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making observations that improved much the novelty of my thesis.

Many many thanks to my friends Dr. Aviv Gibali and Dr. Victoria
Mart́ın-Márquez who have always been supportive, encouraging and amaz-
ing partners for research and fun.

Most of all, I wish to thank my parents Eyal and Yael, my wife Orli and
my son Jonathan for sharing these unforgettable years with me.



Table of Contents

List of Tables iii

List of Figures iv

List of Algorithms v

Abstract 1

List of Symbols 2

Introduction 4

1 Preliminaries 12
1.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Lower Semicontinuity, Continuity and Lipschitz Continuity . . . . . . 13
1.1.2 Subdifferentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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Abstract

This dissertation concerns iterative methods for solving diverse optimiza-

tion problems in infinite-dimensional and Euclidean spaces. It contains six

chapters. My contributions to the fields of Optimization Theory, Nonlinear

Analysis and Numerical Methods are interpreted on the broad spectrum

between practical methods for solving real-world problems to iterative al-

gorithms for approximating solutions of optimization problems in infinite-

dimensional spaces.

The first five chapters of this dissertation focus on my research in the

infinite-dimensional case. The iterative methods proposed in the third chap-

ter are based on several results in Fixed Point Theory and Convex Analysis

which were obtained in the first two chapters. We first studied new prop-

erties of Bregman distances with respect to two classes of convex functions:

Legendre functions and totally convex functions. These developments lead

to many results regarding fixed points of nonexpansive operators which are

defined with respect to Bregman distances instead of the norm. We deal

with a wide variety of optimization problems such as fixed point problems,

equilibrium problems, minimization problems, variational inequalities and

the convex feasibility problem. The fourth chapter is devoted to a long and

detailed study of the problem of finding zeroes of monotone mappings. In

this area we wish to develop iterative methods which generate approxima-

tion sequences which converge strongly to a zero.

My research in finite-dimensional spaces appears in the last but not the

least chapter and deals with developing an algorithm for solving optimiza-

tion problems which arise from real-world applications. We developed a new

numerical method for finding minimum norm solutions of convex optimiza-

tion problems. This algorithm is the first attempt to solve such problems

directly and not by solving a “sequence” of subproblems.

1
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Introduction

Many problems arising in different areas of Mathematics, such as Convex

Analysis, Variational Analysis, Optimization, Monotone Mapping Theory

and Differential Equations, can be modeled by the problem

x � Tx,

where T is a nonlinear operator defined on a metric space. Solutions to this

equation are called fixed points of T . If T is a strict contraction defined on a

complete metric space X, Banach’s contraction principle establishes that T

has a unique fixed point and for any x P X, the sequence of Picard iterates

tT nxunPN strongly converges to the unique fixed point of T . However, if the

operators T is a nonexpansive operator, that is,

d pTx, Tyq ¤ d px, yq , @x, y P X,
then we must assume additional conditions on T and/or on the underlying

space to ensure the existence of fixed points. Since the sixties, the study

of the class of nonexpansive operators is one of the major and most active

research areas of nonlinear analysis. This is due to the connection with the

geometry of Banach spaces along with the relevance of these operators to the

theory of monotone and accretive mappings. The concepts of monotonicity

and accretivity have turned out to be very powerful in diverse fields such as

Operator Theory, Numerical Analysis, Differentiability of Convex Functions

and Partial Differential Equations; see, for instance, [47, 56, 77, 113]. In

particular, one of the reasons is that the class of monotone mappings is broad

enough to cover subdifferentials of proper, convex and lower semicontinuous

functions, which are mappings of increasing importance in Optimization

Theory.

The relationship in Hilbert spaces between the Theory of Monotone Map-

4
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pings and the Theory of Nonexpansive Operators is basically determined by

two facts: (1) if T is a nonexpansive operator, then the complementary

operator I � T is monotone and (2) the classical resolvent, pI � Aq�1, of a

monotone mapping A is nonexpansive. Moreover, in both cases the fixed

point set of the nonexpansive operator coincides with the zero set of the

monotone mapping. See [11] for a detailed study of these two concepts.

In this dissertation you will find results concerning these connections in

general reflexive Banach spaces. The first chapter is a collection of several

notions, definitions and basic results needed in the whole work. This chap-

ter mainly concentrates on functions, operators and mappings. The rest

of the work includes five more chapters. The second chapter is devoted to

results on Bregman distances and on “nonexpansive” operators with respect

to Bregman distances. The next chapter uses the tools and the new devel-

opments to propose and study several iterative methods for approximating

fixed points of such operators which are based on the Picard iteration. The

fourth chapter deals with the very related area of the Theory of Mono-

tone Mappings. We propose and study iterative methods for approximating

zeroes of monotone mappings. Taking into account the iterative methods

proposed in the third and the fourth chapters, we modified them for solving

diverse optimization problems, such as variational inequalities, equilibrium

problems and convex feasibility problems. All these four chapters are formu-

lated in the general context of infinite-dimensional reflexive Banach spaces.

The last, but not the least, chapter is the most practical aspect of this work.

We took one of the algorithms proposed in the previous chapters and mod-

ified it to solve the problem of finding minimal norm solutions of convex

optimization problems.

Let me briefly describe these chapters.

Chapter 2 - Fixed Point Properties of Bregman Nonexpansive

Operators

In 2003, Bauschke, Borwein and Combettes [8] first introduced the class of

Bregman firmly nonexpansive (BFNE) operators which is a generalization of

the classical firmly nonexpansive operators (FNE). A few years before Reich

studied the class of Bregman strongly nonexpansive (BSNE) operators in



6 Introduction

the case of common fixed points. Many other researchers studied several

other classes of operators of Bregman nonexpansive type. Very recently,

in several projects we studied in depth these operators from the aspects of

Fixed Point Theory. The results obtained in this chapter bring out new tools

and techniques which are used by us and many other researchers, to develop

iterative methods for approximating fixed points of operators of Bregman

nonexpansive type.

In [91] we studied the existence and approximation of fixed points of Breg-

man firmly nonexpansive operators in reflexive Banach spaces. In this paper

we first obtained necessary and sufficient conditions for BFNE operators to

have a (common) fixed point. We also found under which conditions the

asymptotic fixed point set of BFNE operators coincides with the fixed point

set (demi-closedness principle). The concept of asymptotic fixed points was

first introduced in [88] and plays a key role in analyzing iterative methods.

In practice, it is much easier to prove convergence to an asymptotic fixed

point than to a fixed point and therefore we were motivated to determine

when and under what conditions these two sets coincide.

Motivated by this work and during my visit to CARMA, we collaborated

with Jonathan M. Borwein and found a characterization of BFNE opera-

tors in general reflexive Banach spaces. This characterization allows one to

construct many Bregman firmly nonexpansive operators explicitly. We also

provided several examples of such operators with respect to two important

Bregman functions: the Boltzmann-Shannon entropy and the Fermi-Dirac

entropy in Euclidean spaces. We have studied these entropies in detail be-

cause of their importance in applications. These two entropies form a large

part of the basis for classical Information Theory.

Then after a visit to the University of Seville we collaborated with Vic-

toria Mart́ın-Márquez and continued our research on certain Bregman non-

expansive classes of operators. We mainly put forward a clear picture of

the existence and approximation of their (asymptotic) fixed points. In par-

ticular, the asymptotic behavior of Picard and Mann type iterations are

discussed for quasi-Bregman nonexpansive (QBNE) operators. We also pre-

sented parallel algorithms for approximating common fixed points of a finite

family of Bregman strongly nonexpansive operators by means of a block op-
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erator which preserves the Bregman strong nonexpansivity.

Chapter 3 - Iterative Methods for Approximating Fixed Points

Fixed point iterative methods started with the celebrated Picard method

and were further developed for computing and constructing fixed points of

various types of nonexpansive operators and in various types of topologies

and spaces (for instance, weak/strong, Hilbert/Banach and metric/normed).

We have been mostly interested in such methods in general reflexive Banach

spaces for operators of Bregman nonexpansive type. In addition, several of

our algorithms are new even in the framework of Hilbert spaces and of Eu-

clidean spaces. Our main motivation was, and still is, to develop iterative

methods which generate a strongly convergent sequence. The importance

of strong convergence over weak convergence plays a key role in applica-

tions and as a result, many researchers are motivated to develop strongly

convergent iterative methods, even under stronger conditions.

In this chapter we propose several variants of the classical Picard method

for operators of Bregman nonexpansive type. In 2010 we studied the con-

vergence of two iterative algorithms for finding fixed points of Bregman

strongly nonexpansive operators in reflexive Banach spaces. Both algo-

rithms take into account possible computational errors and we established

two strong convergence results. In these methods we calculate the value of

the operator at the current point and, in contrast with the Picard iterative

method, the next iteration is the Bregman projection onto the intersection

of two half-spaces which contain the solution set. These two algorithms are

more complicated than the Picard method because of the additional projec-

tion step, but on the other hand, they generate a sequence which converges

strongly to a certain fixed point (the operator may have many fixed points).

Another advantage of these algorithms is the nature of the limit point, which

is not only a fixed point, but the one which is closest to the initial starting

point of the algorithm with respect to the Bregman distance.

These algorithms are proposed for finding common fixed points of finitely

many operators. In this case one seeks to find the Bregman projection onto

the intersection of N � 1 half-spaces (N is the number of operators). The

motivation for studying such common fixed-point problems with N ¡ 1
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stems from the simple observation that this is a generalization of the well-

known Convex Feasibility Problem (CFP).

A few months later we proposed in [93] a projection method for solving the

common fixed point problem of N Bregman firmly nonexpansive operators.

In this paper there is an algorithm which is based on the shrinking projection

method. The advantage of this method is that the number of subsets onto

which we project in every step is N (not N�1 as in the previous algorithms).

But these subsets are not necessarily half-spaces as in the previous case.

Chapter 4 - Iterative Methods for Approximating Zeroes

In this chapter we are concerned with the problem of finding zeroes of map-

pings A : X Ñ 2X
�

, that is, finding x P domA such that

0
� P Ax. (0.0.1)

Many problems have reformulations which require us to find zeroes, for

instance, differential equations, evolution equations, complementarity prob-

lems, mini-max problems, variational inequalities and optimization prob-

lems. It is well known that minimizing a convex function f can be reduced

to finding zeroes of the corresponding subdifferential mapping A � Bf .

