46/ now implies
that lim,, ,« ||y2 — z,] = 0. In addition, we have from the definition of W/ (see (1.2.24)))

and Proposition [1.2.42(ii) that

Dy (2ns1, 2) = Dy (xm, VI (V] (@) + (1 — an) VS (en))) (4.3.11)
= W (@, Vf () + (1 — an) VF(en), Tni1)
W (Vf (20), 2pi1) + (1 — ) WV (€n) , Zni1)

= Can)f (:UnJrla xn) + (1 - an) Df (:UnJrla en) .

N

The sequences {z,}, . and {e,}, .y are bounded and since f and consequently V[ are
bounded on bounded subsets of X (see Proposition|1.1.15)), it follows that {D (2,41, €n)}

is also bounded. Since lim,,_, «,, = 1, it follows that

neN

lim Dy (2n41,2,) = 0.

n—ao

As we have already noted, the sequences {V f (x,)}, o and {Vf (e,)},,cy are bounded and
since Vf~ is bounded on bounded subsets of intdom f*, it follows that {z,} . is also
bounded. Proposition [1.2.46( now implies that lim, e |€,11 — 25| = 0. Then it follows
that

lim ||z, — 2z, =0
n—o0

because

|20 = 20| < |on = Tnaa ]| + |2nsa — 2 -
Therefore for any i = 1,2,..., N, it follows that lim,, , ||y}, — 2,| = 0.

Since f is uniformly Fréchet differentiable and bounded on bounded subsets of X, it



128 Iterative Methods for Finding Zeroes

follows from Proposition [1.1.22{ii) that
i [9£ () — Vf (00 +eb)], =0 (43.12)

for any ¢+ = 1,2,..., N. The rest of the proof follows as the proof of Theorem [4.3.7] m

Remark 4.3.10 (Convergence under different assumptions). In Theorems and
we can replace the assumptions that liminf,, o, A\, > 0 and f is bounded and uniformly

Fréchet differentiable on bounded subsets of X with the assumption that lim, . A\, = +00.
&

In the case of Algorithm (4.3.10)) we can also prove the following result, based on The-
orem 4.5.9.

Theorem 4.3.11 (Algorithm (4.3.10)) is well-defined - zero free case). Let A : X — 9 X"
be maximal monotone mappings such that Z := ﬂf\il Al (0*) # . Let f: X - R be
a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex
on bounded subsets of X. Suppose that V" is bounded on bounded subsets of int dom f.
Let {ou,},en < [0,1] and {e,}, oy be a sequence of errors. Then, for each xy € X, there are
sequences {x,}, o which satisfy Algorithm (4.3.10) with N = 1.

If lim, o ap, = 1, |len| < M (M is a positive constant) and liminf,, . A, > 0, then
either A= (0") # & and each such sequence {x,}, oy converges strongly to projirl(o*) (x0)

asn — oo, or A7 (0") = & and each such sequence {x,}, oy satisfies lim, o0 ||2, | = +00.

4.4 TIterative Methods Based on the Bauschke-Combettes Algo-

rithm

Another modification of the classical proximal point algorithm (see Algorithm (4.3.1))
has been proposed by Bauschke and Combettes [9], who also have modified the proximal
point algorithm in order to generate a strongly convergent sequence. They introduced, for
example, the following algorithm (see [9, Corollary 6.1(ii), page 258] for a single operator
and \, = 1/2).
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Bauschke-Combettes Proximal Point Algorithm II
Input: {\,} . < (0,40)

Initialization: z, € H.

General Step (n=1,2,...):

Yn = R)an (In)7
Co={zeMN:|yo— 2| <2n -2},
Qn=1{z€eH:{xrg—xp,2z— 1, <0},

Tp+1l = PCnﬂQn (SL’Q) :

(4.4.1)

They prove that if A~!(0) is nonempty and lim inf,_,, A, > 0, then the sequence generated
by Algorithm converges strongly to Ps-1gy. Wei and Thou [111] generalized this
result to those Banach spaces X which are both uniformly convex and uniformly smooth
(see Definition [1.1.33(iii) and (iv)). They introduced the following algorithm.

Wei-Zhou Proximal Point Algorithm
Input: {)‘n}neN < (0, 400)
Initialization: z, e X.

General Step (n=1,2,...):

( Y = Resf\ln/i)”'”Q (),

Cn = {2 € X : Dyyayppe (2,9m) < Dyaypp (25 a)
Qn ={z€ X : {Uxxog— Jxxpn, 2z — x,) < 0},

N

(4.4.2)

(17211
[ a1 = proj&/ 25" (ao).

They prove that if A~} (0*) is nonempty and liminf,, 4 A, > 0, then the sequence gener-
(1/2)]-]
J i (0*)

We extend Algorithms (4.4.1]) and (4.4.2)) to general reflexive Banach spaces using a well
chosen convex function f. More precisely, we introduce the following algorithm.

ated by Algorithm (4.4.2]) converges strongly to pro

f-Bauschke-Combettes Proximal Point Algorithm I
Input: f: X — Rand {\,}, . < (0, +0)

Initialization: z5€ X.

General Step (n=1,2,...):

Yn = Res{ 4 (z),
Cn={2€ X :Ds(2,yn) < Ds(2,2,)},
Qn=1{2€X :(Vf(xg) =Vf(xyn),z—x,) <0},

Tpa1 = projéwQ" (x0) -

(4.4.3)

As we have already noted in Section Algorithm (4.4.3)) is more flexible than Algorithm
(4.4.2) because it leaves us the freedom of fitting the function f to the nature of the mapping
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A (especially when A is the subdifferential of some function) and of the space X in ways
which make the application of Algorithm simpler than that of Algorithm (4.4.2)).
It should be observed that if X is a Hilbert space H, then using in Algorithm (4.4.3)
the function f = (1/2)]-|*, one obtains exactly Algorithm ([@.4.1). If X is not a Hilbert
space, but still a uniformly convex and uniformly smooth Banach space X (see Definition
M(iii) and (iv)), then setting f = (1/2)[-[|* in Algorithm ([£.4.3), one obtains exactly
Algorithm (4.4.2)).
We study the following algorithm when Z := ﬂf\il At (O*) # .

f-Bauschke-Combettes Proximal Point Algorithm II
Input: f: X > Rand {\.}neNc (0,+x0),i=1,2,...,N.
Initialization: zo e X.

General Step (n=1,2,...):

-

Yl = Res{mi (zy +€.),

Cl={2€ X :Ds(z,y.) <Dy (2,2, + €.)},

$ Ci=NN, (4.4.4)
Qn=1{2eX :(Vf(xo) —Vf(x,),z—x,) <0},

| tne1 = proiy g, (50).

In the following result we prove that Algorithm (4.4.4]) generates a sequence which converges
strongly to a common zero of the finite family of maximal monotone mappings A; : X —

2X*, i=1,2,...,N (cf. [90, Theorem 4.2, page 35]).

Theorem 4.4.1 (Convergence result for Algorithm (4.4.4)). Let A; : X — 2X*, i =
1,2,...,N, be N mazximal monotone mappings such that Z := ﬂlj\il At (O*) # . Let
f X — R be a Legendre function which is bounded, uniformly Fréchet differentiable
and totally convex on bounded subsets of X. Suppose that Vf* is bounded on bounded
subsets of intdom f*. Then, for each xy € X, there are sequences {z,}, oy which satisfy
Algorithm . If for eachi=1,2,... N, liminf, ., \! > 0, and the sequence of errors

(e}« © X satisfies lim,, o, |é}| = 0, then each such converges strongly to projl, (xo) as

l
n — oo.

Proof. Note that domV f = X because dom f = X and f is Legendre (see Definition
1.2.7)). Hence it follows from Proposition {4.1.4{that dom Resf\c 1= X. Denote S¢ := Resf\c,. A
Therefore from Proposition [£.1.2]iv)(b) and Figure [1.3] we have that each S¢ is BFNE and
therefore QBNE. We also have ) = Z and we see that Condition [1| holds and we can apply

our lemmata.

By Lemmata [3.3.3) and [3.3.5, any sequence {x,},.y Which is generated by Algorithm

(4.4.4) is well defined and bounded. From now on we let {z,}
which is generated by Algorithm (4.4.4)).

nen D€ an arbitrary sequence
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We claim that every weak subsequential limit of {x,} _ belongs to Z. From Lemma

[3.3.6l we have

neN

T}l_r)rolo IVf () = VI (z,+€) H* =0, (4.4.5)
for any ¢ = 1,2,..., N. The rest of the proof follows as the proof of Theorem [4.3.7] O

Now we propose two algorithms for finding common zeroes of finitely many maximal
monotone mappings. Both algorithms are based on products of f-resolvents. For earlier
results based on this method see, for example, [13] 32], 88| 05].

Algorithm finds common zeroes of finitely many maximal monotone mappings.
In this algorithm we build, at each step, N copies of the half-space C,, with respect to each
mapping. Then the next iteration is the Bregman projection onto the intersection of N + 1
half-spaces (N copies of C,, and @,,). Now we propose a new variant of Algorithm (4.4.4))
which also finds common zeroes of finitely many maximal monotone mappings. In the new
algorithm we use the concept of products of resolvents and therefore we build, at each step,
only one copy of the half-space C),. Then the next iteration is the Bregman projection onto
the intersection of two half-spaces (C,, and Q,,).

Sabach Proximal Point Algorithm I

Input: f: X > Rand {A\}neNc (0,+x0),i=1,2,...,N.
Initialization: zo€ X.

General Step (n=1,2,...):

Yp = Res{NAN o---oRGS{lAl (xn + €n),
Cn: {ZEX:Df(Z7yn) <Df(2,$n+€n)},
Qn=1{2€ X :(Vf(xg) =Vf(zyn),z—x,) <0},

st = D10} g (@0)

(4.4.6)

The following algorithm is a modification of Algorithm (4.4.6)), where at any step we calcu-
late the Bregman projection onto only one set which is not necessarily a half-space. Even
if we only project onto one set, the computation of the projection is harder since this set
is a general convex set. We present and analyze this algorithm. Its proof is very similar to
the one of Algorithm (4.4.6). More precisely, we introduce the following. algorithm

Sabach Proximal Point Algorithm II

Input: f: X > Rand {\}neNc (0,+0),i=1,2,...,N.
Initialization: zo€ X.

General Step (n=1,2,...):

Yp = Res{NAN 0.0 Resf\cll41 (xn + €n),
Cry1 =1{2€Cy: Dy (2,4,,) < Dy (2,20 + €n)} (4.4.7)

bt = proif, (x0).

We have the following theorem (c¢f. [103, Theorem 3.1, page 1297]).
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Theorem 4.4.2 (Convergence results for Algorithms and ) Let A; : X —
2X*, 1 =1,2,...,N, be N maximal monotone mappings with 7 := ﬂﬁl A;l (O*) # .
Let f: X — R be a Legendre function which is bounded, uniformly Fréchet differentiable
and totally convexr on bounded subsets of X. Suppose that Vf* is bounded on bounded
subsets of intdom f*. Then, for each xq € X, the sequence {zn},en Which is generated
either by Algorithm or by Algorithm 1s well defined. If the sequence of errors
{en},eny © X satisfies lim, o |le,| = 0 and for each i = 1,2,..., N, liminf, A, > 0,

then the sequence {x,}, . converges strongly to projé (x9) as n — oo.

Proof. Note that domV f = X because dom f = X and f is Legendre (see Definition
1.2.7). Hence it follows from Proposition m that dom Res]; 4 = X. We denote by T the
f-resolvent Resf\ci 4, and by S¢ the composition T¢ o---o T} for any i = 1,2,..., N and for
each n € N. Thenrefore Yo =TN o 0T (z, +e,) = SV (z, + e,). We also assume that

SY = I, where I is the identity operator.

From Proposition [4.1.2](iv)(b), Proposition and Figure we have that each T,
1 =1,2,...,N, is BSNE. Therefore Proposition now implies that also S¢ is BSNE
and therefore QBNE. From Remark we have that Fix (S%) = ()i, Fix (T}.).

Each f-resolvent Res{i 4, 18 @ QBNE operator and therefore SN a composition of QBNE
operators, is also QBNE.nHence we get from that

Dy (u,y,) = Dy (u, Res{NAN 00 ResﬁilA1 (@, + en)) = Dy (u, S (z, + €n))

< Dy (u, S} (@, + €n)) < Dy (u, 2, + €5) (4.4.8)

forany:=1,2,...,N — 1.
We have Q2 = Z and therefore Condition [I| holds. Hence we can apply our lemmata.

From Lemmata and any sequence {x,} .y which is generated by either
Algorithm (4.4.6]) or by Algorithm (4.4.7) is well defined and bounded. From now on we let
{z,},cy be an arbitrary sequence which is generated by Algorithm (4.4.6) or by Algorithm
(14.4.7)).

We claim that every weak subsequential limit of {z,},.y belongs to Z. From Lemma

[3.3.6] we have

n n—0

and
lim [V f (20 +en) =V (ya)], = 0. (4.4.9)
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Hence, from the definition of the Bregman distance (see ([1.2.1))), we get that

im Dy (yn, xp +€,) = Um [f (yn) — [ (zn + ) =<V f(zp+€n),yn — (xn +€,))] =0.
(4.4.10)
Let u € Z. From the three point identity (see ((1.2.2))) we obtain that

Df (uvxn +en) - Df (uayn) = Df (ynaxn +€n) +<Vf (xn +€n) - Vf (yn) » YUn _u>'

Since the sequence {y,}, . is bounded (see Lemma(3.3.5)) we obtain from (4.4.9)) and (4.4.10))

that
lim (D (u, z, + €,) — Dy (u,y,)) = 0. (4.4.11)

n—aeo

Thence from (4.4.11)) we get that

lim (Dy (u, z, + €,) — Dy (u, Sp (z,, + €,))) =0

n—ao

for any u € Z. From (|1.3.6)), (1.3.8), (4.4.8) we get that

Dy (Sh (z + €n), S (@n +€5)) = Dy (T (Si7 (@n + €4)), S) " (2 + €2))
< Dy (u, S5 (@0 + €,)) — Dy (u, Sh (2 + €5))
< Dy (u, x4+ €,) — Dy (u,yn) -

Hence from (4.4.11)) we get that

lim Dy (S}, (zn + €,), S0 ' (zn +€,)) =0 (4.4.12)

n—o0

forany i =1,2,..., N. Therefore from Propositionl.2.46/and the fact that {S’ (z, + €,)},.en
is bounded (using similar arguments to those in the proof of Lemma [3.3.5)), we obtain that

lim (S}, (z + €n) — S (2 + €0)) =0 (4.4.13)

n—0

for any ¢ = 1,2,..., N. From the three point identity (see (1.2.2))) we get that

Df (S; (:Un + en) ; Ty + 6n) - Df (quil (xn + en) ;T + en)
= Dy (S; (zn + €n), S (2, + en))
+{Vf(@n+e,) = V(S (@n+en),Sh (wn+en) = Sk (wn+€)).

The sequences {x,}, . and {S? (z, + €,)}, .y are bounded (see Lemma|3.3.5). Hence, from
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(4.4.12)) and (4.4.13)) we get that

lim (D (S, (xn + €)@+ €n) — Dy (S5 (z0 + €n) 20 + €,)) = 0. (4.4.14)

n—eo

Since

lim Dy (Y, Tn + €,) = lim Dy (S5 (zn + €,) , @y + €,) =0,

n—aeo n—0o0

we obtain from (4.4.14]) that

lim Dy (S;L (xp +€n),Tn + en) =0

n—o0

for any i = 1,2,..., N. Proposition [1.2.46[ and the fact that {z,, + e,}, o is bounded (see
Lemma [3.3.5)), now imply that

lim S5 (2, + €n) — (z, + €5)] = 0 (4.4.15)

n—eo

forany ¢ = 1,2,..., N, that is,

=0

n—o0

lim HRes{i A, (S5 (2 + €n) — (T + €2)

for any ¢ = 1,2,..., N. From the definition of the f-resolvent (see (4.0.2))), it follows that
V(ST (@n +e)) € (VF+XA) (S (zn +en))

Hence

£ ! (VIS5 (mn +€0) = V(S (@0 +€,))) € A (Sh (0 + €4)) (4.4.16)

for any ¢ = 1,2,..., N. Applying Proposition [1.1.22ii) to (4.4.13) we get that

lim [V (S5 (20 + €0)) — Vf (SE (20 + €0))] = 0.

n—a0 *

Now let {z,, },.y be a weakly convergent subsequence of {z,}, .y and denote its weak limit
by v. Then from (4.4.15]) it follows that {Sﬁlk (n, + enk)}keN, 1=1,2,..., N, also converges
weakly to v. Since liminf, . AY, > 0, it follows from (4.4.16)) that

lim |&.[ = 0"

n—aco

for any ¢ = 1,2,..., N. From the monotonicity of A; it follows that

<77 o fZL,Z - S;Lk (xnk + enk)> =0
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for all (z,n) € graph A; and for all i = 1,2,..., N. This, in turn, implies that {n,z —v) = 0
for all (z,7n) € graph A; for any i = 1,2, ..., N. Therefore, using the maximal monotonicity
of A; (see Proposition , we now obtain that v € A; ' (0*) for each i = 1,2,..., N.
Thus v € Z and this proves the result.

Now Theorem [£.4.2 is seen to follow from Lemma [3.3.7 O



Chapter 5

Applications - Equilibrium,
Variational and Convex Feasibility

Problems

In this chapter we modify the iterative methods proposed in Chapters [3| and [4] in order to

solve diverse optimization problems. We focus our study on the following three problems.

(i) Equilibrium Problem (EP). Given a subset K of a Banach space X, and a bifunction
g : K x K — R, the equilibrium problem corresponding to g is to find z € K such that

g(Z,y) =0 Vye K. (5.0.1)
(ii) Variational Inequality Problem (VIP). Given a subset K of a Banach space X, and

a single-valued mapping A : X — 2% *, the corresponding variational inequality is to
find ¥ € K such that there exists £ € Az with

Ey—-2)=0 VyekK. (5.0.2)

(iii) Convex Feasibility Problem (CFP). Given N nonempty, closed and convex subsets
K;,1=1,2,..., N, of a Banach space X, the convex feasibility problem is to find an

element in the assumed nonempty intersection ﬂf\il K;.

Thence this chapter is divided into three sections concerning each problem.

136
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5.1 Equilibrium Problems

The equilibrium problem contains as special cases many optimization, fixed point and
variational inequality problems (see [21], [49] for more details).

It is well known that many interesting and complicated problems in nonlinear analysis,
such as complementarity, fixed point, Nash equilibrium, optimization, saddle point and
variational inequality problems, can all be formulated as equilibrium problems as in (5.0.1])
(see, e.g., [21]). There are several papers available in the literature which are devoted to
this problem. Most of the work on this issue deals with conditions for the existence of
solutions (see, for example, [61], [63]). However, there are only a few papers that deal with
iterative procedures for solving equilibrium problems in finite as well as infinite-dimensional
spaces (see, for instance, [49, [62], 92] 03] 94 106l 107]).

As in the case of finding zeroes of monotone mappings (see Chapter , the key tool
for solving equilibrium problems is to define a resolvent (see [49] for the case of Hilbert

spaces), this time with respect to a bifunction g instead of with respect to a mapping A
(see (4.0.2)).

Definition 5.1.1 (Resolvent of bifunctions). The resolvent of a bifunction g : K x K — R
is the operator Resg : X — 2K defined by

Res! (z) ={z€ K :g(2,y) +{(Vf(2) = Vf(z),y—2)=0 VyeK}. (5.1.1)
Actually there is a strong connection between the resolvent Resg and the f-resolvent

Resﬁ. We will show this in the next section.

5.1.1 Properties of Resolvents of Bifunctions

It is well known that for studying equilibrium problems, it is assumed that the correspond-

ing bifunction g satisfies the following four assumptions (see, for example, [21]).

Assumption 1 (Basic assumptions on bifunctions). Given a subset K of a Banach space

X and a bifunction g : K x K — R, we make the following assumptions.
(C1) g(z,2) =0 forallx € K.

(C2) g is monotone, i.e., g(z,y) + g (y,x) <0 for all z,y € K.
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(C3) For all x,y,z € K, we have

limsup g (tz + (1 —t)z,y) < g (z,y).
t10

(C4) For each x € K, g(x,-) is conver and lower semicontinuous.

In the following two lemmata we obtain several properties of these resolvents. We

first show that dom Resg is the whole space X when f is a super-coercive (see Definition

1.2.33(ii)) and Gateaux differentiable function (cf. [92, Lemma 1, page 130]).

Proposition 5.1.2 (Sufficient condition for dom Resg = X). Let f: X — (—o0,4+0] be a
super-coercive and Gateaux differentiable function. Let K be a closed and convex subset of
X. If the bifunction g : K x K — R satisfies Conditions (C1)-(C4), then dom Resg =X.

Proof. First we show that for any & € X, there exists Z € K such that

9@y +fy) - (@) -&y—-1)=0 (5.1.2)

for any y € K. Since f is a super-coercive function, a function h : X x X — (—o0, 4 0],
defined by

hiz,y):=fy) —f(z)—&y—2),
satisfies

h(z,y)

lim —= =
la—yl—e [z — y|
for each fixed y € K. Therefore it follows from |21, Theorem 1, page 127] that (5.1.2]) holds.
Now we prove that (5.1.2)) implies that

9(@,y) +(Vf(z),y—1) =&y —2)=0

for any y € K. We know that (5.1.2)) holds for y = tz+ (1 — t) y, where g € K and t € (0, 1).

Hence

gEtz+(1-t)y)+ftz+Q-)y) —f(@)—-&tz+(1—-t)g—z)=0 (5.1.3)

for all y € K. Since

fz+ (1 =0)g) - f(@) <Vfltz+ A=)y, tx+(1-t)y-12),
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we get from (5.1.3) and Condition (C4) that

tg(z,7) + (1 —1t)g(z, g)+<Vf(t:z+(1—t)gj),t:z:+(1—t) — )
—&tr+(1-)y—1)>

for all y € K. From Condition (C1) we know that g (z,z) = 0. So, we have
A=t)g @y +Vfltz+1-1)y), A=) FH—-1)-&0-)FH-7)=0

and
A=)y @y +<{Vftz+ (1 -1)y),7-2)—&y—D)] >
for all §y € K. Therefore

9@y +Vfz+(1-0)y),5-1)=&y—T) >
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for all y € K. Since f is a Gateaux differentiable function, it follows that V f is norm-
to-weak” continuous (see Proposition [1.1.21). Therefore, letting here ¢ — 17, we obtain

that
for all y € K. Hence, for any = € X, taking £ = Vf (z), we obtain z € K such that
9(z,9) +{Vf (@) =Vf(z),y-7)=0

for all y € K, that is, z € Res}; (x). Hence dom Resg = X.