One of the most important techniques for solving the inclusion (0.0.1)

goes back to the work of Browder [29] in the sixties. One of the basic ideas

in the case of a Hilbert space H is reducing (0.0.1) to a fixed point problem

for the operator RA : HÑ 2H defined by

RA � pI � Aq�1 ,

which we call in what follows the classical resolvent of A. When H is a

Hilbert space and A satisfies some monotonicity conditions, the classical

resolvent of A is with full domain and nonexpansive, that is,

}RAx�RAy} ¤ }x� y} @x, y P H,
and even firmly nonexpansive, that is,

}RAx�RAy}2 ¤ xRAx�RAy, x� yy @x, y P H.
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These properties of the resolvent ensure that its Picard iterates xn�1 � RAxn
converge weakly, and sometimes even strongly, to a fixed point of RA, which

is necessarily a zero of A. Rockafellar introduced this iteration method and

called it the Proximal Point Algorithm (see [100, 101]).

Methods for finding zeroes of monotone mappings in Hilbert space are

based on the good properties of the resolvent RA such as nonexpansivity,

but when we try to extend these methods to Banach spaces we encounter

several difficulties (see, for example, [41]).

One way to overcome these difficulties is to use, instead of the classi-

cal resolvent, a new type of resolvent: the f -resolvent first introduced by

Teboulle [108] in 1992 for the subdifferential mapping case and one year

later by Eckstein [51] for a general monotone mapping (see also [46, 88, 8]).

If f : X Ñ p�8,�8s is a Legendre function, then the operator ResfA : X Ñ
2X given by

ResfA � p∇f � Aq�1 �∇f (0.0.2)

is well defined when A is maximal monotone and int dom f
�

domA � H.

Moreover, similarly to the classical resolvent, a fixed point of ResfA is a

solution of (0.0.1). This leads to the question whether, and under what

conditions on A and f , the iterates of ResfA approximate a fixed point of

ResfA.

In order to modify the proximal point algorithm for the new resolvent and

prove the convergence of the iterates of ResfA, we need the nonexpansivity

properties of this resolvent (the theory of which we develop in Chapter 2)

as in the case of the classical resolvent.

We propose several modifications of the classical proximal point algo-

rithm. We first modify this algorithm to obtain algorithms which gener-

ate sequences which converge strongly to zeroes. In this dissertation we

also solve the problems of finding common zeroes of finitely many maximal

monotone mappings. In addition, we allow in these algorithms several kinds

of computational errors.

In a recent single-authored paper [103], which has already appeared in

the prestigious SIAM Journal on Optimization, we focused on the common

zeroes problem. The algorithms proposed in this paper are based on the

concept of finite products of resolvents. This concept has led me to an algo-
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rithm which solves several problems, but in the main step of the algorithm

one should project onto the intersection of just two half-spaces. Therefore

the number of operators does not influence the number of the half-spaces

that should be constructed at each step.

Chapter 5 - Applications - Equilibrium, Variational and Convex

Feasibility Problems

This chapter contains three main applications of the iterative methods pro-

posed in the previous chapters. We start by studying equilibrium problems

in the context of reflexive Banach spaces. The second application is devoted

to iterative methods for solving variational inequalities. Connections be-

tween these two problems to fixed point problems are given. At the end we

apply our algorithms to solving the well-known Convex Feasibility Problem

in the framework of reflexive Banach spaces.

Chapter 6 - Minimal Norm Solutions of Convex Optimization

Problems

We were interested in the following problem. Suppose one has two objec-

tive functions f and ω. The problem of minimizing the function f over

a constrains set S may have multiple solutions. Among these solutions of

the “core” problem we wish to find a solution which minimizes the “outer”

objective function ω.

A particular case of this problem was studied from the seventies by many

leading researchers. This particular case is when the “other” function is

taken as the norm, that is, ω � }�}2. In this case we wish to find a minimal

norm solution of the “core” problem. Since we consider a more general

function ω than the usual norm, we call these solutions minimal norm-like

solutions of optimization problems.

A well-known approach to finding the minimal norm solutions of convex

optimization problem is via the celebrated Tikhonov regularization. This

approach involves solving the original problem by solving many emerging

subproblems. These subproblems are simpler than the original problem,

but still need a different approach in order to be solved. In addition, this
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approach suffers a few drawbacks which makes it, from a practical point of

view, problematic for implementation.

Recently, I jointly presented with Amir Beck [17] a direct first order

method for finding minimal norm-like solutions of convex optimization prob-

lems. We proposed the minimal norm gradient method which is aimed at

solving the problem directly and not “stage by stage” or via solving a se-

quence of related problems.

At each iteration of the minimal norm gradient method, the required com-

putations are (i) a gradient evaluation of the objective function f , (ii) an

orthogonal projection onto the feasible set of the “core” problem and (iii) a

solution of a problem consisting of minimizing the objective function ω sub-

ject to the intersection of two half-spaces. The convergence of the sequence

generated by the method is established along with an O
�
1{?k� convergence

of the sequence of function values (k being the iteration index). We support

our analysis with a numerical example of a portfolio optimization problem.



Chapter 1

Preliminaries

This chapter contains three sections that deal with several basic notions concerning func-
tions, operators and mappings which will be needed in our later discussion (see [97]). Let
X be a reflexive infinite-dimensional Banach space. The space X is equipped with the
norm }�} and X

�
represents the (topological) dual of X whose norm is denoted by }�}

�
. We

denote the value of the functional ξ P X�
at x P X by xξ, xy.

From now on we will use the following notations for functions, bifunctions, operators
and single/set-valued mappings.

• A function f which maps X into p�8,�8s will be denoted by f : X Ñ p�8,�8s.
• A bifunction g which maps X �X into R will be denoted by g : X Ñ p�8,�8s.
• An operator T which maps X into X will be denoted by T : X Ñ X.

• A single-valued mapping A which maps domA � X into X
�

will be denoted by
A : X Ñ X

�
.

• A set-valued mapping A which maps X into 2X
�

will be denoted by A : X Ñ 2X
�

.

We will also use the following notations.

• The set of all nonnegative integers is denoted by N.

• The set of all real numbers is denoted by R.

• The set of all nonnegative real numbers is denoted by R�.

• The set of all positive real numbers is denoted by R��.

• The closure of a set K will be denoted by clK.

• The interior of a set K will be denoted by intK.

• The boundary of a set K will be denoted by bdrK.

• The unit sphere of X is denoted by SX � tx P X : }x} � 1u.

12
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• Given a sequence txnunPN and x P X, the strong convergence (weak convergence)
of txnunPN to x is denoted by xn Ñ x (xn á x) as n Ñ 8 or limnÑ8 xn � x
(w � limnÑ8 xn � x).

• We will denote by H a Hilbert space.

1.1 Functions

This section is devoted to the notions related to functions that are needed in our results.
We present four subsections with basic notions and results about continuity of functions,
subdifferentiability and differentiability properties and conjugate functions. At the end of
this section we present another subsection on the geometry of Banach spaces.

1.1.1 Lower Semicontinuity, Continuity and Lipschitz Continuity

We will start with the basic notions needed for a discussion of functions.

Definition 1.1.1 (Basic notions for functions). Let f : X Ñ p�8,�8s be a function.

piq The domain of f is the following set:

dom f :� tx P X : f pxq   �8u .

piiq The epigraph of f is the following set:

epi f :� tpx, tq P X � R : f pxq ¤ tu .

piiiq The function f is called proper if dom f � H.

Definition 1.1.2 (Convexity). The function f : X Ñ p�8,�8s is called convex if it

satisfies

f pλx� p1� λq yq ¤ λf pxq � p1� λq f pyq (1.1.1)

for any two points x, y P dom f and for any real number λ P r0, 1s.
Remark 1.1.3 (Convexity properties). piq If the inequality in (1.1.1) is strict, then the

function f is called strictly convex.

piiq It easy to check that f is convex if and only if epi f is a convex set in X � R.

piiiq If f is a convex function, then dom f is a convex set. 3

Definition 1.1.4 (Lower and upper semicontinuity). Let f : X Ñ p�8,�8s be a function.
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piq The function f is called lower semicontinuous if, for each real number r, the set

tx P X : f pxq ¤ ru is closed.

piiq The function f is called weakly lower semicontinuous if, for any real number r, the set

tx P X : f pxq ¤ ru is weakly closed in X.

piiiq The function f : X Ñ p�8,�8s is called upper semicontinuous at a point x P dom f

if, for each open set V in p�8,�8s containing f pxq, there is a neighborhood U of x

such that f pUq � V .

Remark 1.1.5 (Sufficient condition for lower semicontinuity). If f : X Ñ p�8,�8s is

convex and continuous on dom f which is a closed set, then f is lower semicontinuous. 3

The following two propositions show connections among various continuity properties of
convex functions (see, for instance, [35, Propostion 1.1.5, page 6] and [82, Proposition 2.3,
page 22], respectively).

Proposition 1.1.6 (Continuity properties of convex functions). Let f : X Ñ p�8,�8s
be a convex function with int dom f � H. The following statements are equivalent.

piq The function f is locally bounded from above on int dom f .

piiq The function f is locally bounded on int dom f .

piiiq The function f is locally Lipschitzian on int dom f .

pivq The function f is continuous on int dom f .

Moreover, if f is lower semicontinuous, then all these statements hold.

Corollary 1.1.7 (Continuity property). Every proper, convex and lower semicontinuous

function f : X Ñ p�8,�8s is continuous on int dom f .

Proposition 1.1.8 (Lower semicontinuity properties). Let f : X Ñ p�8,�8s be a convex

function. The following statements are equivalent.

piq The function f is lower semicontinuous on X.

piiq For each x̄ P X and for each net txβuβPI � X converging to x̄ P X, we have

f px̄q ¤ lim inf
βPI

f pxβq .
piiiq The set epi f is closed in X � R.

pivq The function f is weakly lower semicontinuous on X.
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1.1.2 Subdifferentiability

Definition 1.1.9 (Directional derivative). Let f : X Ñ p�8,�8s be a function. Given

x P int dom f and y P X, define ϕf py, x; �q : Rz t0u Ñ p�8,�8s by

ϕf py, x; tq :� 1

t
pf px� tyq � f pxqq . (1.1.2)

The directional derivative of f at x in the direction y is given by

f � px, yq :� lim
t×0

ϕf py, x; tq . (1.1.3)

The following result presents several properties of the directional derivative of convex
functions (see, for example, [35, Propostion 1.1.2, page 2]).

Proposition 1.1.10 (Properties of directional derivatives). Let f : X Ñ p�8,�8s be a

proper and convex function. If x P int dom f , then the following statements are true.

piq The function ϕf py, x; �q is increasing on each of the intervals p0,�8q and p�8, 0q for

any y P X.

piiq If f is also strictly convex, then ϕf py, x; �q is strictly increasing on each of the intervals

p0,�8q and p�8, 0q for any y P X.

piiiq The directional derivative f � px, yq exists for any y P X, and we have

f � px, yq ¤ f px� yq � f pxq . (1.1.4)

If, in addition, f is strictly convex, then the inequality in (1.1.4) is strict.

pivq We have

�f � px,�yq ¤ f � px, yq @y P X.

pvq The limit f � px, yq is finite for any y P X if and only if x P int dom f . In this case,

the function y Ñ f � px, yq is sublinear.

pviq If, in addition, f is lower semicontinuous, then the function f � px, �q is Lipschitzian

on X.

Here is a consequence of Proposition 1.1.10 which will be used below (cf. [35, Propostion
1.1.4, page 4]).

Proposition 1.1.11 (Characterization of strict convexity). Let f : X Ñ p�8,�8s be a

convex function such that int dom f � H. The following statements are equivalent.

piq The function f is strictly convex on int dom f .
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piiq For any x, y P int dom f such that x � y, we have

f � px, y � xq � f � py, x� yq   0.

Definition 1.1.12 (Subgradient and subdifferential). Let f : X Ñ p�8,�8s be a func-

tion.

piq A vector ξ P X�
is called a subgradient of f at a point x P dom f if

f pyq � f pxq ¥ xξ, y � xy @y P dom f. (1.1.5)

piiq If there exists a subgradient ξ of f at x, we say that f is subdifferentiable at x.

piiiq The set of all subgradients of f at a point x is called the subdifferential of f at x, and

is denoted by Bf pxq.
The next result shows a strong connection between the notions of subdifferentiability

and convexity.

Proposition 1.1.13 (Sufficient condition for convexity). Let f : X Ñ p�8,�8s be a

function and let K be a convex subset of X. If f is subdifferentiable at each point of K,

then f is convex on K.

The following result brings out several properties of the subdifferential mapping (cf. [35,
Propostion 1.1.7, page 8]).

Proposition 1.1.14 (Properties of the subdifferential mapping). Let f : X Ñ p�8,�8s
be a convex function such that int dom f � H. The following statements are true.

piq For any x P int dom f , the set Bf pxq is a convex and weak
�

closed subset of X
�
.

piiq If, in addition, f is continuous on int dom f , then, for each x P int dom f , the set

Bf pxq is nonempty and weak
�

compact. In this case, for each y P X, we have

f � px, yq � max txξ, yy : ξ P Bf pxqu .

piiiq If x P X, then

Bf pxq �
!
ξ P X�

: �f � px,�yq ¤ xξ, yy ¤ f � px, yq @y P X
)
.

pivq If, in addition, f is continuous on int dom f , then the set-valued mapping xÑ Bf pxq
is norm-to-weak

�
upper semicontinuous on int dom f .
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Proposition 1.1.14(iv) shows that the set-valued subdifferential mapping Bf associated
to a convex function f : X Ñ p�8,�8s is norm-to-weak

�
upper semicontinuous. A

question which occurs in optimization is whether the set-valued mapping Bf is bounded
on bounded subsets. The answer to this question is given by the following technical result
(cf. [35, Propostion 1.1.11, page 16]).

Proposition 1.1.15 (Characterization of boundedness on bounded subsets). If f : X Ñ R
is a continuous and convex function, then the set-valued mapping Bf : X Ñ 2X

�
is bounded

on bounded subsets of dom Bf if and only if the function f itself is bounded on bounded

subsets X.

1.1.3 Gâteaux and Fréchet Differentiability

Definition 1.1.16 (Gâteaux differentiability). Let f : X Ñ p�8,�8s be a proper and

convex function. The function f is called Gâteaux differentiable at x P int dom f if the limit

f 1 pxq pyq :� lim
tÑ0

ϕf py, x; tq � lim
tÑ0

1

t
pf px� tyq � f pxqq (1.1.6)

exists.

Remark 1.1.17 (Characterization of Gâteaux differentiable functions). Since in our case

f : X Ñ p�8,�8s is always assumed to be proper and convex, it follows from Proposition

1.1.10(v) that the function y Ñ f � px, yq is sublinear. Hence, in our setting, f is Gâteaux

differentiable at x P int dom f if and only if �f � px,�yq � f � px, yq for any y P X. If, in

addition, f is lower semicontinuous, then f 1 pxq p�q � f � px, �q is continuous and belongs to

X
�

(see Proposition 1.1.10(vi)). 3

Definition 1.1.18 (Gradient). Let f : X Ñ p�8,�8s be a function. The gradient of f ,

∇f , is the linear function xÑ f 1 pxq p�q when it exists (see [83, Definition 1.3, page 3]).

The next result establishes characteristic continuity properties of Gâteaux derivatives of
convex and lower semicontinuous functions (cf. [35, Propostion 1.1.10(i), page 13]).

Proposition 1.1.19 (The subdifferential is a gradient). Let f : X Ñ p�8,�8s be a

convex and lower semicontinuous function with int dom f � H. The function f is Gâteaux

differentiable at a point x P int dom f if and only if Bf pxq consists of a single element. In

this case, Bf pxq � t∇f pxqu.
Definition 1.1.20 (Fréchet differentiability). Let f : X Ñ p�8,�8s be a function. We

say that f is:

piq Fréchet differentiable if it is Gâteaux differentiable and the limit (1.1.6) is attained

uniformly for every y P SX (see [83]).
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piiq Uniformly Fréchet differentiable on bounded subsets of X if for any bounded subset E

of X the limit (1.1.6) is attained uniformly for any x P E and every y P SX .

The following result brings out a connection between differentiability properties of f
and continuity properties of Bf (cf. [83, Proposition 2.8, page 19]).

Proposition 1.1.21 (Continuity of the subdifferential mapping). Let f : X Ñ p�8,�8s
be a convex and continuous function with int dom f � H. Then f is Gâteaux (respec-

tively Fréchet) differentiable at x P int dom f if and only if there is a selection ϕ for the

subdifferential mapping Bf which is norm-to-weak
�

(norm-to-norm) continuous at x.

In this connection we will also have the following result (cf. [89, Proposition 2.1, page
474] and [3, Theorem 1.8, page 13]).

Proposition 1.1.22 (Properties of uniformly Fréchet differentiable functions). Let f :

X Ñ R be a convex function which is both bounded and uniformly Fréchet differentiable on

bounded subsets of X. The following statements hold.

piq The function f is uniformly continuous on bounded subsets of X.

piiq The gradient ∇f is uniformly continuous on bounded subsets of X from the strong

topology of X to the strong topology of X
�
.

Proof. piq See [3, Theorem 1.8, page 13].

piiq If this result were not true, there would be two bounded sequences txnunPN and tynunPN,

and a positive number ε such that }xn � yn} Ñ 0 as nÑ 8 and

x∇f pxnq �∇f pynq , wny ¥ 2ε,

where twnunPN is a sequence in SX , that is, }wn} � 1 for each n P N. Since f is

uniformly Fréchet differentiable (see Definition 1.1.20(ii)), there is a positive number

δ such that

f pyn � twnq � f pynq � t x∇f pynq , wny ¤ εt

for all 0   t   δ and each n P N. From the subdifferentiability inequality (see (1.1.5))

we have

x∇f pxnq , pyn � twnq � xny ¤ f pyn � twnq � f pxnq @n P N.

In other words,

t x∇f pxnq , wny ¤ f pyn � twnq � f pynq � x∇f pxnq , xn � yny � f pynq � f pxnq .
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Hence

2εt ¤ t x∇f pxnq �∇f pynq , wny ¤ rf pyn � twnq � f pynq � t x∇f pynq , wnys
� x∇f pxnq , xn � yny � f pynq � f pxnq
¤ εt� x∇f pxnq , xn � yny � f pynq � f pxnq .

Since ∇f is bounded on bounded subsets of X (see Proposition 1.1.15), it follows that

x∇f pxnq , xn � yny converges to zero as nÑ 8, while rf pynq � f pxnqs Ñ 0 as nÑ 8
since f is uniformly continuous on bounded subsets which follows from assertion (i).

But this would yield that 2εt ¤ εt, a contradiction.

Definition 1.1.23 (Positively homogeneous). Let f : X Ñ p�8,�8s be a function. We

say that f is positively homogeneous of degree α P R if f ptxq � tαf pxq for all x P X and

any t ¡ 0.

The following result, which seems to be well-known, appears here for the sake of com-
pleteness (cf. [91, Proposition 15.2, page 302]).

Proposition 1.1.24 (Property of positively homogeneous functions). If f : X Ñ R is

a positively homogeneous function of degree α P R, then ∇f is a positively homogeneous

mapping of degree α � 1.

Proof. Let y P X. From the definition of the gradient (see Definition 1.1.18) we have

∇f ptxq pyq � lim
hÑ0

1

h
pf ptx� hyq � f ptxqq � lim

hÑ0

1

th
pf ptx� thyq � f ptxqq

� tα

t
lim
hÑ0

1

h
pf px� hyq � f pxqq � tα�1∇f pxq pyq

for any x P X and all t ¡ 0.

1.1.4 The Fenchel Conjugate

Definition 1.1.25 ((Fenchel) conjugate function). Let f : X Ñ p�8,�8s be a function.

The function f
�

: X
� Ñ r�8,�8s defined by

f
� pξq :� sup

xPX
txξ, xy � f pxqu

is called the (Fenchel) conjugate function of f .

Remark 1.1.26 (Basic properties of conjugate functions). Let f : X Ñ p�8,�8s be a

proper, convex and lower semicontinuous function.
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piq The conjugate function f
�

is convex and lower semicontinuous since it is the supre-

mum of a family of convex and continuous functions and, therefore, convex and lower

semicontinuous functions.

piiq The conjugate function f
�

is also proper since f is proper. 3

Definition 1.1.27 (Biconjugate function). Let f : X Ñ p�8,�8s be a function. The

biconjugate function f
�� � �

f
���

is defined by

f
�� pxq :� sup

ξPX�

!
xξ, xy � f

� pξq
)
.