]

In the next lemma we list more properties of resolvents of bifunctions (¢f. [02, Lemma

2, page 131]).

Proposition 5.1.3 (Properties of resolvents of bifunctions). Let f : X — (—o0, +0] be a
Legendre function. Let K be a closed and convex subset of X . If a bifunction g : K x K — R

satisfies Conditions (C1)-(C4), then the following assertions hold.
(i) The resolvent Resg is single-valued.

(ii) The resolvent Res) is an BFNE operator.

(iii) The fized point set of Res}; is the solutions set of the corresponding equilibrium problem,

i.e., Fix (Resg) = EP (g).

(iv) The set EP (g) is closed and convez.
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Proof. (i) Let 21,29 € Resg (x). From the definition of the resolvent Resg (see (5.1.1)) we

obtain
g(z1,22) +{(Vf(21) = Vf(x),22—21)=0

and
g(20,21) +<{Vf(29) =V f(x),2z1 — 2y = 0.

Summing up these two inequalities, we get
g (21,22) + g (22, 21) +{Vf(22) = Vf(21),21 — 22) 2 0.

From Condition (C2) it follows that

<Vf (22) — Vf (Zl) , 21 — Z2> = 0.

The function f is Legendre (see Definition [1.2.7)) and therefore it is strictly convex.
Hence V f is strictly monotone (see Example [1.4.3) and therefore z; = 2.

(ii) For any z,y € K, we have
g (Resgc (x) ,Resi; () +<{Vf (Resg (2)) =V f(2), Resg (y) — Res! (z)) =0

g

and

g (Resg (v) ,Resg (a:)) + <Vf (Resg (y)) —Vf£(y) ,Resg (x) — Resgc (y)> > 0.

Summing up these two inequalities, we obtain that

g (Resg (x), Resg (y)) +g (Resg (y) ,Resg (2))
+{Vf (Resg () =V f(x)+Vf(y)—Vf (Resg (v)) ,Resg (y) — Res! (z)) = 0.

g

From Condition (C2) it follows that

(Vf (Res) () = Vf (x) + V(y) = Vf (Res] (y)) , Resy (y) — Res; (x)) = 0.

Hence

<Vf (Resg (x)) —Vf (Resg (y)) ,Resg (x) — Resg (y)>
< (VF(x) = Vf (4) . Res} () - Res] (1))

This means that Resg; is an BFNE operator (see (1.3.4))), as claimed.
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(ili) Indeed,
xEFiX(Resg) == Resg () = 0<g(z,y) +<{(Vf(z)=Vf(x),y—z) VyekK,
therefore
xeFix(Resg) <~ 0<g(r,y) Vye K <= x€EP(g).

Therefore Fix (Resg) = EP (g).

(iv) Since Resg is a BFNE operator, the result follows immediately from Proposition m

because of point (iii). [

As we have already noted, there is a strong connection between zeroes of maximal
monotone mappings and solutions of equilibrium problems of bifunctions. Let g : K x K —

R be a bifunction and define the mapping A4, : X — 2% " in the following way:

Ag(x)::{{feX*;g($,y)2<§,y—w> Vye K} , zeK (514

(%) , v¢ K.

In the following result we show that under suitable assumptions on the function f, the

mapping A, generated from a bifunction ¢ is maximal monotone (see Definition [1.4.9)).

Proposition 5.1.4 (Properties of A,). Let f : X — (—oo, +0] be a super-coercive, Legen-
dre, Fréchet differentiable and totally convex function. Let K be a closed and convex subset
of X and assume that a bifunction g : K x K — R satisfies Conditions (C1)-(C4), then

the following assertions hold.
(i) EP (9) = A;* (07).
(ii) The mapping A, : X — 9X" s mazimal monotone.
(iii) Resg = Resﬁg.
Proof. (i) If z € K then from the definition of the mapping A, (see (5.1.4])) we get that

ze A’ (O*)<:)g(x,y)20 Vye K < 2z€EP(g).

(ii) We first prove that A, is monotone mapping (see Definition [1.4.2(i)). Let (x,£) and
(y,n) belong to the graph of A,;. From the definition of the mapping A, (see (5.1.4))
we get that

g(z,2) =2 2z2—x) and g(y,2) = (M, 2 —y)
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for any z € K. In particular we have that

g(z,y) =&y —x) and g (y,z) = N,z —y).

From Condition (C2) we obtain that

0=g(z,y)+gy,z) =€ —ny—x)

that is (¢ —n,z —y) > 0 which means that A, is monotone mapping (see (1.4.1))).

In order to show that A, is maximal monotone mapping it is enough to show that

ran (A, + Vf) = X* (see Proposition [1.4.18)). Let ¢ € X", from Proposition [1.2.13| we

get that under the assumption here, f is cofinite, that is, dom f* = X" and therefore
ranVf = intdom f* = X" (see (1.2.4))) which means that Vf is surjective. Then
there exists © € X such that Vf () = £ From Proposition we know that the

resolvent Resg of g has full domain and therefore from the definition of Resg (see
(5.1.1))) we get that

g (Resj; (),y) +{Vf (Resg (2)) =V f(z),y— Resg ()) =0

for any y € K, that is,

g (Resg (x) ,y) > <Vf (x) = Vf (Resj; (x)) Y — Resi: (x)>

for any y € K. This shows that Vf (z) — Vf (Resg () € A, (Resg (2)) (see (5.1.4).
Therefore
E=Vf(x)e(Vf+A4,) (Resg (:c)) (5.1.5)

which means that € ran (A, + V f). This completes the proof.

(iii) From Proposition {4.1.2(iv)(a) and assertion (ii) we have that the resolvent, Res/, ,
g

of a maximal monotone mapping A, is single-valued. From Proposition m(u) the
resolvent Resg is single-valued too. Now we obtain from ((5.1.5)) that

Resﬁg = (Ag+ Vf) ' oVf =Res]

as asserted. [

As we have seen in Propositions |5.1.2| and |5.1.3|(ii), the operator A = Resg is BFNE and
with full domain. Therefore, from Proposition M(iii) the mapping B=VfoA! -Vf

is maximal monotone. This fact also follows from Proposition [5.1.4|(ii) where we proved

that A, is a maximal monotone mapping. Therefore B = A;. Indeed, from Proposition
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514]ii)

B=Vfo(Res)) ' =Vf=Vfo (Resgg) _vi-a,

ES
Now we will show the converse connection holds. Let A : X — 2%X be a maximal monotone

mapping and define the bifunction g4 in the following way:

ga(z,y) :=sup{&,y —x): € Ax}. (5.1.6)

In the following result we show that under appropriate assumptions on the function f, the
bifunction g, satisfies Conditions (C1)—(C4).

Proposition 5.1.5 (Properties of ga). Let f : X — (—0, +o0] be a super-coercive, Leg-
endre, Fréchet differentiable and totally convex function. Let A : X — 9%* be a mazimal
monotone mapping with nonempty, closed and convex domain K = dom A. Then the

following assertions hold.
(i) The bifunction ga satisfies Conditions (C1)-(C4).

(i) A, = A.

gA
(i) EP (ga) = A™1(07)
; !
(iv) ReSZ;A = Res/}.
Proof. (i) We first prove that Condition (C1) holds. Let z € K. It is clear that

ga(r,z) =sup {{&,x —x): € Az} = 0.

Now we prove that Condition (C2) holds. Let (z,€) and (y,n) belong to the graph

of A. Since A is monotone mapping (see (1.4.1)), we have —(n,z —y) = &,y — ),
which implies that

inf {—(n,x —yy:ne Ay} Zsup{({,y —x): { € Az} = ga (7,y).
On the other hand, we have
inf {—{(n,x —y):ne Ay} = —sup{(n,x —y) :ne Ay} = —ga (y,v)

and therefore g4 (x,y)+ga (y, ) < 0 for any 2,y € K. In order to prove that Condition
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(i)

(iii)

(iv)
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(C3) holds, we use the following fact:

galtz+ (1 —t)z,y) =sup{§y—tz— (1 —t)z): £ € Az}
=sup{{{,y—x): € Ax} —tsup{{§,z —z): £ € Az}
= ga(z,y) —tga(z,2).

Therefore

limsup g (tz + (1 = t) x,y) = limsup (g4 (z,y) — tga (2, 2)) = ga (2, y) .
t}0 40

From the definition of g4 (see (5.1.6))), it is easy to check that Condition (C4) holds.

Let z € X. If A,, (x) is empty then it is contained in Az. Otherwise A,, (z) is
nonempty and there exists { € Ay, (z). The monotonicity of g4 which is Condition

(C2) (proved in assertion (i)) implies that

Ey—m)<galr,y) < —galy,r) < -z —y)=y—1z)

for any n € Ay. Therefore (¢ —n,z —y) = 0 for any n € Ay. Since A is a maximal
monotone mapping, we get from Proposition that £ € Az. Hence Ay, (z) © Az
for any € X. From Proposition [5.1.4{ii) and item (i) we have that A, is a maximal
monotone mapping. But A is also a maximal monotone mapping and therefore A,, =
A.

From Proposition [5.1.4{i) we have

Ao (O> — A (o) — EP(g4),
as asserted.
Again from Proposition [5.1.4(iii) we have

Resil = RengA = Resg K ]

5.1.2 Iterative Methods for Solving Equilibrium Problems

Using the properties of resolvents of bifunctions and the connection between their fixed

points and the solutions of the corresponding equilibrium problems, we can implement the

iterative methods proposed in Chapter [3] There also are connections between solutions



Iterative Methods for Solving Optimization Problems 145

of equilibrium problems and zeroes of the corresponding monotone mappings. Therefore
we can modify the iterative methods proposed in Chapter 4| in order to solve equilibrium
problems. We present two of the possible modifications.

We begin by providing the modification of the Picard iterative method.

Picard Iterative Method for Solving Equilibrium Problems
Initialization: zg € K.
General Step (n=1,2,...):

Tpt1 = Resg (xn) . (5.1.7)

The convergence result for the Picard iterative method for solving equilibrium problems is

formulated as follows.

Proposition 5.1.6 (Picard iteration for solving equilibrium problems). Let f : X —
(—o0, +0] be a super-coercive and Legendre function which is totally conver on bounded
subsets of X. Suppose that Vf is weakly sequentially continuous and V" is bounded on
bounded subsets of int dom f*. Let K be a nonempty, closed and convex subset of int dom f
and assume that a bifunction g : K x K — R satisfies Conditions (C1)-(C4) such that
EP(g9) # . Then {(Resg)nw}neN converges weakly to an element in EP (g) for each
re K.

Proof. From Proposition m(u) we have that Resg is BFNE and therefore BSNE (see
Figure . In addition, from Propositions [2.1.2 and |5.1.3(iii) we have that Fix (Resﬁ) =
Fix (Resg ) = EP (g) # &. Now the result follows immediately from Corollary . O

Now we present a modification of Algorithm (4.4.7) which is based on the concept of

products of resolvents.

Sabach Iterative Method for Solving Equilibrium Problems
Input: f: X >R, {N}neNc (0,+x0),i=1,2,...,N, and {e,}
Initialization: zo€ X.

General Step (n=1,2,...):

c X

neN

.
Yn = ResfggN 0---0 ResJ;}Lg1 (Tn + €n),

CTL+1 = {ZEOn : Df(z7y7iz) <Df(2,$n+€n)},
$ ¢, =N, 0 (5.1.8)
Qn=1{2€X :(Vf(xg) =Vf(zy),z—x,) <0},

[ Tny1 = projéann (x0) .
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In this case we have the following result.