Obviously, for any x P X and every ξ P X�
, we have

f pxq ¥ xξ, xy � f
� pξq . (1.1.7)

It is known as the Young-Fenchel inequality. This inequality implies that f pxq ¥ f
�� pxq,

for all x P X.

Example 1.1.28 (Conjugate of the norm-p function). The conjugate function of fp pxq �
p1{pq }x}p, p P p0,�8q, is f

�

p pξq � p1{qq }ξ}q
�

where 1{p� 1{q � 1.

Several basic properties of Fenchel conjugate functions are summarized in the next result
(see [102, Proposition 1.4.1, page 18]).

Proposition 1.1.29 (Properties of Fenchel conjugate functions). Let f : X Ñ p�8,�8s
and g : X Ñ p�8,�8s be two proper functions. The following statements are true.

piq If f ¤ g then g
� ¤ f

�
.

piiq For any λ ¥ 0, we have pλfq� pξq � λf
� pξ{λq.

piiiq For any λ P R, we have pf � λq� � f
� � λ.

pivq For any y P X, we have pf p� � yqq� pξq � f
� pξq � xξ, yy.

pvq For any x P X, we have

ξ P Bf pxq ðñ f pxq � f
� pξq � xξ, xy .

pviq If Bf pxq � H then f pxq and f
� pξq are finite.

The next result brings out several connections among Fenchel conjugates and subdiffer-
entiability (cf. [22, Propostion 2.118, page 82]).

Proposition 1.1.30 (Fenchel conjugany and subdifferentiability). Assume that f : X Ñ
p�8,�8s is a function. The following statements are true.
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piq If for some x P X the value f
� pxq is finite, then,

Bf�� pxq � argmaxξPX�

!
xξ, xy � f

� pξq
)
.

piiq If f is subdifferentiable at x P X, then f
�� pxq � f pxq.

piiiq If f
�� pxq � f pxq and is finite, then Bf pxq � Bf�� pxq.

The Young-Fenchel inequality (see (1.1.7)) implies that f ¥ f
�
. The next theorem

shows that f � f
��

when f is a proper, convex and lower semicontinuous function (cf.
[112, Theorem 2.33, page 77]).

Proposition 1.1.31 (Biconjugate). Let f : X Ñ p�8,�8s be a proper, convex and lower

semicontinuous function. Then f � f
��

.

The subdifferential mapping of conjugate functions is given by the inverse of the subd-
ifferential mapping of the function (see [102, Proposition 1.4.4, page 20]).

Proposition 1.1.32 (Subdifferential of conjugate functions). Let f : X Ñ p�8,�8s be

a proper, convex and lower semicontinuous function on X. Then Bf� � pBfq�1, where the

inverse mapping pBfq�1 : X
� Ñ 2X is defined by

pBfq�1 pξq � tx P X : ξ P Bf pxqu .

1.1.5 Geometry of Banach Spaces

This subsection gathers some basic definitions and geometrical properties of Banach spaces
which can be found in the book [47] (see also [87]).

Definition 1.1.33 (Types of Banach spaces). A Banach space X

piq is smooth or has a Gâteaux differentiable norm if the limit

lim
tÑ0

}x� ty} � }x}
t

(1.1.8)

exists for each x, y P SX ;

piiq has a uniformly Gâteaux differentiable norm if for each y P SX the limit (1.1.8) is

attained uniformly for any x P SX ;

piiiq is uniformly smooth if the limit (1.1.8) is attained uniformly for any x, y P SX ;
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pivq is uniformly convex if the modulus of uniform convexity of the space X, that is, the

function δX : r0, 2s Ñ r0, 1s defined by

δX ptq :�
#

inf
 
1� �

1
2

� }x� y} : }x} � 1 � }y} , }x� y} ¥ t
(

, t ¡ 0

0 , t � 0

satisfies δX ptq ¡ 0 for all t ¡ 0.

A very related concept to the geometry of Banach spaces is the theory of duality map-
pings. Recall that a gauge is a continuous and strictly increasing function φ : R� Ñ R�

such that φ p0q � 0 and limtÑ8 φ ptq � 8. Associated with a gauge function φ, the duality

mapping is the mapping Jφ : X Ñ 2X
�

given by

Jφ pxq :�
!
jφ pxq P X�

: xjφ pxq , xy � }jφ pxq} }x} , φ p}x}q � }jφ pxq}
)
. (1.1.9)

Remark 1.1.34 (Full domain of duality mappings). According to the Hahn-Banach The-

orem, Jφ pxq is a nonempty subset of X
�

for every x P X. Hence, dom Jφ � X. 3

Remark 1.1.35 (Properties of duality mappings). It follows from (1.1.9) that Jφ is an

odd mapping (i.e., Jφ p�xq � �Jφ pxq) and positively homogeneous (i.e., λJφ pxq � Jφ pλxq
for any λ ¡ 0). 3

If a gauge function φ is given by φ ptq � t for all t P R�, then the corresponding duality
mapping Jφ is called the normalized duality mapping, and is denoted by JX . It follows from
(1.1.9) that the normalized duality mapping JX is defined by

JX pxq :�
!
ξ P X�

: xξ, xy � }x}2 � }ξ}2
�

)
. (1.1.10)

We can use another way to describe duality mappings. Given a gauge function φ, we define

Φ ptq :�
» t

0

φ psq ds.

Then it can be proved that Φ is convex and, for any x P X, we have

Jφ pxq � BΦ p}x}q .

Thus we have from the subdifferential inequality (see (1.1.5)) that for any x, y P X,

Φ p}x� y}q ¤ Φ p}x}q � xy, jφ px� yqy , jφ px� yq P Jφ px� yq .

For the normalized duality mapping JX , the subdifferential inequality (see (1.1.5)) turns
into

}x� y}2 ¤ }x}2 � 2 xy, j px� yqy , j px� yq P JX px� yq .
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The relation between the normalized duality mapping JX and a general duality mapping
Jφ is easily given by the following identity:

Jφ pxq � φ p}x}q
}x} JX pxq , x � 0, x P X.

The following result gathers relations between geometric properties of three classes of Ba-
nach spaces and features of duality mappings.

Proposition 1.1.36 (Characterization of Banach spaces). Let X be a Banach space. Given

any gauge function φ, the following statements are true.

piq The space X is smooth if and only if the duality mapping Jφ is single-valued (cf. [47,

Theorem 1.10, page 46]).

piiq The space X is uniformly smooth if and only if the duality mapping Jφ is single-valued

and norm-to-norm uniformly continuous on bounded subsets of X (cf. [47, Theorem

2.16, page 54]).

piiiq If the space X has a uniformly Gâteaux differentiable norm then, Jφ is norm-to-weak
�

uniformly continuous on bounded subsets of X (cf. [47, Corollar 1.5, page 43] and

[86]).

Remark 1.1.37 (Duality mapping of the p-norm function). Take φp ptq :� ptp�1. Then

Φp ptq � tp. We denote the duality mapping with respect to φp by Jp :� BΦp p}x}q. In this

case the function φp is invertible and

ψp ptq � φ�1
p ptq �

�
t

p


1{pp�1q

is again a gauge function. Define

Ψp �
» t

0

ψp psq ds � pp� 1q pp{p1�pqtp{pp�1q.

The duality mapping with respect to ψp is the mapping from X
�

to 2X given by

J
�

p � BΨp

�}ξ}
�

� � p1{p1�pq }ξ}1{pp�1q

�

�}�}
�

�1 pξq . 3

1.2 Bregman Distances

From now on we will use admissible functions.
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Definition 1.2.1 (Admissible function). A function f : X Ñ p�8,�8s is called ad-

missible if it is proper, convex and lower semicontinuous, and Gâteaux differentiable on

int dom f .

In 1967 (cf. [27]) Bregman defined the following bifunction Df .

Definition 1.2.2 (Bregman distance). Let f : X Ñ p�8,�8s be a Gâteaux differentiable

function. Then

Df py, xq � f pyq � f pxq � x∇f pxq , y � xy . (1.2.1)

A few years later, Censor and Lent [45] called it the Bregman distance with respect to the
function f . The Bregman distance is at the core of this dissertation mainly because of its
importance in optimization as a substitute for the usual distance or, more exactly, for the
square of the norm of X. During the last 30 years, Bregman distances, have been studied in
this connection by many researchers; for example, Bauschke, Borwein, Burachik, Butnariu,
Censor, Combettes, Iusem, Reich and Resmerita (see, among many others, [7, 8, 33, 35, 41]
and the references therein). Over the last 10 years the usage of this concept has been
extended to many fields like Clustering, Image Reconstruction, Information Theory and
Machine Learning. Because of all these reasons we are motivated to develop more tools for
working with Bregman distances.

Remark 1.2.3 (Bregman distance is not a usual distance). It should be noted that Df (see

(1.2.1)) is not a distance in the usual sense of the term. In general, Df is not symmetric

and it does not satisfy the triangle inequality. Clearly, Df px, xq � 0, but Df py, xq � 0 may

not imply x � y as it happens, for instance, when f is a linear function on X. 3

In general we have the following result (cf. [7, Theorem 7.3(vi), page 642]).

Proposition 1.2.4 (Property of Bregman distances). Let f : X Ñ p�8,�8s be a Legendre

function (see Definition 1.2.7 below). Then Df py, xq � 0 if and only if y � x.

If f is a Gâteaux differentiable function, then Bregman distances have the following two
important properties.

• The three point identity : for any x P dom f and y, z P int dom f , we have (see [50])

Df px, yq �Df py, zq �Df px, zq � x∇f pzq �∇f pyq , x� yy . (1.2.2)

• The four point identity : for any y, w P dom f and x, z P int dom f , we have

Df py, xq �Df py, zq �Df pw, xq �Df pw, zq � x∇f pzq �∇f pxq , y � wy . (1.2.3)

Bregman distances are very interesting also because of the following property. In the
following remark we emphasize we prove that Bregman distances can be considered as a
generalization of the usual metric distance.
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Remark 1.2.5 (Generalization of the metric distance). It is easy to check that when the

Banach space X is a Hilbert space and f p�q � }�}2, then Df py, xq � }y � x}2, that is, the

metric distance squared. 3

Directly from the definition of the Bregman distance (see (1.2.1)) we see that any prop-
erty of Df is inherited from a property of the function f . First, one may wonder if the
Bregman distance can be defined for non-differentiable functions.

Remark 1.2.6 (Bregman distance of non-differentiable functions). For a non-differentiable

function f : X Ñ p�8,�8s, there is a generalization of the Bregman distance (see (1.2.1)):

Df py, xq :� f pyq � f pxq � f � px, y � xq . 3

In order to obtain more interesting and important properties of the Bregman distance
(see (1.2.1)) we will study more deeply two classes of functions, the Legendre functions and
the totally convex functions.

1.2.1 Legendre Functions

The notion of Legendre functions in a general Banach space X was introduced first by
Bauschke, Borwein and Combettes in [7, Definition 5.2, page 634]. In our setting the Banach
space X is reflexive, thus, from [7, Theorems 5.4 and 5.6, page 634] we can equivalently
define the notion of Legendre functions as follows.

Definition 1.2.7 (Legendre). A function f : X Ñ p�8,�8s is called Legendre if it

satisfies the following two conditions.

pL1q int dom f � H and the subdifferential Bf is single-valued on its domain.

pL2q int dom f� � H and Bf� is single-valued on its domain.

Since X is reflexive, we also have that ∇f � �
∇f���1

(see [7, Theorem 5.10, page 636]).
This fact, combined with Conditions (L1) and (L2), implies the following equalities which
will be very useful in the sequel:

piq
ran∇f � dom∇f� � int dom f

�

. (1.2.4)

piiq
ran∇f� � dom∇f � int dom f. (1.2.5)

Conditions (L1) and (L2), in conjunction with [7, Theorem 5.4, page 634], imply that both
functions f and f

�
are strictly convex and Gâteaux differentiable in the interior of their

respective domains.
Several interesting examples of Legendre functions are presented in [6, 7]. Among them

are the functions p1{pq }�}p with p P p1,8q, where the Banach space X is smooth and
strictly convex, in particular, a Hilbert space.
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1.2.2 Totally Convex Functions

The notion of totally convex functions was first introduced by Butnariu, Censor and Reich
[33] in the context of the Euclidean space Rn because of its usefulness for establishing
convergence of a Bregman projection method for finding common points of infinite families
of closed and convex sets. In this finite dimensional environment total convexity hardly
differs from strict convexity. In fact, a function with a closed domain in a finite dimensional
Banach space is totally convex if and only if it is strictly convex. The relevancy of total
convexity as a strengthened form of strict convexity becomes apparent when the Banach
space on which the function is defined is of infinite dimension. In this case, total convexity is
a property stronger than strict convexity but weaker than locally uniform convexity. Total
convexity in the infinite dimensional case is studied intensively by Butnariu and Iusem and
summarized in the book [35].

Total convexity is a property of the modulus of total convexity of the function which
ensures that some sequential convergence properties which are true in the uniformity-
like structure defined on the space via Bregman distances with respect to totally convex
functions are inherited by the norm topology of the space. Therefore, in order to establish
convergence and/or “good behavior” of some algorithms in infinite-dimensional settings, it
is enough to do so with respect to the uniformity-like structure determined by the Bregman
distance associated to totally convex functions.

This naturally leads to the question of whether totally convex functions with predes-
ignate properties exist on a given Banach space. It is shown in [35] that totally convex
functions can be found on any separable as well as on any reflexive Banach space.

In this subsection we present several properties of the modulus of total convexity asso-
ciated to a convex function f . The interest in the modulus of total convexity and totally
convex functions comes from the usefulness of these concepts when dealing with a class
of recursive procedures for computing common fixed points for large families of operators
and, in particular, solutions to optimization, convex feasibility, variational inequality and
equilibrium problems as shown in the following chapters of this thesis.

Definition 1.2.8 (Total convexity at a point). A function f : X Ñ p�8,�8s is called

totally convex at a point x P int dom f if its modulus of total convexity at x, that is, the

function νf px, �q : r0,�8q Ñ r0,�8s defined by

νf px, tq � inf tDf py, xq : y P dom f, }y � x} � tu (1.2.6)

is positive whenever t ¡ 0.

Remark 1.2.9 (Totally convex function). A function f : X Ñ p�8,�8s is called totally

convex when it is totally convex at any point of int dom f . 3

Definition 1.2.10 (Total convexity on bounded subsets). A function f : X Ñ p�8,�8s
is called totally convex on bounded subsets if νf pE, tq is positive for any nonempty and

bounded subset E of X and for any t ¡ 0, where the modulus of total convexity of the
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function f on the set E defined by

νf pE, tq :� inf
!
νf px, tq : x P E

£
int dom f

)
.

The following proposition summarizes several properties of the modulus of total convex-
ity (cf. [33, Proposition 2.4, page 26] and [35, Propostion 1.2.2, page 18]).

Proposition 1.2.11 (Properties of the modulus of total convexity). Let f : X Ñ p�8,�8s
be an admissible function. If x P int dom f , then the following assertion hold.

piq The domain of νf px, �q is an interval r0, τf pxqq or r0, τf pxqs with τf pxq P p0,�8s.
piiq If c P r1,�8q and t ¥ 0, then νf px, ctq ¥ cνf px, tq.
piiiq The function νf px, �q is superadditive, that is, for any s, t P r0,�8q, we have

νf px, s� tq ¥ νf px, sq � νf px, tq .

pivq The function νf px, �q is nondecreasing; it is strictly increasing if and only if f is totally

convex at x.

Moreover, if X � Rn and f : C Ñ R, where C is an open, convex and unbounded

subset of Rn, then the following statements also hold.

pvq The modulus of total convexity υf px, �q is continuous from the right on p0,�8q.
pviq If f̄ : C Ñ R is a convex and continuous extension of f to C and if υf px, �q is

continuous, then, for each t P r0,�8q, we have

υf px, tq � inf
 
Df̄ py, xq : y P C, }y � x} � t

(
.

Definition 1.2.12 (Cofinite). A function f : X Ñ p�8,�8s is called cofinite if dom f
� �

X
�
.

The following proposition follows from [37, Proposition 2.3, page 39] and [112, Theorem
3.5.10, page 164].

Proposition 1.2.13 (Sufficient condition for cofiniteness). If f : X Ñ p�8,�8s is

Fréchet differentiable and totally convex, then f is cofinite.

Uniformly Convex Functions

The applications of totally convex functions discussed in this work requires us to know
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whether on a given Banach space totally convex functions exist and, eventually, how rich
the class of totally convex functions on a given Banach space X. For that we compare the
notion of the modulus of total convexity with the modulus of uniform convexity. Totally
convex functions are strictly convex, but there exists a strictly convex function which is
not totally convex (see [34]). In addition, a strongly related concept to total convexity is
the concept of uniform convexity which was first introduced and studied in [110, 112] (see
also [23, 26]).

Definition 1.2.14 (Uniform convexity (function)). A function f : X Ñ p�8,�8s is

called uniformly convex if the function δf : r0,�8q Ñ r0,�8s, defined by

δf ptq :� inf

"
1

2
f pxq � 1

2
f pyq � f

�x� y

2

	
: }y � x} � t, x, y P dom f

*
, (1.2.7)

is positive whenever t ¡ 0. The function δf p�q is called the modulus of uniform convexity

of f .

Remark 1.2.15 (Uniform convexity implies total convexity). According to [35, Proposition

1.2.5, page 25], if x P int dom f and t P r0,�8q, then νf px, tq ¥ δf ptq and, therefore, if f

is uniformly convex, then it also is totally convex. 3

The converse implication is not generally valid, that is, a function f may be totally
convex without being uniformly convex (for such an example see [35, Section 1.3, page 30]).
Even for Gâteaux differentiable functions, the notions of uniformly and totally convex are
not equivalent. However, if f is Fréchet differentiable, then we have the following result
(cf. [37, Proposition 2.3, page 40]).

Proposition 1.2.16 (Total and uniform convexity coincide). Suppose that f : X Ñ
p�8,�8s is a lower semicontinuous function. If x P int dom f and f is Fréchet dif-

ferentiable at x, then f is totally convex at x if and only if f is uniformly convex at x.

The notions of uniformly and totally convex on bounded subsets are equivalent under
less restrictive conditions on the function, which can be seen in the following result (cf.
[37, Proposition 4.2, page 53]).

Proposition 1.2.17 (Total and uniform convexity on bounded subsets). Suppose that

f : X Ñ p�8,�8s is an admissible function. The function f is totally convex on bounded

subsets if and only if f is uniformly convex on bounded subsets.

Examples of Totally Convex Functions

In Banach spaces of infinite dimension finding totally convex functions is a challenging
problem. This happens because, in an infinite dimensional context, we need to find totally
convex functions designed in such a way that specific methods like the proximal point
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algorithm with Bregman distance and/or the projection type algorithms are effectively and
efficiently computable. For instance, the function fp :� }�}p, p P p1,�8q, is totally convex
in any uniformly convex Banach space X (cf. [36, Theorem 1, page 322]).

Proposition 1.2.18 (Total convexity of p-norm in uniformly convex Banach spaces). If X

is a uniformly convex Banach space, then, for each p P p1,�8q, the function }�}p is totally

convex.

Remark 1.2.19 (Total convexity of p-norm in locally uniformly convex Banach spaces).

The function }�}p, p P p1,�8q, is totally convex even if X is only locally uniformly convex,

that is, if for each x in the unit ball of the space X, the function µX px, �q : r0, 2s Ñ r0, 1s
defined by

µX px, tq �
#

inf
 
1� �

1
2

� }x� y} : }y} � 1, }x� y} ¥ t
(
, t ¡ 0

0, t � 0

is positive whenever t ¡ 0. The function µX px, �q is called the modulus of locally uniform

convexity of the space X. 3

It is proved in [112] that }�}p, p P p1,�8q, are uniformly convex at any point, and, hence
are totally convex at any point. In [96] Resmerita proves that a Banach space on which
the functions }�}p, p P p1,�8q, are totally convex is necessarily strictly convex and has the
Kadeč-Klee property, that is,�

w- lim
nÑ8

xn � x and lim
nÑ8

}xn} � }x}
	
ùñ lim

nÑ8
xn � x.