Proposition 5.1.7 (Convergence results for Algorithm ) Let K;, i =1,2,..., N,
be a nonempty, closed and convexr subset of X. Let g; : K; x K; > R, 1 =1,2,...,N, be
N bifunctions which satisfy Conditions (C1)-(C4) such that E := (o, EP (g;) # &. Let
f X — R be a Legendre function which is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of X. Suppose that V" is bounded on bounded subsets
of intdom f*. Then, for each to € X, the sequence {z,}, oy which is generated by

is well defined. If the sequence of errors {e,} . < X satisfies lim, .o |e,| = 0 and for

neN
each i = 1,2,...,N, iminf, ,, X, > 0, then the sequence {x,}, . converges strongly to

projl (zo) as n — .

Proof. The result follows immediately from Theorem and Proposition [5.1.4] O

5.2 Variational Inequalities

Variational inequalities have turned out to be very useful in studying optimization problems,
differential equations, minimax theorems and in certain applications to mechanics and
economic theory. Important practical situations motivate the study of systems of variational
inequalities (see [66] and the references therein). For instance, the flow of fluid through
a fissured porous medium and certain models of plasticity lead to such problems (see, for
instance, [104]). The variational inequality problem (VIP), was first introduced (with a
single-valued mapping) by Hartman and Stampacchia in 1966 (see [59]).

Because of their importance, variational inequalities have been extensively analyzed in
the literature (see, for example, [52] [67, 113] and the references therein). Usually, either
the monotonicity or a generalized monotonicity property of the mapping A play a crucial
role in these investigations.

The importance of VIPs stems from the fact that several fundamental problems in

Optimization Theory can be formulated as VIPs, as the following few examples show.

Example 5.2.1 (Constrained minimization). Let K € X be a nonempty, closed and convex
subset and let g : X — (—o0,+o0] be a Gateaux differentiable function which is convezx on

K. Then " is a minimizer of g over K if and only if " solves the following VIP:

<Vg (a:*> ,x—x*> >0 forallze K.
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When g is not differentiable, we get the VIP
<u*,x —x*> >0 forallxe K,
where u* € dg (:v*)

Example 5.2.2 (Nonlinear complementarity problem). When X = R" and K = R, then
the VIP is exactly the nonlinear complementarity problem, that is, find a point x° € R?
and a point u* € Ax" such that u” € R" and <u*,x*> = 0.

Indeed, if ©* solves (5.0.2) and A : R* — 28" then there exists x~ € R" such that

u"* € Azx" which satisfies
<u*,x — a:*> > 0 for all x € RY.

So, in particular, if we take x = 0 we obtain <u*,x*> < 0 and if we take x = 22" we
obtain <u*,x*> > 0. Combining the above two inequalities, we see that <u*,x*> =0. As a
consequence, this yields

<u*,x> >0 for all x € R

and hence u* € R? . Conversely, if z" solves the nonlinear complementarity problem, then
<u*,x — at*> = <u*,x> > 0 for all x € R} (since ut e R™ ), which means that " solves

(5.0.2) with N = 1.

Example 5.2.3 (Finding zeroes). When the set K is the whole space X, then the VIP
obtained from (5.0.2) is equivalent to the problem of finding zeroes of a mapping A : X —
2X*, i.e., to find an element x* € X such that 0 € A (x*)

Example 5.2.4 (Saddle-point problem). Let Hi and Hy be two Hilbert spaces, and let K
and Ky be two convex subsets of X1 and Xs, respectively. Given a bifunction g : Hi x Ho —

R, the saddle-point problem is to find a point (uf,u;) e K1 x Ky such that
g (u;,ug) <g (uf,uS) <y (ul,u;> for all (uy,us) € Ky x K.

This problem can be written as the VIP of finding (uf,u;) € K1 x Ky such that

V - *’ * *
< J (ul*u22 >, (ul) — (ui> > 0 for all (uy,us) € K1 x K. (5.2.1)
—Vu, (U1>U2) Uz Uy

As in the case of finding zeroes of monotone mappings (see Chapter , the key tool for

solving variational inequalities is to define a resolvent with respect to a mapping A as in
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the case of the f-resolvents (see (4.0.2))). In the case of variational inequalities we discuss

two kinds of resolvents: the anti-resolvent and the generalized resolvent.

Definition 5.2.5 (Anti-resolvent). The anti-resolvent A7 : X — 2% of a mapping A :
X - 92X s defined by
Al =V o (Vf—A). (5.2.2)

Definition 5.2.6 (Generalized resolvent). The generalized resolvent GRes’, : X — 2% of
a mapping A : X — 92X s defined by

GRes!, (z) = {ze K : (Az,y —2)+(Vf(2) =Vf(z),y—2)=0V¥ye K}. (523)

5.2.1 Properties of Anti-Resolvents

We begin by providing several basic properties of anti-resolvents (see Definition|5.2.5|) which
were proved in [38, Lemma 3.5, page 2109] (see also [66, Proposition 11, page 1326]).

Proposition 5.2.7 (Properties of anti-resolvents). Let f : X — (—o0, 40| be a Legendre
function which satisfies the range condition (1.4.6). Let A: X — 2X" be a mapping. The

following statements are true.
(i) dom Af < dom A[)int dom f.
(ii) ran A7 < int dom f.

(iii) The mapping A is BISM on its domain if and only if its anti-resolvent A/ is BENE

operator.
(iv) A1 (0") = Fix (A7).
Proof. (i) Clear from Definition [5.2.5]
(ii) Clear from Definition [5.2.5]

(iii) Let @,y € dom A/ and take £ € Az, n e Ay, ue A’z and v e A'y. From the definition
of BENE operators (see (1.3.4])) the anti-resolvent A/ (see Definition [5.2.5)) is BFNE

if and only if
Vfu) =Vf@),u=v)y<{Vf(z)=Vf(y) u-1), (5.2.4)
which is equivalent to

(Vf(2) =& = (Vfy) —n),u—v) <{Vf(z) = VI(y),u—v),
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that is, (¢ —n,u —v) > 0. Sinceu € Afz and £ € Az, we get that u = Vf* (Vf (z) — €).
The same holds for v, that is, v = V" (Vf (y) — n). Therefore (5.2.4) is equivalent

to
(= VI (V@)= =V (Vi) =) >0,
which means that A is a BISM mapping (see Definition [1.4.29)).

(iv) From the definition of the anti-resolvent (see (5.2.5))) we get that

0'cedr o Vf(z)eVf(z)—Ar=(Vf—A)(z) s zeVf o(Vf—A)(z)= Az
[

Let K be a nonempty, closed and convex subset of X and let A : X — X" be a mapping.

The variational inequality corresponding to such a mapping A is to find z € K such that
(Az,y—7)>0Vye K. (5.2.5)

The solution set of is denoted by VI(K, A).

In the following result we bring out the connections between the fixed point set of
projf( o Af and the solution set of the variational inequality corresponding to a single-
valued mapping A : X — X" (c¢f. [66, Proposition 12, page 1327]).

Proposition 5.2.8 (Characterization of VI (K, A) as a fixed point set). Let A: X — X*
be a mapping. Let f : X — (—o0,40]| be a Legendre and totally convex function which
satisfies the range condition . If K is a nonempty, closed and convex subset of X,
then VI(K, A) = Fix (proj}; o Af).

Proof. From Proposition [1.2.35(ii) we obtain that z = proj}; (Afx) if and only if
<Vf (Afx) —Vf(x) ,x—y> =0

for all y € K. This is equivalent to {((Vf — A)xz — V[ (z),x —y) = 0 for any y € K, that
is, (—Az,z —yy = 0 for each y € K, which is obviously equivalent to x € VI(K, A), as

claimed. O]

It is obvious that any zero of a mapping A which belongs to K is a solution of the
variational inequality corresponding to A on the set K, that is, A~! (0*) n K < VI (K, A).
In the following result we show that the converse implication holds for single-valued BISM

mappings (cf. [66, Proposition 13, page 1327]).
Proposition 5.2.9 (A7'(0*) n K = VI(K,A) for BISM mappings). Let f : X —

(—o0,+0] be a Legendre and totally convex function which satisfies the range condition
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(1.4.6). Let K be a nonempty, closed and convez subset of dom A()intdom f. If a BISM
mapping A : X — X" satisfies Z .= A1 (0*) n K # &, then VI(K,A) = Z.

Proof. Let x € VI(K, A). From Proposition we know that x = projﬂ (Afx). From
Proposition [1.2.35(iii) we now obtain that

Dy (u, projé (Afx)) + Dy (proj}; (Afx) ,Afx> < Dy (u,Afx)

for any v € K. From Proposition m(iii) we have that A/ is BFNE and therefore QBNE
(see Figure [1.3). Hence

D¢ (u,x) + Dy (w,Afx) = Dy (u,proj{( (Afx)) + Dy (projf( (Afx) ,Afx)

< Dy (u,A’z) < Dy (u, z)

for any u € Z. This implies that Dy (L AS x) = 0. It now follows from Propositionthat
x = Alz, that is, z € Fix (A7), and from Proposition m(lv) we get that z € A7 (0%).
Since x = projf( (Afx), it is clear that x € K and therefore x € Z. Conversely, let x € Z.
Then z € K and Az = 0, so it is obvious that is satisfied. In other words,
r e VI(K,A). m

The following example shows that the assumption Z # ¢ in Proposition|[5.2.9|is essential
(cf. |66, Example 2, page 1328]).

Example 5.2.10 (Assumption Z # (J is essential). Let X = R, f = (1/2)||°, K =
[1,4+00) and let A : R — R be given by Ax = x (the identity mapping). This is obviously
a BISM mapping (which in our case means that it is firmly nonexpansive (see Remark
, and all the assumptions of Pmposition hold, except Z # (. Indeed, we have
A71(0) = {0} and 0 ¢ K. However, V = {1} since the only solution of the variational
inequality x (y —x) = 0 for ally = 1 is x = 1 and therefore Z = (F is a proper subset of
V.

To sum up, the anti-resolvent A7 of a mapping A seems to be a more “complicated” op-
erator than the other resolvents we mentioned since its nonexpansivity property holds only
if the mapping A is assumed to be BISM. On the other hand, as we proved in Proposition
[5.2.9] for BISM mappings, finding zeroes in K is exactly equivalent to solving a variational
inequality over K. Therefore, solving variational inequalities for BISM mappings using
anti-resolvents leads to a particular case of finding zeroes. We refer the interested reader
to the paper [66] for a careful study of iterative methods for solving variational inequalities

for BISM mappings.
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Because of these drawbacks of the anti-resolvents we will study more carefully the gen-
eralized resolvent (see Definition [5.2.6)).

5.2.2 Properties of Generalized Resolvents

We begin this section by proving that the bifunction g (x,y) defined by (Az,y — =) satisfies
the basic conditions mentioned in Assumption (1| (¢f. [66, Proposition 16, page 1338]).

Proposition 5.2.11 (Monotone mappings and bifunctions). Let A: X — X be a mono-
tone mapping such that K := dom A is closed and convex. Assume that A is bounded

on bounded subsets and semicontinuous on K. Then the bifunction g (z,y) = (Azx,y — x)

satisfies Conditions (C1)-(C4).

Proof. 1t is clear that g (z,z) = (Ax,x — z) = 0 for any € K. From the monotonicity of
the mapping A (see ((1.4.1))) we obtain that

g(z,y) +9W,z) ={Az,y —2) +{Ay,v —y) ={Az — Ay,y —2) <0

for any z,y € K. To prove Condition (C3), fix y € X and choose a sequence {t,}

neN?
converging to zero, such that

limsupg (tz + (1 —t)z,y) = lim g (t,z + (1 —t,) z,9) .
th n—eo

Such a sequence exists by the definition of the limsup. Denote w, = t,z + (1 —1t,)z.
Then lim, o u, = = and {Au,},y is bounded. Let {Auy,,}, be a weakly convergent
subsequence. Then its limit is Az because A is hemicontinuous (see Definition [1.4.8)) and

we get

limsupg (tz + (1 —t)z,y) = im g (tp, 2 + (1 —t,, ) x,y) =
t10 k—o0

= klim At z+ 1=ty )x),y—tyz— (1 —t,,) )
—0

= lim (A (un,) Y = un,) = (Az,y — ) = g (2,9)

for all z,y, 2z € K, as required. Condition (C4) also holds because

g(ztyr + (L —=t)yo) =(Ax,x — (tyr + (1 —t) y2)) = t{Ax,x —y1) + (1 — t) (Az, 2 — yo)
=tg(z,y) + (1 —1)g(z,42);

thus the function g (x,-) is clearly convex and lower semicontinuous as it is (in particular)
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affine and continuous for any x € K.
Therefore g indeed satisfies Conditions (C1)—(C4). O

Now we summarize several properties of generalized resolvents (see Definition [5.2.6)).

Proposition 5.2.12 (Properties of generalized resolvents). Let f : X — (—o0, +o0] be a
super-coercive and Legendre function. Let A : X — X" be a monotone mapping such that
K := dom A is a closed and convex subset of X. Assume that A is bounded on bounded
subsets and hemicontinuous on K. Then the generalized resolvent of A has the following

properties.
(i) dom GRes’, = X.
ii) GRes’, is single-valued.
(i) 4
(iii) GResQ is an BFNE operator.
(iv) Fix (GRes} ) = VI(K, 4),

(v) VI(K,A) is a closed and convex subset of K.

Proof. The result follows by combining Propositions [5.1.2] [5.1.3| and [5.2.11] O

A connection between f-resolvents, Resf;, and generalized resolvents, GRGSQ, is brought

out by the following remark.

Remark 5.2.13 (Connection between f-resolvents and generalized resolvents). If the do-
main of a mapping A : X — X" is the whole space, then V1 (X, A) is exactly the zero set of
A. Therefore we obtain, for any z € GRes, (), that (Az,y — 2)H(V [ (z) = V[ (z),y — 2) =
0 for any y € X. This is equivalent to (Az +Vf(z) =V f(x),y—2) =0 for any y € X,
and this, in turn, is the same as (Az+ Vf(z) =V f(x),w)y = 0 for any w € X. But
then we obtain that (Az +Vf(z) =V f(z),w) =0 for any w € X. This happens only if
Az + Vf(z) = Vf(z) = 0", which means that z = (Vf + A) " oV f (z). This proves that

the generalized resolvent GResJ; 1S a generalization of the resolvent Resﬁ. &
5.2.3 Iterative Methods for Solving Variational Inequalities

Using the properties of generalized resolvents and the connection between their fixed points
and the solutions of variational inequalities, we can implement the iterative methods pro-
posed in Chapter 3]
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We begin with a modification of the Mann iterative method (see Algorithm (3.0.3))),
which is defined by using convex combinations with respect to a convex function f, for

solving variational inequalities.

f-Mann Iterative Method for Solving Variational Inequalities
Input: f: X — R and {a,}, < (0,1).

Initialization: zoe X.

General Step (n=1,2,...):

T = V" (oznV Fla)+(1—a)Vf (GReSQ (xn))) . (5.2.6)

In the following result we prove weak convergence of the sequence generated by Algorithm
(15.2.6)).

Proposition 5.2.14 (Convergence result for Algorithm (5.2.6)). Let A : X — X" be a
monotone mapping such that K := dom A is a closed and conver subset of X. Assume that
A is bounded on bounded subsets and hemicontinuous on K such that VI (K, A) # . Let
f X — R be a super-coercive and Legendre function which is totally convex on bounded
subsets of X. Suppose that Vf is weakly sequentially continuous and Vf* is bounded on
bounded subsets of int dom f*. Let {x,}

where {a,}

be a sequence generated by Algorithm (5.2.6))

neN

aen © 10, 1] satisfies limsup,, o, ov, < 1. Then, for each xo € X, the sequence

{z,},,on converges weakly to a point in VI (K, A).

Proof. From Proposition [5.2.12(iii) we have that GRes’, is BENE and therefore BSNE (see
Figure. In addition, from Propositions|2.1.2jand|5.2.12(iv) we have that Fix (GResf;) =

Fix (Res£> = VI (K, A) # &. Now the result follows immediately from Corollary|3.2.3| [

Now we present another algorithm for finding solutions of a system of a finite number

of variational inequalities.
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Minimal Norm-Like Iterative Method for Solving Variational Inequalities I
Input: f: X - Rand {e,} < X,i=1,2,...,N.
Initialization: zg € X.

General Step (n=1,2,...):

-

v zGResfli (x, +€),

CZL = {ZEX : Df(Z,y;) < Df(zaxn—i_e;)}’

G, =N, (5.2.7)
Qn={zeX :(Vf(xo) —Vf(xn),z—x,) <0},

\ Ln+l = prOanan (‘TO) :

In this case Algorithm (5.2.7]) generates a sequence which converges strongly to a solution
of the system.

Proposition 5.2.15 (Convergence of Algorithm (5.2.7))). Let A; : X — X* i=1,2,...,N,
be a monotone mapping such that K; := dom A; is a closed and convexr subset of X. As-
sume that each A;, i = 1,2,..., N, is bounded on bounded subsets and hemicontinuous on
K; such that V .= L, VI(K;, A) # &. Let f: X — R be a Legendre function which
is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of X.
Suppose that Vf* is bounded on bounded subsets of intdom f*. Then, for each ¢ € X,
there are sequences {x,}, .y which satisfy Algorithm (5.2.7)). If, for eachi =1,2,... N, the
sequence of errors {el} . < X satisfies lim,_,q |4 = 0, then each such sequence {x,}

neN
converges strongly to proj{, (x9) as n — oo.

Proof. From Proposition |5.2.12(iii) we have that each GResf;i, i=1,2,...,N,is BEFNE and

therefore QBNE (see Figure [1.3). In addition, from Propositions and [5.2.12(iv) we
have that (Y, Fix (Resﬁi) = ¥, VI(K;, A;) # &. Now the result follows immediately
from Theorem [3.3.91 O

Now we present another approach for solving systems of variational inequalities corre-

sponding to hemicontinuous mappings (see Definition|1.4.8). We use the following notation.

Definition 5.2.16 (Normal cone). Consider the normal cone N corresponding to K < X,
which s defined by

Ni (2) = {gex*:<g,x—y>>o, vyeK}, ve K.
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Now we have the following connection between the problems of solving variational in-

equalities and finding zeroes of maximal monotone mappings (¢f. [99, Theorem 3, page

7).

Proposition 5.2.17 (A maximal monotone mapping for solving VIP). Let K be a nonempty,
closed and convex subset of X, and let A : K — X" be a monotone and hemicontinuous

mapping. Let B : X — 2X* be the mapping which is defined by

Bz = { (A+ NicJa, we K (5.2.8)

<, T ¢ K.
Then B is mazimal monotone and B! (O*) = VI(K, A).

For each ¢ = 1,2,..., N, let the mapping B;, defined as in (5.2.8)), correspond to the
mapping A; and the set K;, and let {\'}, .y, ¢ = 1,2,..., N, be N sequences of positive
real numbers. Using Proposition [5.2.17 we can modify the iterative methods proposed in

Chapter 4| in order to solve variational inequalities. We present one of these modifications.

Minimal Norm-Like Iterative Method for Solving Variational Inequalities II
Input: f: X > Rand {¢',} < X,i=1,2,..., N.

Initialization: z5€ X.

General Step (n=1,2,...):

neN

-

Y = GReS{ngi (x, +e),

Hy={2€ X :(Vf(xy+e,)=Vf(y),z—y, <0},

$ H, =, H, (5.2.9)
Qn=1{2€ X : (V[ (0) = Vf(2n),2—25) <O},

[ Tng1 = pronmQ” (x0) -

Theorem yields a method for solving systems of variational inequalities corresponding

to hemicontinuous mappings.

Proposition 5.2.18 (Convergence result for Algorithm (5.2.9)). Let K;, i = 1,2,..., N,
be N nonempty, closed and convexr subsets of X such that K := ﬂf\ilKi. Let A;
K, - X", i =1,2,...,N, be N monotone and hemicontinuous mappings with V :=
ﬂ,ﬁil VI(K;, A) # & Let {\o}, vy @ = 1,2,..., N, be N sequences of positive real num-
bers that satisfy liminf, ,, AL > 0. Let f : X — R be a Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of X. Suppose that



156 Applications - Equilibrium, Variational and Convex Feasibility Problems

Vf* is bounded on bounded subsets of int dom f~. If, for eachi=1,2,..., N, the sequence

of errors {eb} o © X satisfies lim, o |€L | = 0, then for each xy € K, there are sequences

{z,},,on which satisfy Algorithm (5.2.9)), where each B; is defined as in (5.2.8)). Each such
sequence {Tn}, o converges strongly as n — oo to projé (x0).

Proof. For each i = 1,2,..., N, we define the mapping B; as in (5.2.8). Proposition [5.2.17]

now implies that each B;, ¢« = 1,2,..., N, is a maximal monotone mapping and V =
ﬂi]il VI (KiaAi) = ﬂzj\; Bi_l (O*) #* .
Our result now follows immediately from Theorem |4.3.7| with Z = V. m

5.3 Convex Feasibility Problems

Let K;, 7+ = 1,2,...,N, be N nonempty, closed and convex subsets of X. The convex
feasibility problem (CFP) is to find an element in the assumed nonempty intersection
ﬂfil K; (see [0]). It is clear that Fix (projf(i> = K; for any ¢ = 1,2,...,N. If the
Legendre function f is uniformly Fréchet differentiable and bounded on bounded subsets
of X, then if follows from Proposition ’m‘(lv)(b) that the Bregman projection projﬂi is
BFNE. In addition, from Propositions [2.1.2] and [4.1.2(iii) we have that Fix (projk) =

Fix (proj{(i> = K;. Hence we can implement the iterative methods proposed in Chapter
Bl We present the following modification of the Picard iterative method (see Algorithm
(3.0.1))) for solving convex feasibility problems in reflexive Banach spaces. Define the block

operator (see (2.1.14])) in the following way

Tg := Vf* (i w;V f (projﬂ)) .

It follows from Propositions [2.1.17] and [2.1.18| that T is a BSNE operator such that
Fix (T) = NV, Fix (proj};i) = NV, K;. Now, if f : X — (=00, +00] is a Legendre

function which is totally convex on bounded subsets of X such that V f is weakly sequen-

tially continuous and V" is bounded on bounded subsets of int dom f*, then it follows
that the Picard iterative method of Tz generates a sequence which converges weakly to an

element in ﬂf\il K, that is, a solution of the convex feasibility problem.