More precisely, she proves that those spaces are exactly the E-spaces (cf. [96, Theorem 3.2,
page 8]).

Definition 1.2.20 (Sequentially consistent). A function f : X Ñ p�8,�8s is called

sequentially consistent (see [41]) if for any two sequences txnunPN and tynunPN in dom f

and int dom f , respectively, such that the first one is bounded,

lim
nÑ8

Df pyn, xnq � 0 ñ lim
nÑ8

}yn � xn} � 0.

In the following result we see that in uniformly convex Banach spaces the function }�}p,
p P p1,�8q, is sequentially consistent (cf. [36, Corollary 1, page 326]).

Proposition 1.2.21 (Sequentially consistency of the p-norm function in uniformly convex

Banach spaces). If X is a uniformly convex Banach space, then, for each p P p1,�8q, the

function }�}p is sequentially consistent.

The following result gives us a tool to generate more examples of totally convex functions
(cf. [35, Proposition 1.2.7, page 28]).
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Proposition 1.2.22 (Arithmetic of totally convex functions). The following statements

hold.

piq Let fi : X Ñ p�8,�8s, 1 ¤ i ¤ N , be totally convex functions with domains

D1, D2, . . . , DN , respectively. Assume that

N£
i�1

intDi � H.

Then, for any N nonnegative real numbers c1, c2, . . . , cN such that
°N
i�1 ci ¡ 0, the

function h :� °N
i�1 cifi is totally convex and, for any x P �N

i�1 intDi and for all

t P r0,�8q, we have

νh px, tq ¥
Ņ

i�1

ciνfi px, tq .

piiq If f : X Ñ p�8,�8s is totally convex and lower semicontinuous with open domain

D, and if φ is a real convex function defined, differentiable and strictly increasing on

an open interval which contains f pDq, then the function g : X Ñ p�8,�8s defined

by g pxq � φ pf pxqq, if x P D, and g pxq � �8 otherwise, is totally convex and we

have

νg px, tq ¥ φ1 pf pxqq νf px, tq

for all x P D and any t ¥ 0.

Convergence analysis of many iterative algorithms for solving convex optimization prob-
lems in Banach spaces show that the produced sequences are bounded and that any weak
accumulation points of which are optimal solutions of the problems these algorithms are
supposed to solve. Obviously the identification of a convergent subsequence of a given
sequence is difficult, if not impossible. Thus such algorithms can be used to compute ap-
proximate solutions of the given problem only to the extent to which either the objective
function of the optimization problem is strictly convex because in such case the sequences
those algorithms generate converge weakly to the necessarily unique optimal solution of
the problem or one can regularize the problem by replacing the objective function with a
strictly convex approximation of it in such a way that the optimal solution of the regularized
problem exists and is close enough to the optimal solution set of the original problem.

Keeping the optimal solution of the regularized problem close to the optimal solution
set of the original problem usually demands that the strictly convex approximation of
the objective function should be uniform on bounded subsets. Also, the regularization
process often requires the use of functions satisfying, among other conditions, a stronger
form of strict convexity, namely, total convexity. Because of this, for a large number of
optimization algorithms regularization of the optimization problem using totally convex
and sufficiently uniform approximations of the objective function, which preserve some if
not all of its continuity properties, is an implicit guarantee of a better convergence behavior
of the computational procedure. Thus the abundance of totally convex functions and the
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possibility of using them as good approximations of given convex functions are crucial in
numerous optimization algorithms.

Butnariu, Reich and Zaslavski [40] prove that whenever there exists a function which is
totally convex at each point of K, and Lipschitz continuous on any bounded subset of K,
then the set of totally convex functions on K, the set of lower semicontinuous and totally
convex functions on K, the set of continuous and totally convex functions on K, as well
as the set of Lipschitz continuous and totally convex functions on K are large in the sense
that they contain countable intersections of open (in the weak topology) and everywhere
dense (in the strong topology) subsets. This result is meaningful because it implies the
existence of large pools of totally convex functions.

At the same time it guarantees that given a convex function f with some continuity
features, one can find uniform on bounded subsets totally convex approximations of it
which not only preserve the continuity features of f , but also have corresponding Breg-
man distances which are uniformly close on bounded subsets to the Bregman distance
corresponding to f itself.

Examples of Totally Convex Functions in Euclidian Spaces

Let X � R. In this section we study in detail the total convexity of the Boltzmann-Shannon
entropy

BS pxq :� x log pxq � x, 0   x   �8 (1.2.8)

Figure 1.1: The Boltzmann-Shannon entropy

and the Fermi-Dirac entropy

FD pxq :� x log pxq � p1� xq log p1� xq , 0   x   1. (1.2.9)

Each of these functions can be defined to be zero, by its limits, at the endpoints of their
domains.

We study the entropies BS and FD in detail because of their importance in applications.
These two functions, which form a large part of the basis for the classical information theory,
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Figure 1.2: The Fermi-Dirac entropy

arguably provide the only consistent measures of the average uncertainty in predicting
outcomes of a random experiment (see [68]).

Moreover, both DBS and DFD are jointly convex [24, 26], an uncommon property which
they share with px, yq ÞÑ }x� y}2. The utility of both the Boltzmann-Shannon and the
Fermi-Dirac entropies is enhanced because they are totally convex. In the following two
results (Propositions 1.2.23 and 1.2.24) we calculate the modulus of total convexity of the
BS entropy and show that BS is totally convex (see [33, 35]). Propositions 1.2.25 and
1.2.26 are analogous results concerning the FD entropy.

We start with formula of the modulus of total convexity of BS (cf. [25, Propsoition 4.2,
page 170]).

Proposition 1.2.23 (Modulus of total convexity of BS). The modulus of total convexity

of BS on p0,�8q is given by

νBS px, tq � x

��
1� t

x



log

�
1� t

x



� t

x

�
, x P p0,�8q , t ¥ 0. (1.2.10)

Proof. Let x0 P p0,�8q and 0   t   x0. It is clear from the definition of the modulus of

total convexity (see (1.2.6)) that

νBS px0, tq � min tDBS px0 � t, x0q , DBS px0 � t, x0qu

� min

"
px0 � tq log

�
x0 � t

x0



� t, px0 � tq log

�
x0 � t

x0



� t

*
� min

"
x0

��
1� t

x0



log

�
1� t

x0



� t

x0

�
,

x0

��
1� t

x0



log

�
1� t

x0



� t

x0

�*
.

In order to find this minimum we define a function ϕ : r0, x0q Ñ R by

ϕ ptq :� x0

��
1� t

x0



log

�
1� t

x0



� t

x0

�
�

1� t

x0



log

�
1� t

x0



� t

x0

�
.



Iterative Methods for Solving Optimization Problems 33

It is clear that ϕ p0q � 0 and

ϕ1 ptq � � log

�
1�

�
t

x0


2
�
,

and so ϕ is increasing for all t   x0. Thus ϕ ptq ¡ 0 for any t   x0, which means that

νBS px0, tq � x0

��
1� t

x0



log

�
1� t

x0



� t

x0

�
for any t   x0. If t ¥ x0 then the point t � x0 does not belong to the domain of BS and

therefore

νBS px0, tq � DBS px0 � t, x0q � x0

��
1� t

x0



log

�
1� t

x0



� t

x0

�
.

Hence (1.2.10) holds for any t ¥ 0.

Now we will prove that BS is totally convex on p0,�8q but not uniformly convex (cf.
[25, Propsoition 4.3, page 171]).

Proposition 1.2.24 (Total convexity of BS on p0,�8q). The function BS is totally con-

vex, but not uniformly convex on p0,�8q.

Proof. We need to show that νBS px0, tq ¡ 0 for any t ¡ 0. We know that νBS px0, 0q � 0

and from Proposition 1.2.23 we obtain that

B
Bt pνBS px0, tqq � log

�
1� t

x0



¡ 0, t ¡ 0.

This means that νBS px0, tq is a strictly increasing function for all t ¡ 0. Thence, νBS px0, tq ¡
0 for any t ¡ 0 and so BS is totally convex on p0,�8q, as asserted.

From Remark 1.2.15 we have, for any t ¡ 0, that

0 ¤ δBS ptq ¤ lim
xÑ8

νBS px, tq � 0.

It follows that δBS ptq � 0 and thus BS is not uniformly convex.

In [33] it is mentioned that the modulus of total convexity of the function f pxq � x log pxq
is also given by (1.2.10) and that f is totally convex. Note that Df � DBS .

The following results show that FD is both totally convex and uniformly convex (cf.
[25, Propsoitions 4.5 and 4.6, pages 171–172]).
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Proposition 1.2.25 (Modulus of total convexity of FD). The modulus of total convexity

of FD is given by

νFD px, tq � x

��
1� t

x



log

�
1� t

x



�
�

1� t

x
� 1



log

�
1� t

1� x


�
, (1.2.11)

when 0   x ¤ 1{2 and 0   t   1� x, and by

νFD px, tq � x

��
1� t

x



log

�
1� t

x



�
�

1� t

x
� 1



log

�
1� t

1� x


�
(1.2.12)

when 1{2 ¤ x   1 and 0   t   x.

Proof. Let x0 P p0, 1q. Denote M � maxtx0, 1�x0u and m � mintx0, 1�x0u. If 0   t   m,

then it is clear from the definition of the modulus of total convexity (see (1.2.6)) that

νFD px0, tq � min tDFD px0 � t, x0q , DFD px0 � t, x0qu

� min

"
x0

��
1� t

x0



log

�
1� t

x0



�
�

1� t

x0

� 1



log

�
1� t

1� x0


�
,

x0

��
1� t

x0



log

�
1� t

x0



�
�

1� t

x0

� 1



log

�
1� t

1� x0


�*
.

In order to find this minimum we define a function ψ : r0,mq Ñ R by

ψ ptq :� x0

��
1� t

x0



log

�
1� t

x0



�
�

1� t

x0

� 1



log

�
1� t

1� x0


�
� x0

��
1� t

x0



log

�
1� t

x0



�
�

1� t

x0

� 1



log

�
1� t

1� x0


�
.

It is clear that ψ p0q � 0 and

ψ1 ptq � log

�
1�

�
t

1� x0


2
�
� log

�
1�

�
t

x0


2
�
.