5.3.1 A Numerical Example

In this subsection we present a simple low-dimensional example (cf. [44, Subsection 4.6]).
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We consider a two-disk convex feasibility problem in R? and provide an explicit formulation

of Algorithm (3.3.5)) as well as some numerical results. More explicitly, let

Ki={(z,9) eR: (z — )" + (y = br)” <P}

and
Ky, = {(x,y)e]RZ: (a:—ag) —b2 7“2}

Consider the problem of finding a point (x*,y*) e R? such that (x*,y*) e Ki n K.
Observe that in this case Ty = Pg, and Ty = P,. For simplicity we take f = (1/2) -
Given the current iterate x, = (u,v), the explicit formulation of the iterative step of our

algorithm becomes (see Remark [1.2.40(1))

-

= P (o) = (0 + 262 b+ i)

u—a1,v—b1)|’ u—ay,v—b1)

yiszl(xn)z(aﬁ'w—w bﬁmw_fw')’

(u—az,v—b2)|’ [(u—az2,0—b2)]
Cr={2eR?: |z —y| < [z — 2},
Cr={zeR?: |z —yi| < [z -z},
Qn=1{2€R?:{xyg—y,2 — 1) < 0},

L Tnt+1l = PC}LmC,%an ('TO) :

(5.3.1)

In order to evaluate 2", we solve the following constrained minimization problem:

min |20 — 2|’
(5.3.2)

st. zeCT nCy N Q™.

Following the same technique as in Example [1.2.41] it is possible to obtain a solution to
the problem (j5.3.2)) even for more than three half-spaces, but there are many subcases in

the explicit formula (two to the power of the number of half-spaces).

Now we present some numerical results for the particular case where
Ki={(z,y) e R*: 2" +¢y* < 1}

and
Ko={(z,y) eR?: (z —1)* +y* < 1}.

We choose two starting points (—1/2,3) and (3, 3), and for each starting point we present a
table with the (z,y) coordinates for the first 10 iterations of Algorithm (5.3.1)). In addition,
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Figures and illustrate the geometry in each iterative step, i.e., the disks and the
three half-spaces C7, C§ and Q".

Iteration Number

z-value

y-value

© 00 3O T i W N+~

—_
)

—0.500000000
0.0263507717
0.2898391508
0.4211545167
0.4687763141
0.4862238741
0.4935428246
0.4968764116
0.4984644573
0.4992386397

3.0000000000
1.9471923798
1.4209450920
1.1576070220
1.0169184232
0.9429308114
0.9048859275
0.8855650270
0.8758239778
0.8709324060

Table 5.1: The first 10 iterations of Algorithm (5.3.1)) with 2o = (—=1/2,3)
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=
2 / 2 S 2
= > =
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-5 0 5 s 0 5 -5 0 5
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Figure 5.1: Geometric illustration of Algorithm (5.3.1)) with xg = (—1/2,3)
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Figure 5.3: Geometric illustration of Algorithm (5.3.1) with 2o = (3,3)



160

Minimal Norm-Like Solutions of Convex Optimization Problems

Iteration Number

z-value

y-value

© 00 O U = W N+~

—
)

3.0000000000
1.8536075595
1.2802790276
0.9937807510
0.8503033752
0.7789970157
0.7423971596
0.7264747366
0.7115677773
0.7260458319

3.0000000000
1.8534992168
1.2803811470
0.9936561265
0.8505218683
0.7785224690
0.7434698006
0.7235683325
0.7205826742
0.6973591138

Table 5.2: The first 10 iterations of Algorithm (5.3.1)) with 2o = (3, 3)




Chapter 6

Minimal Norm-Like Solutions of

Convex Optimizations Problems

Motivated by the algorithms proposed in Chapters [3] [4] and [] for solving diverse problems
such as fixed point problems, finding zeroes of monotone mappings, equilibrium, variational
inequalities and convex feasibility problems in the setting of infinite-dimensional Banach
spaces, we present on this paper a full analysis of a modification of Algorithm in the
setting of Euclidean spaces for solving the well-known problem of finding minimal norm
solutions of convex optimization problems. This problem has very practical aspects and
therefore we prove a rate of convergence result and show implementation to real-world

problems. This chapter is based on a joint work with Professor Amir Beck.

More precisely, in this chapter we consider a general class of convex optimization prob-
lems in which one seeks to minimize a strongly convex function over a closed and convex set
which is by itself an optimal set of another convex problem. We introduce a gradient-based
method, called the minimal norm gradient method, for solving this class of problems, and
establish the convergence of the sequence generated by the algorithm as well as a rate of
convergence of the sequence of function values. A portfolio optimization example is given

in order to illustrate our results.

161
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6.1 Problem Formulation

Consider a general convex constrained optimization problem given by

min [ (x)

st. x€8,

(P):

where the following assumptions are made throughout the chapter.
(i) S is a nonempty, closed and convex subset of R".

(ii) The objective function f is convex and continuously differentiable over R"™, and its

gradient is Lipschitz with constant L:

IVf(x)-Vfy)l<Lix—y| foralx,yeR" (6.1.1)

(iii) The optimal set of (P), denoted by S*, is nonempty. The optimal value is denoted by
fr.
Problem (P) might have multiple optimal solutions, and in this case it is natural to consider

the minimal norm solution problem in which one seeks to find the optimal solution of (P)

with a minimal Euclidean normt
) 1 ) .
(Q): min 3 Ix|”:xeS*}.

We will denote the optimal solution of (Q) by xg. A well-known approach to tackling
problem (Q) is via the celebrated Tikhonov regularization. More precisely, for a given

e > 0, consider the convex problem defined by

(Q): min{/ )+ g x|*:xe s},

The above problem is the so-called Tikhonov regularized problem [109]. Let us denote the
unique optimal solution of (Q,) by x*. In [I09], Tikhonov showed in the linear case — that is,
when f is a linear function and S is an intersection of half-spaces — that x* — x¢ ase — 0%.
Therefore, for a small enough € > 0, the vector x* can be considered as an approximation
of the minimal norm solution x¢. A stronger result in the linear case showing that for a
small enough ¢, x° is in fact eractly the same as x¢, was established in [71] and was later

on generalized to the more general convex case in [53].

1We use here the obvious property that the problems of minimizing the norm and of minimizing half of the squared norm
are equivalent in the sense that they have the same unique optimal solution.
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From a practical point of view, the connection just alluded to between the minimal
norm solution and the solutions of the Tikhonov regularized problems, does not yield an
explicit algorithm for solving (Q). It is not clear how to choose an appropriate sequence of
regularization parameters ¢, — 07, and how to solve the emerging subproblems. A different
approach for solving (Q) in the linear case was developed in [65] where it was suggested
to invoke a Newton-type method for solving a reformulation of (Q) as an unconstrained

smooth minimization problem.

The main contribution in this work is the construction and analysis of a new first-order
method for solving a generalization of problem (Q), which we call the minimum norm-
like solution problem (MNP). Problem (MNP) consists of finding the optimal solution of

problem (P) which minimizes a given strongly convex function w. More precisely,
(MNP): min{w(x):xe S*}.
The function w is assumed to satisfy the following conditions.

(i) w is a strongly convex function over R” with parameter o > 0.

(ii) w is a continuously differentiable function.

From the strong convexity of w, problem (MNP) has a unique solution which will be denoted
by x¥ .

For simplicity, problem (P) will be called the core problem, problem (MNP) will be called
the outer problem and correspondingly, w will be called the outer objective function. It is
obvious that problem (Q) is a special case of problem (MNP) with the choice w (x) = 1 NE

The so-called prox center of w is given by
a = argminggn w(X) .
We assume without loss of generality that w (a) = 0. Under this setting we also have

w(x) = % |x — af® forallx € R". (6.1.2)
6.1.1 Stage by Stage Solution

It is important to note that the minimal norm-like solution optimization problem (MNP)
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can also be formally cast as the following convex optimization problem.

min  w (X)
st f(x) < f¥ (6.1.3)
x e S.

Of course, the optimal value of the core problem f* is not known in advance, which sug-
gests a solution method that consists of two stages: first find the optimal value of the
core problem, and then solve problem (6.1.3). This two-stage solution technique has two
main drawbacks. First, the optimal value f* is often not found ezactly but rather up to
some tolerance, which causes the feasible set of the outer problem to be incorrect or even
infeasible. Second, even if it had been possible to compute f* exactly, problem in-
herently does not satisfy Slater’s condition, which means that this two-stage approach will
usually run into numerical problems. We also note that the lack of regularity condition for
Problem (6.1.3)) implies that known optimality conditions such as Karush-Kuhn-Tucker are

not valid; see for example the work [18] where different optimality conditions are derived.

6.2 Mathematical Toolbox

Two basic properties of the Bregman distances (see (|1.2.1))) of strictly convex functions
hR™ — R are:

(i) Dy (x,y) =0 for any x,y € R™.
(ii) Dy (x,y) = 0if and only if x =y.
If, in addition h, is strongly conver with parameter o > 0, then

ag
Dy (x,y) = 5 [x = y[.

In particular, the strongly convex function w defined in Section whose prox center is a
satisfies:

w(x) =D, (x,a) = % |x — aH2 for any x € R"

and
D, (x,y) = % Ix — al? for any x € R". (6.2.1)
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6.2.1 The Gradient Mapping

We define the following two mappings which are essential in our analysis of the proposed

algorithm for solving (MNP).

Definition 6.2.1 (Gradient mapping). Let f : R — R be a continuously differentiable
function. For every M > 0 we define the following two mappings.

(i) The proj-grad mapping is defined by
1
Ty (x) := Ps <X — va (X)> for all x e R".
(ii) The gradient mapping (see also [80]) is defined by
1
Gu(x)=M(x—Tyx)=M [x— Ps (X— MVf(x))] .

Remark 6.2.2 (Unconstrained case). In the unconstrained setting, that is, when S = R",

the orthogonal projection is the identity operator.
(i) The proj-grad mapping T is equal to I — %Vf.
(ii) The gradient mapping Gy is equal to Vf. &
It is well known that Gy, (x) = 0 if and only if x € S*. Another important and known

property of the gradient mapping is the monotonicity of its norm L (¢f. [20, Lemma 2.3.1,
page 236]).

Lemma 6.2.3 (Monotonicity of the gradient mapping). For any x € R", the function
gM) = |Gu )| M>0
is monotonically increasing over (0, 0).

6.2.2 Cutting Planes

The notion of a cutting plane is a fundamental concept in optimization algorithms such as
the ellipsoid and the analytic cutting plane methods. As an illustration, let us first consider
the unconstrained setting in which S = R". Given a point x € R", the idea is to find a
hyperplane which separates x from S*. For example, it is well known that for any x € S,

the following inclusion holds

S*c{zeR":(Vf(x),x—2z)y>=0}.



166 Minimal Norm-Like Solutions of Convex Optimization Problems

The importance of the above result is that it “eliminates” the open half-space
{zeR" :(Vf(x),x—2z)<0}.

The same cut is also used in the ellipsoid method where in the nonsmooth case the gradient
is replaced with a subgradient (see, e.g., [19, [79]). Note that x belongs to the cut, that is,
to the hyperplane given by

H:={zeR":(Vf(x),x—z)=0},

which means that H is a so-called neutral cut. In a deep cut, the point x does not belong
to the corresponding hyperplane. Deep cuts are at the core of the minimal norm-like
gradient method that will be described in the sequel, and in this subsection we describe
how to construct them in several scenarios (specifically, known/unknown Lipschitz constant,
constrained /unconstrained versions). The half-spaces corresponding to the deep cuts are

always of the form

1

QMax = {z eR" : Gy (x),x—2z) > i |G m (x)2} , (6.2.2)

where the values of @ and M depend on the specific scenario. Of course, in the uncon-

strained case, Gy (x) = Vf (x) (see Remark [6.2.2), and (6.2.2)) reads as
1
Quaxi= {2 B (V1 (9. x~ ) > 197 (2

We will now split the analysis into two scenarios. In the first one, the Lipschitz constant

L is known, while in the second, it is not.

Known Lipschitz Constant

In the unconstrained case (S = R™), and when the Lipschitz constant L is known, we can

use the following known inequality (see, e.g., [80, Theorem 2.1.5, page 56]):

Vi) =Vi(y),x-y)= % IVf(x) = Vf () for every x,y € R". (6.2.3)

By plugging y = x* for some x* € S* in (6.2.3) and recalling that V f (x*) = 0, we obtain
that )
(V) x=x = 2|V ()] (6:24)
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for every x € R" and x* € §*. Thus, 5* € Q11 x for any x e R".

When S is not the entire space R", the generalization of (6.2.4)) is a bit intricate and
in fact the result we can prove is the slightly weaker inclusion 5* < @, 4 - The result is
based on the following property of the gradient mapping (G, which was proven in the thesis

[16] and is given here for the sake of completeness.

Lemma 6.2.4 (Property of the gradient mapping). Let f : R™ — R be a continuously
differentiable function whose gradient is Lipschitz with constant L. The gradient mapping

G'1, satisfies the following relation:

(G0~ Culy) x— 3> 17 1Go (9~ Go (¥ (625)

for any x,y € R™.
Proof. From Corollary [[239(i) it follows that

(160~ T, (x= 97 00) = (v = 197 0)) ) = 17060 - Tu )
Since Ty, = I — G, we obtain that

((x-16:00) = (v 162) (x- v @) = (v - 177 0) )

(x~L6,00) - (v~ 26.)

which is equivalent to

>

= ‘

((x=16060) = (¥~ 161 0)) (G160 = T (09) = (Gu3) ~ T/ () ) =0
Thence
(Gr(x)=GL(y),x—y)= % |G (x) =G )| +{Vf (%) = V[ (), x—¥)
1G9~ G (). V() - VS ()
Now it follows from that

LG (x) = G (y) . x—y) = |G (x) =G (¥)|” + |Vf (x) = Vf &)
(GL(x) =Gr(y), VI (x)=V[(y)).
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From the Cauchy-Schwarz inequality we get

L{GL (%) = Gr(y) x —y) = [GL (x) = GL ¥)|* + |V (x) = Vf (5)]”
— G (x) =GV x) =V (6.2.6)

By denoting o = |G (x) — G (y)|| and 8 = |Vf(x) — Vf(y)|, the right-hand side of
(6.2.6) reads as a* + 3% — a3 and satisfies

3 o 2 3
2 2 _ 2 2 a < 9.2
@+ f—af=qa +(2 5) =%

which combined with (6.2.6]) yields the inequality
3
LG (%) = Gr(y),x—y) = ;|G (x) - GL W)

Thus, (6.2.5)) holds. O

By plugging y = x* for some x* € S* in ([6.2.5]), we obtain that indeed
S* - QL,%,X'

We summarize the above discussion in the following lemma which describes the deep cuts

in the case when the Lipschitz constant is known.

Lemma 6.2.5 (Deep cuts - Lipschitz constant is known). Let f : R" — R be a continuously
differentiable function whose gradient is Lipschitz with constant L. For any x € R™ and

x* € S*, we have

. 3
Grx),x-x7) >+ Gr )", (6.2.7)
that s,
S* - QL,%,X'
If, in addition, S = R™ then
1
Vi), x=x>+[Vf e9] (6.2.8)
that 1s,
S* S Qraix

Unknown Lipschitz Constant

When the Lipschitz constant is not known, the following result is most useful.
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Lemma 6.2.6 (Deep cuts - Lipschitz constant is not known). Let f : R* — R be a

continuously differentiable function. Let x € R™ be a vector satisfying the inequality

F (T () < £ () + (T (). Tag (x) =30+ [T ) —xI*. (6:29)
Then, for any x* € S*, the inequality
(G (), x—x = 1 [Gus () (6.2.10)

holds true, that s,
S* - QM,Q,x-

Proof. Let x* € S*. From ([6.2.9)) it follows that
O0<f(Th (%) —f &) < f(x) = f (&) +{VF(x), T (%) —x) + % [T (x) = x|

Since f is convex, it follows from the subdifferential inequality (see (1.1.5))) that f(x) —
f(x*) <{(Vf(x),x—x*), which combined with (6.2.11]) yields

0 < (Vf(x), Tar (x) — X" + % 1T () — x[2. (6.2.12)

In addition, from the definition of T}, (see Definition [6.2.1)i)) and Corollary [1.2.39((ii) we

have the following inequality

<x——Vf Ty (x), Ty (x) — x*>>0.
Summing up the latter inequality multiplied by M with (6.2.12)) yields the inequality

M G = Tog (x). Tog (x) ="+ 5 [T () = x[P 0

which after some simple algebraic manipulation, can be shown to be equivalent to the

desired result (6.2.10)). O

When M > L, the inequality (6.2.9)) is satisfied due to the so-called descent lemma,

which is now recalled as it will also be essential in our analysis (see [20]).

Lemma 6.2.7 (Descent lemma). Let f : R™ — R be a continuously differentiable function

whose gradient is Lipschitz with constant L. Then for any x,y € R",

FE) <)+ () x - Y>+ Ix —yl*. (6.2.13)
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Remark 6.2.8. The inequality (6.2.9) for M = L is well known, see for example [80]. <

6.3 The Minimal Norm Gradient Algorithm

Before describing the algorithm, we require the following notation for the optimal solution

of the problem consisting of the minimization w over a given closed and convex set K.
Q(K) := argmin,; w (x) . (6.3.1)

From the optimality conditions (in this connection, see also Proposition [1.2.35)) in problem

(6.3.1)), it follows that
Xx=Q(K)e{(Vw(x),x—x)>0forall xe K. (6.3.2)

Ifw(x)=3|x— a|?, then Q (K) = Pg (a). We are now ready to describe the algorithm

in the case when the Lipschitz constant L is known.

The Minimal Norm Gradient Method (Known Lipschitz Constant)
Input: L - a Lipschitz constant of V f.

Initialization: x, = a.

General Step (k=1,2,...):

Xp = Q(Qr " Wy),
where

Qk = QL,B,xk,U
We={zeR":(Vw(xx_1),2 —Xp_1y = 0},

and [ is equal to % if S # R™ and to 1if S =R".
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When the Lipschitz constant is unknown, then a backtracking procedure should be

incorporated into the method.

The Minimal Norm Gradient Method (Unknown Lipschitz Constant)
Input: Ly >0 and n > 1.

Initialization: x, = a.

General Step (k=1,2,...):

(i) Find the smallest nonnegative integer number i, such that with L= i, Lk—1

the inequality

(Tz (%)) < f(x) +<{Vf(x),TE (x) —x) + g 17z (x) — x|
is satisfied and set Lj, = L.

(ii) Set

xp = Q(Qrn Wy),

where

Qk‘ = QLk,2,Xk—l7
We={zeR" : {(Vw(xx_1),2 — X1y = 0}.

To unify the analysis, in the constant step-size setting we will artificially define L, = L for
any k and 7 = 1. In this notation the definition of the half-space Q¥ in both the constant

and backtracking step-size rules can be described as

Qk} = QLk7ﬁ,Xk_17 (633)
where (3 is given by

S # R™, known Lipschitz const.
S = R", known Lipschitz const. (6.3.4)

unknown Lipschitz const.

sy
Il
N = wik

Remark 6.3.1. From the definition of the backtracking rule it follows that

Lo<Ly<nL, k=0,1,.... (6.3.5)
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Therefore, it follows from Lemma[0.2.3 that for any x € R™,
|G, (¥)] < |GL, ()] < [|Ghr (x)]- (6.3.6)
<&

The following example shows that in the Euclidean setting, the main step has a simple

and explicit formula.

Example 6.3.2. In the Buclidean setting when w = § I, we have Q (K) = Px and the
computation of the main step
xp = Q(Qr 0 W)

boils down to finding the orthogonal projection onto an intersection of two half-spaces. This

is a simple task, since the orthogonal projection onto the intersection of two half-spaces is
given by an exact formula (see Example|1.2.41).
Note that the algorithm is well defined as long as the set Qp N Wy is nonempty. The

latter property does hold true and we will now show a stronger result stating that in fact
S* < Qp N Wy, for all k.

Lemma 6.3.3 (The intersection Q) N W), is nonempty). Let {Xx},y be the sequence gener-
ated by the minimal norm gradient method with either a constant or a backtracking step-size

rule. Then

for any k € N.

Proof. From Lemmata [6.2.5( and [6.2.6] it follows that S* < @ for every k € N and we

will now prove by induction on k that S* € Wj. Since W; = R", the claim is trivial for

k = 1. Suppose that the claim holds for & = n, that is, we assume that S* < W,,. To prove
that S* € Qi1 N Wyy1, let us take u € S*. Note that S* < @, n W, and thus, since

x, = Q(Q, nW,), it follows from ((6.3.2)) that
Vw (x,),x, —u)y = 0.

This implies that u € W,, ;1 and the claim that S* € Q. n W}, for all k € N is proven. [

6.4 Convergence Analysis

Our first claim is that the minimal norm gradient method generates a sequence {Xy}, .y

which converges to x% = Q(5*).
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Theorem 6.4.1 (Convergence result). Let {X;},.y be the sequence generated by the minimal
norm gradient method with either a constant or a backtracking step-size rule. Then the

following assertions are true.
(i) The sequence {Xp},oy is bounded.

(ii) The following inequality holds for any k € N:

D, (Xg,xg1) + Dy (Xp1,a) < D, (x,a). (6.4.1)

(ill) xp — x*  as k — oo.

Proof. (i) Since x; = Q (Qr N W), it follows that for any u € Qr N Wy, and in particular
for any u € S* we have
w(xx) < w (u), (6.4.2)

which combined with (6.1.2)) establishes the boundedness of {xj} .-

(ii) From the three point identity (see ([1.2.2))) we have
D, (Xg, Xp—1) + Doy (Xg—1,a) — Doy (X1, @) = (—Vw (Xp—1) , Xp — Xp—1) -

From the definition of W) we have x; 1 = Q (Wy). In addition, x; € Wy, and hence

from (/6.3.2)) it follows that

(Vw (xp-1) , X — X1 =0

and therefore (6.4.1)) follows.
(iii) Recall that for any x € R", we have D, (x,a) = w(x). From (6.4.1]) it follows that

the sequence {w (xk)}ey = {Dw (Xk, @)}, oy 18 nondecreasing and bounded, and hence
limy, e w (xg) exists. This, together with (6.4.1]) implies that

lim D, (X, X;—1) = 0,
k—c0

and hence, since Dy, (X, X,—1) = § |xx — Xk,le, it follows that

lim |x; — x,_1] = 0. (6.4.3)
k—o
Since x; € Q) we have
1
(G, (Xe-1) X1 — Xy = — |G, (x5-1) 7,

BLy
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which by the Cauchy-Schwarz inequality, implies that

1
a0, 16 ()l < iy = i)

Now, from (6.3.5)) and (66.3.6) it follows that

1
7 160 ()| < e =] (6.4.4)

*
mn?

To show that {x;},y converges to x it is enough to show that any convergent

subsequence converges to x5 . Let then {xy,} .y be a convergent subsequence whose
limit is w. From (6.4.3]) and along with the continuity of G, it follows that
G, (w) = 0, so that w € S*. Finally, we will prove that w = Q(S*) = x} . Since
X, = Q(Qk, N Wy, ), it follows from that

(Vw (xy,),2 — X,y =0 for all z€ Qr, N Wy,
Since S* € Qg, N Wy, (see Lemma |6.3.3]), we obtain that
(Vw (xx,),2 — Xk, » =0 for all ze S™.
Taking the limit as n — oo, and using the continuity of Vw, we get
(Vw(w),z—w) =0 for all ze S™.