Therefore, for any 0   t   m, the function ψ is increasing when 0   x ¤ 1{2 and decreasing

when 1{2 ¤ x   1. Hence, for any 0   t   m, the function ψ ptq ¡ 0 when 0   x ¤ 1{2 and

ψ ptq   0 when 1{2 ¤ x   1. If m ¤ t  M , then one of the points x0 � t or x0 � t belongs

to the domain of FD and the second does not. Therefore the modulus of total convexity

of FD is given by (1.2.11) and (1.2.12) in all cases.

Proposition 1.2.26 (Total convexity of FD on p0, 1q). The function FD is totally convex

on p0, 1q.
Proof. We need to show that νFD px0, tq ¡ 0 for any t ¡ 0. We know that νFD px0, 0q � 0
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and from Proposition 1.2.25 we obtain that

B
Bt pνFD px0, tqq �

$&% log
�

1� t
xp1�x�tq

	
, 0   x ¤ 1{2, 0   t   1� x,

log
�

1� t
p1�xqpx�tq

	
, 1{2 ¤ x   1, 0   t   x.

This means that νFD px0, tq is a strictly increasing function for all t ¡ 0. Thence, we get

that νFD px0, tq ¡ 0 for any t ¡ 0 and so FD is totally convex on p0, 1q, as asserted.

The following technical result will be useful in order to prove that FD is uniformly
convex on p0, 1q (cf. [25, Lemma 4.7, page 172]).

Lemma 1.2.27 (Uniform convexity of a one variable function). Let f : pa, bq Ñ R be twice

differentiable function. If f2 pxq ¥ m ¡ 0 on pa, bq, then f is uniformly convex there.

Proof. Let x, y P pa, bq with }y � x} � t ¡ 0. Then

f pxq � f
�x� y

2

	
� f 1

�x� y

2

	�x� y

2

	
� f2 pαq

2

�x� y

2

	2

and

f pyq � f
�x� y

2

	
� f 1

�x� y

2

	�y � x

2

	
� f2 pβq

2

�y � x

2

	2

for some α, β P pa, bq. Therefore

fpxq
2

� fpyq
2

� f
�x� y

2

	
� f2 pαq

4

�x� y

2

	2

� f2 pβq
4

�y � x

2

	2

¥ mt2

8
¡ 0,

as asserted.

The following result follows immediately from the previous lemma (cf. [25, Proposition
4.8, page 172]).

Proposition 1.2.28 (Uniform convexity of FD on p0, 1q). The function FD is uniformly

convex on p0, 1q.

Proof. This result follows immediately from Lemma 1.2.27 because FD2 pxq ¥ 4 for all

x P p0, 1q.
Now, assume that X � Rn. In this case the Boltzmann-Shannon entropy is the function

BSn : Rn
�� Ñ R defined by

BSn pxq :�
ņ

i�1

xi log pxiq � xi, x P Rn
��.

The following result shows that BSn is a totally convex function on Rn
�� (cf. [25, Proposi-

tion 4.19, page 178]).
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Proposition 1.2.29 (Total convexity of BSn on Rn
��). The function BSn is totally convex

on Rn
�� and its modulus of total convexity satisfies

νBSn px, tq ¥ min
1¤i¤n

"
xi

��
1� t

xi
?
n



log

�
1� t

xi
?
n



� t

xi
?
n

�*
.

Proof. Let BS : r0,�8q Ñ R be the convex and continuous function defined by

BS pxq :�
#
x log pxq � x, x ¡ 0

0, x � 0.

It is clear that the restriction of BS to p0,�8q is exactly BS. The function BSn : Rn
�� Ñ R

defined by

BSn pxq :�
ņ

i�1

BS pxiq

is convex, continuous and its restriction to Rn
�� is exactly BSn. Let

νBSn px, tq � inf
 
DBSn py, xq : y P Rn

�, }y � x} � t
(
.

Since the set
 
y P Rn

� : }y � x} � t
(

is compact in Rn and DBSn p�, xq is continuous on this

set, there exists ȳ P Rn
� such that }x� ȳ} � t and

νBSn px, tq ¥ νBSn px, tq � DBSn pȳ, xq �
ņ

i�1

DBS pȳi, xiq .

The modulus of total convexity of BS is given by (1.2.10) and is continuous in t. Therefore

we can apply Proposition 1.2.11(vi) and obtain that, for each 1 ¤ i ¤ n,

DBS pȳi, xiq ¥ νBS pxi, |xi � ȳi|q .

Hence

νBSn px, tq ¥
ņ

i�1

νBS pxi, |xi � ȳi|q . (1.2.13)

When t ¡ 0, we have that |xi � ȳi| ¡ 0 for at least one index i. As noted in Proposition

1.2.23, the function BS is totally convex. Consequently, νBS pxi, |xi � ȳi|q ¡ 0 for at least

one index i. This and (1.2.13) show that, if t ¡ 0, then νBSn px, tq ¡ 0, i.e., BSn is totally

convex on Rn
��.
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Since for at least one index i0 we have |xi � ȳi| ¥ t{?n, we deduce from (1.2.13) that

νBSn px, tq ¥
ņ

i�1

νBS pxi, |xi � ȳi|q ¥ νBS pxi0 , |xi0 � ȳi0 |q

¥ νBS
�
xi0 , t{

?
n
� ¥ min

1¤i¤n

 
νBS

�
xi, t{

?
n
�(
.

When combined with (1.2.10), this inequality completes the proof.

1.2.3 The Bregman Projection

If f is strictly convex on int dom f , then so is Df p�, xq. Therefore, if f is strictly convex
on int dom f and if K is a subset of X such that int dom f

�
K � H, then there exists at

most one point projfK pxq P int dom f
�
K such that

Df

�
projfK pxq , x

	
� inf

!
Df py, xq : y P int dom f

£
K
)
. (1.2.14)

This point (if any) is called the Bregman projection of x P int dom f onto K (cf. [45]). A
question of essential interest in the sequel is whether, and under which conditions concerning
the function f , the Bregman projection projfK pxq exists and is unique for each x P int dom f .
The following three conditions are sufficient for ensuring the existence and uniqueness of
the Bregman projection projfK pxq for each x P int dom f .

(A1) The set dom f is closed with nonempty interior and f is Gâteaux differentiable on
int dom f .

(A2) The function f is strictly convex and continuous on dom f .

(A3) For each x P int dom f and for any real number α, the sub-level set levDfα pxq defined
by

levDfα pxq � ty P dom f : Df py, xq ¤ αu
is bounded.

Applying Proposition 1.1.10(v) and (vi), we deduce the following result (cf. [35, Corollary
1.1.6, page 8]).

Proposition 1.2.30 (Continuity of the Bregman distance). Let f : X Ñ p�8,�8s be a

convex function such that int dom f � H. If f is continuous on int dom f , then, for any

x P int dom f , the function f � px, �q is finite and Lipschitzian on X. Also, the function

Df p�, xq is locally Lipschitzian on int dom f . In particular, these statements hold when f

is lower semicontinuous.

Now we prove that Conditions (A1)–(A3) guarantee that there exists a unique Bregman
projection for any x P int dom f (cf. [36, Lemma 2.2, page 273]).
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Proposition 1.2.31 (Existence and uniqueness of the Bregman projection). Let f : X Ñ
p�8,�8s be a function which satisfies Conditions (A1)–(A3) and let K be a nonempty,

closed and convex subset of X such that int dom f
�
K � H. Then the Bregman projection

projfK pxq exists and is unique for any x P int dom f .

Proof. Let z P int dom f
�
K and define r � Df pz, xq. Denote by C the following intersec-

tion: int dom f
�
K

�
levDfr pxq. The set C is nonempty, bounded, closed and convex and,

thus, it is weakly compact. The function Df p�, xq is convex and continuous (see Propo-

sition 1.2.30) and, therefore, weakly lower semicontinuous on the weakly compact set C.

Consequently, Df p�, xq achieves its minimal value at a point of C. This point obviously

satisfies

Df

�
projfK pxq , x

	
� inf

!
Df py, xq : y P int dom f

£
K
)

and it is the unique point with this property since Df p�, xq is strictly convex.

Proposition 1.2.31 shows that Conditions (A1)–(A3) are sufficient to ensure that the

Bregman projection operator x Ñ projfK pxq : int dom f Ñ K is well defined for any
nonempty, closed and convex subset K of X such that int dom f

�
K � H. Verification

of these conditions, and especially of Condition (A3), in particular, may be, sometimes,
difficult. In the pervious section we proved several properties of totally convex functions.
This class of functions is also important here since any totally convex function which
satisfies Condition (A1) also satisfies Condition (A3).

The following result shows that in finite-dimensional spaces, functions which satisfy
Conditions (A1) and (A2) also satisfy Condition (A3). If the space is of infinite-dimension,
then totally convex functions which satisfies Condition (A1) also satisfy Condition (A3)
(cf. [36, Lemma 2.5, page 274]).

Proposition 1.2.32 (Property of totally convex functions). Let f : X Ñ p�8,�8s be a

totally convex function which satisfies Condition (A1). Then f satisfies Condition (A3).

Moreover, if the Banach space X has finite dimension and, in addition to Condition (A1),

the function f also satisfies Condition (A2), then f is totally convex and the modulus of

total convexity νf px, �q is continuous from the left on p0,�8q for any x P X.

Proof. If the result does not hold, then for some α P R, there exists an unbounded sequence

tununPN in levDfα pxq. Hence, for each nonnegative integer n, we have from Proposition

1.2.11(ii) that

α ¥ Df pun, xq � νf px, }x� un}q ¥ }x� un} νf px, 1q .

Since νf px, 1q ¡ 0 and limnÑ8 }x� un} � 8, it results that α cannot be finite and this is

a contradiction.
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Now suppose that X is of finite dimension and f is continuous and strictly convex on

the closed set dom f . Fix x P int dom f and t P p0,�8q. Note that the set

ty P dom f : }x� y} � tu

is compact in X since it is bounded and closed. We also know that Df p�, xq is continuous

on dom f (see Proposition 1.2.30). Consequently, there exists a point y P dom f with

}x� y} � t such that νf px, tq � Df py, xq. Since f is strictly convex on dom f , we have

from Proposition 1.1.10(iii) that

f � px, y � xq   f pyq � f pxq .