Therefore, it follows from (6.3.2)) that w = Q (5*) = x¥ , and the result is proven.

mn’

The next result shows that in the unconstrained case (S = R"), the function values of
the sequence generated by the minimal norm gradient method, {f (xx)},.y, converges in a
rate of O (1 / \/E) (k being the iteration index) to the optimal value of the core problem. In
the constrained case, the value f (xj) is by no means a measure of the quality of the iterate
Xy as it is not necessarily feasible. Instead, we will show that the rate of convergence of
the function values of the feasible sequence T7, (xx) (which in any case is computed by the
algorithm), is also O (1/ \/E) We also note that since the minimal norm gradient method
is non-monotone, the convergence results are with respect to the minimal function value

obtained until iteration k.

Theorem 6.4.2 (Rate of convergence). Let {Xy},.y be the sequence generated by the min-

imal norm gradient method with either a constant or backtracking step-size rules. Then for



Iterative Methods for Solving Optimization Problems 175

every k = 1, one has

_ OnLja—x

mnl” (6.4.5)

1I<I;1£kf (TL (Xn)) - f < \/E )
where ( is given in (6.3.4]). If X = R™, then in addition
L
min f(x,) — f* < 677 2 — Gl . (6.4.6)

1<n<k vk

Proof. Let n be a nonnegative integer. Since X,,11 € ),,,1, we have by the Cauchy-Schwarz

inequality

[ (Xn)H2 < BLps1{Gryy (Xn) X — Xps1) < BLns1 |Gy (%) || X0 — Xpia | -
Therefore,
HGLn+1 (Xn)H < ﬁLnJrl ”Xn - Xn+1H . (647)
Squaring and summing up over n = 1,2, ..., k, one obtains

k

N
3 [Gren (x2) B?LWZHXM—X”H <BPLE Y e — 3ol (648)
n=1

n=1

Taking into account ((6.2.1)) and (6.4.1]), then from (6.4.8)) we get

k k
Y G L Ga)[* < B2 s — %
n=1 n=1
k
< 262772L2

o ~ Dw (Xn+laxn)
232122 k
< BL Z (Dw (Xn—i-la a) - Dw (Xn7a))

n=1
2 2 2L2 2 2 2L2
= ﬁLDw (Xk+1aa) = &W (Xk+1)
g g
2 2 2L2
<Ly (6.4.9)
g

From the definition of L,,, we obtain

S (To, (%)) =" < f (%) = f" 4V (%), Ty, (%) — Xn>+% T2, (30) =% (6.4.10)

Since the function f is convex it follows from the subdifferential inequality (see (|1.1.5)))
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that f (x,) — f* <<V f (xn),x, —x%,), which combined with (6.4.10)) yields

F (L, (6)) = * < VS (60) T () = Xh) + 22 (T, () =3P (6410)

By the characterization of the projection operator given in Proposition [1.2.38 with x =

- = 7-Vf(x,) and y = x5, we have that

1
<Xn — L—Vf (Xn) - TLn (Xn) ,ann - TLn (Xn)> < O’

which combined with (6.4.11]) gives

Ly,
f(Tr, (x0) = f* < Lo X — T, (X0) , T, (Xn) — Xounx) + TTLn (xn) — an
1
= (G, (%) T, (%) = X0) + 57 |G, ()
= (Gr, (%0) , Tr, (%0) = %n) + (G, (%) %0 = Xp) + o7 |G, (3x0)°
# 1 2
= (G, (%) X = X5 = 57 G, (5]
< {(Gr, (Xn) s Xn — Xppn)
< |1Gr, &) %0 — x50l -
Squaring the above inequality and summing over n = 1,2,...,k, we get
k k
Z (%, (%n)) Z 1G L (x0) | %0 = x5l (6.4.12)

Now, from the three point identity (see (1.2.2))), we obtain that

D, (X, %Xn) + Dy (xp,8) — D, (x5,,2) = —(Vw (x,) , xmn* — x,,) < 0

and hence
DUJ (X;m’Xn) < DUJ (X;n’ a) =w (Xrﬂ:an) ’
so that 5 .
s — xt [P 2 k). (6.4.13)
o

Combining (6.4.9) and (6.4.12)) along with (6.4.13)) we get that

3 (T, ) - £ < 25 36, ) < P (x

n=1 n=1
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from which we obtain that

Eomin (F(Th, (o) — £ < L

2
n=12,..k o2 W (Xmn)”

proving the result (6.4.5). The result (6.4.6) in the case when S = R™ is established by

following the same line of proof along with the observation that due to the convexity of f

f &) = 17 < IV )l 3 = x| = 1GL, ()l %0 = x50 m

6.5 A Numerical Example - A Portfolio Optimization Problem

Consider the Markowitz portfolio optimization problem [73]. Suppose that we are given
N assets numbered 1,2,..., N for which a vector of expected returns p € RY and a
positive semidefinite covariance matrix 3 € RV*" are known. In the Markowitz portfolio
optimization problem we seek to find a minimum variance portfolio subject to the constraint

that the expected return is greater or equal to a certain predefined minimal value rg.

min w!Xw
N
st Daqwi=1,
T
Wi = To,

w = 0.

(6.5.1)

The decision variables vector w describes the allocation of the given resource to the different
assets.

When the covariance matrix is rank deficient (that is, positive semidefinite but not pos-
itive definite), the optimal solution is not unique, and a natural issue in this scenario is to
find one portfolio among all the optimal portfolios that is “best” with respect to an objec-
tive function different than the portfolio variance. This is, of course, a minimal norm-like
solution optimization problem. We note that the situation in which the covariance matrix
is rank deficient is quite common since the covariance matrix is usually estimated from the
past trading price data and when the number of sampled periods is smaller than the number
of assets, the covariance matrix is surely rank deficient. As a specific example, consider the
portfolio optimization problem given by , where the expected returns vector p and
covariance matrix ¥ are both estimated from real data on 8 types of assets (N = 8): US
3 month treasury bills, US government long bonds, SP 500, Wilshire 500, NASDAQ com-
posite, corporate bond index, EAFE and Gold. The yearly returns are from 1973 to 1994.
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The data can be found at http://www.princeton.edu/~rvdb/ampl/nlmodels/markowitz/ and
we have used the data between the years 1974 and 1977 in order to estimate p and ¥ which

are given below
p = (1.0630,1.0633,1.0670, 1.0853, 1.0882, 1.0778, 1.0820, 1.1605)"

0.0002 —0.0005 —0.0028 —0.0032 —0.0039 —0.0007 —0.0024 0.0048
—0.0005 0.0061  0.0132  0.0136  0.0126  0.0049 —0.0003 —0.0154
—0.0028 0.0132  0.0837  0.0866  0.0810  0.0196  0.0544 —0.1159
—0.0032 0.0136  0.0866  0.0904 0.0868  0.0203  0.0587 —0.1227
—0.0039 0.0126  0.0810  0.0868  0.0904 0.0192  0.0620 —0.1232
—0.0007 0.0049  0.0196  0.0203  0.0192  0.0054  0.0090 —0.0261
—0.0024 —0.0003 0.0544  0.0587  0.0620  0.0090  0.0619 —0.0900
0.0048 —0.0154 -0.1159 -0.1227 —-0.1232 —0.0261 —0.0900 0.1725

The sampled covariance matrix was computed via the following known formula for an

unbiased estimator of the covariance matrix
1 1
»=— R(I;— =117} R".
T-1 ( T )

Here T' = 4 (number of periods) and R is the 8 x 4 matrix containing the assets’ returns
for each of the 4 years. The rank of the matrix X is at most 4, thus it is rank deficient. We
have chosen the minimal return as ro = 1.05. In this case the portfolio problem has
multiple optimal solution, and we therefore consider problem as the core problem

and introduce a second objective function for the outer problem. Here we choose

1

2
— S Ix—al’.

w (x)
Suppose that we wish to invest as much as possible in gold. Then we choose
a=(0,0,0,0,0,0,0,1)"
and in this case the minimal norm gradient method gives the solution
(0.0000, 0.0000, 0.0995, 0.1421, 0.2323, 0.0000, 0.1261, 0.3999)T .

If we wish a portfolio which is as dispersed as possible, then we choose

a=(1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8)"
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and in this case the algorithm produces the following optimal solution:

(0.1531,0.1214,0.0457,0.0545,0.1004, 0.1227, 0.1558, 0.2466)T ,

which is very much different from the first optimal solution. Note that in the second optimal
solution the investment in gold is much smaller and that the allocation of the resources is
indeed much more scattered.



Index

Admissible function, strictly convex,
Asymptotic fixed point, subdifferentiable,

_ super-coercive, [39]
Banach’s fixed point theorem,

Biconjugate function,
Block operator, [76]
Boundary,

Bregman distance,
Bregman projection, Gauge function,

Gradient,
Gradient mapping, [165

uniformly convex,
uniformly Fréchet differentiable,
upper semicontinuous, [14]

weakly lower semicontinuous,

Closure,

Deep cut, [1606]

S o Indi f ion, [1
Directional derivative, ndicator function, {109

Duality mapping, Interior, [12]

Fenchel conjugate, Kadec-Klee property,

Fixed point set,
Four point identity,

Lambert W function, [113
Legendre (function),

Function
coercive, [39 Mapping
cofinite, Bregman inverse strongly monotone,
convex, [13] d-accretive,
domain, demi-closed,
epigraph, domain,
Fréchet differentiable, duality mapping of p-norm,
Gateaux differentiable, graph,
lower semicontinuous, inverse, 21}, [61]
p-norm, 25 maximal monotone,
positively homogeneous, maximal monotone extension,
proper, [13] monotone, [60]
sequentially consistent, range, [59]
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set-valued, strictly Bregman strongly nonexpansive,
single-valued, ¥l

strictly monotone, strictly quasi-Bregman firmly nonexpan-
Sum of two mappings, sive, [50]

surjective, [62] strictly quasi-Bregman nonexpansive,
T-monotone, [63] strongly nonexpansive,

weakly sequentially continuous,

Proj-grad mapping, [165
Metric projection,

Modulus Resolvent
locally uniform convexity of spaces, anti-resolvent,
total convexity, classical,
uniform convexity (function), f-resolvent, [9
uniform convexity (space), generalized resolvent,

resolvent of bifunction,

Neutral cut,
Normal cone,

Normalized duality mapping,

Set-valued indicator,
Space
locally uniformly convex,
Operator smooth,
uniformaly convex,
uniformaly smooth,
with a Gateaux differentiable norm,
with a uniformly Gateaux differentiable
norm, [2]]
Sub-level set,
Subdifferential mapping,
Subgradient,

asymptotically regular,
Bregman firmly nonexpansive,
Bregman strongly nonexpansive,
firmly nonexpansive, 8], [55]
Inverse strongly monotone,
non-spreading,

nonexpansive, [ [§], [54]

properly Bregman strongly nonexpansive,

¥l Three point identity,
properly quasi-Bregman firmly nonexpan- Total convexity at a point,
sive, [50] Totally convex,

properly quasi-Bregman nonexpansive, [56| Totally convex on bounded subsets,
quasi-Bregman firmly nonexpansive,

quasi-Bregman nonexpansive, @ Unit sphere,

quasi-firmly nonexpansive, Young-Fenchel inequality,

quasi-nonexpansive, [54] [5§|
strict contraction, [ [54]
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