This implies that Df py, xq ¡ 0 (see Remark 1.2.6). Hence νf px, tq � Df py, xq ¡ 0 and

this proves that f is totally convex.

Now, suppose that t̄ P p0,�8q and let ttnunPN � p0,�8q be an increasingly sequence

that converges to t̄. For each nonnegative integer n, let yn P dom f be a point such

that }x� yn} � tn and νf px, tnq � Df pyn, xq. The sequence tynunPN is bounded since

ttnunPN converges. Hence, there exists a convergent subsequence tynkukPN of tynunPN. Let

ȳ � limkÑ8 ynk . Then ȳ P dom f and }x� ȳ} � t̄. Since, for any k P N, νf px, t̄q ¥ νf px, tnq,
and the sequence tνf px, tnqunPN is increasing, we get

νf px, t̄q ¥ lim
nÑ8

νf px, tnq � lim
kÑ8

νf px, tnkq � lim
kÑ8

Df pynk , xq � Df pȳ, xq ¥ νf px, t̄q .

Consequently, νf px, t̄q � limnÑ8 νf px, tnq, i.e., νf px, �q is continuous from the left at t̄.

Proposition 1.2.31 shows that if f satisfies Conditions (A1)–(A3), then the Bregman
projection exists and unique. The next result shows that the Bregman projection exists
and is unique also under two different conditions (cf. [41, Proposition 4.1, page 21]). One
of the conditions is coercivity.

Definition 1.2.33 (Coercivity). A function f : X Ñ p�8,�8s is called

piq coercive if lim}x}Ñ8 f pxq � �8;

piiq super-coercive if lim}x}Ñ8 pf pxq { }x}q � �8.

Proposition 1.2.34 (Another existence and uniqueness result). Let f : X Ñ p�8,�8s
be a strictly convex function on dom f . Let x P int dom f and let K � int dom f be

a nonempty, closed and convex set. If the sub-level sets levDfα pxq are bounded for any

α P r0,�8q, then there exists a unique Bregman projection of x onto K with respect to f .

In particular, this happens if any of the following conditions hold:
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piq f is totally convex at each point of dom f ;

piiq f is super-coercive.

Proof. Since f is strictly convex on int dom f , so is Df p�, xq. This guarantees that there is

no more than one vector y satisfying (1.2.14). Since the function Df p�, xq is also convex,

lower semicontinuous and levDfα pxq are bounded for any α P r0,�8q, it results that Df p�, xq
has at least one minimizer in the convex set K, that is, the Bregman projection of x onto

K exists and is unique.

piq Suppose that f is totally convex and that, for some α ¥ 0, the set levDfα pxq is

unbounded. Then there exists a sequence tynunPN contained in levDfα pxq such that

limnÑ8 }yn} � �8. From the definition of the modulus of total convexity (see (1.2.6)),

for any x P int dom f and for any n P N such that }yn � x} ¥ 1, one has from Propo-

sition 1.2.11(ii) that

α ¥ Df pyn, xq ¥ νf px, }yn � x}q � }yn � x} νf px, 1q . (1.2.15)

Since f is totally convex at x, it results that νf px, 1q ¡ 0. Therefore, by letting

nÑ 8 in (1.2.15) one gets a contradiction. Hence the set levDfα pxq is bounded for all

α P r0,�8q.

piiq Now suppose that f is super-coercive and that, for some α ¥ 0, there exists a sequence

tynunPN contained in levDfα pxq such that limnÑ8 }yn} � �8. Then from Proposition

1.1.29(v) we get

α ¥ Df pyn, xq � f pynq � f pxq � x∇f pxq , yn � xy
� f pynq � f

� p∇f pxqq � x∇f pxq , yny .

Now from the Cauchy-Schwarz inequality we get

α ¥ f� p∇f pxqq � f pynq � }∇f pxq}� }yn}

� f
� p∇f pxqq � }yn}

�
f pynq
}yn} � }∇f pxq}

�



. (1.2.16)

Letting nÑ 8 in (1.2.16) one gets a contradiction. Hence the set levDfα pxq is bounded

for all α P r0,�8q.

Similarly to the metric projection in Hilbert spaces, the Bregman projections have a vari-
ational characterization. These properties extend to the Bregman projection with respect
to totally convex and admissible functions (cf. [41, Corollary 4.4, page 23]).
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Proposition 1.2.35 (Characterizations of the Bregman projection). Let f : X Ñ p�8,�8s
be an admissible function which is totally convex. Let x P int dom f and let K � int dom f

be a nonempty, closed and convex set. If x̂ P K, then the following statements are equiva-

lent.

piq The vector x̂ is the Bregman projection of x onto K.

piiq The vector x̂ is the unique solution of the variational inequality

x∇f pxq �∇f pzq , z � yy ¥ 0, @y P K. (1.2.17)

piiiq The vector x̂ is the unique solution of the inequality

Df py, zq �Df pz, xq ¤ Df py, xq , @y P K.

Proof. piq ô piiq Suppose that (i) holds. Then, for any u P K one has Df px̂, xq ¤ Df pu, xq.
In particular, this holds for u � p1� τq x̂� τy for all y P K and for all τ P r0, 1s. Since f is

strictly convex and continuous function (see Corollary 1.1.7) so it is also true for Df p�, yq
(see Proposition 1.2.30), one obtains from the subdifferential inequality (see (1.1.5)) that

0 ¥ Df px̂, yq �Df pp1� τq x̂� τy, yq ¥
A
rDf p�, yqs

1 pp1� τq x̂� τyq , τ px̂� yq
E
,

where rDf p�, yqs
1 � ∇f �∇f pyq. Therefore, for any τ P p0, 1s, one has

0 ¥ x∇f pp1� τq x̂� τyq �∇f pyq , x̂� yy

and, letting here τ Ñ 0�, one obtains (1.2.17) because the function

x∇f p�q �∇f pyq , x̂� yy

is continuous due to the norm-to-weak
�

continuity of the gradient ∇f (see Proposition

1.1.21). Now, suppose that x̂ P K satisfies (1.2.17). Then, for any y P K, one has again

from the subdifferentiability inequality (see (1.1.5)) that

Df py, xq �Df px̂, xq ¥
A
rDf p�, xqs

1 px̂q , y � x̂
E
� x∇f px̂q �∇f pxq , y � x̂y ¥ 0,

showing that x̂ minimizes Df py, �q over K, that is, x̂ � projfK pxq.
piiq ô piiiq It is sufficient to observe from the three point identity (see (1.2.2)) that

Df px̂, xq �Df py, x̂q �Df py, xq � x∇f px̂q �∇f pxq , x̂� yy
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for any y P K.

Computing Bregman projections may not be an easy task. In the special case where
f � }�}p, p P p1,�8q, and X is a uniformly convex and smooth Banach space (see Defini-
tion 1.1.33(i) and (iv)), Butnariu, Iusem and Resmerita found an explicit formula for the
Bregman projection onto hyperplane or half-space (cf. [36, Theorem 2, page 326]).

Proposition 1.2.36 (Bregman projection onto hyperplane). Let X be uniformly convex

and smooth Banach space and let fp � }�}p, p P p1,�8q. Denote

K � tz P X : xξ, zy � αu ,

where ξ P Xz  0
�(

and α P R. The following statements are true.

piq For any x P X the equation A
ξ, J

�

p pβξ � Jp pxqq
E
� α (1.2.18)

has solutions β such that sign β � sign pα � xξ, xyq.
piiq The Bregman projection projfK pxq is given by

projfK pxq � J
�

p pβξ � Jp pxqq (1.2.19)

with β P R being a solution of the equation (1.2.18).

piiiq Formula (1.2.19) remains true when K is the half-space tz P X : xξ, zy ¥ αu and β P R
is a nonnegative solution of (1.2.18).

Remark 1.2.37. As we already noted, when the Banach space X is a Hilbert space H and

f � }�}2, then the Bregman distance is the metric distance squared (see Remark 1.2.5).

Therefore in this setting the Bregman projection is exactly the metric projection. Here, for

each x P H and each nonempty, closed and convex subset K of H, the metric projection

PK pxq is defined as the unique point which satisfies

}x� PK pxq} � inf t}x� y} : y P Ku . 3

The metric projection is characterized in the following way (cf. [11, Theorem 3.14, page
46]).

Proposition 1.2.38 (Characterization of the metric projection). Let K be a nonempty,

closed and convex subset of H. Given x P H and z P K, then z � PK pxq if and only if

xx� z, y � zy ¤ 0, @y P K.
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As a consequence we have the following properties of the metric projection (cf. [11,
Proposition 4.8, page 61]).

Corollary 1.2.39 (Properties of the metric projection). Let K be a nonempty, closed and

convex subset of H. The following statements are true.

piq For any x, y P H we have

}PK pxq � PK pyq}2 ¤ xx� y, PK pxq � PK pyqy .

piiq For all x P H and y P K we have

}x� PK pxq}2 ¤ }x� y}2 � }y � PK pxq}2 .

piiiq If K is a closed subspace, then PK coincides with the orthogonal projection from

H onto K, that is, for any x P H, the vector x � PK pxq is orthogonal to K (i.e.,

xx� PK pxq , yy � 0 for each y P K).

Remark 1.2.40 (Special cases of the metric projection). Let K be a nonempty, closed

and convex subset with a particulary simple structure. Then the projection PK has a closed

form expression as described below.

piq If K � tx P H : }x� u} ¤ ru is a closed ball centered at u P H with radius r ¡ 0, then

PK pxq �
#
u� r px�uq

}x�u}
, x R K

x, x P K. (1.2.20)

piiq If K � ra,bs is a closed rectangle in Rn, where a � pa1, a2, . . . , anqT and b �
pb1, b2, . . . , bnqT , then, for any 1 ¤ i ¤ n, PK pxq has the ith coordinate given by

pPK pxqqi �

$'&'%
ai, xi   ai,

xi, xi P rai, bis ,
bi, xi ¡ bi.

(1.2.21)

piiiq If K � ty P H : xa, yy � αu is a hyperplane, with a �� 0 and α P R, then

PK pxq � x� xa, xy � α

}a}2 a. (1.2.22)
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pivq If K � ty P H : xa, yy ¤ αu is a closed half-space, with a � 0 and α P R, then

PK pxq �
#
x� xa,xy�α

}a}2
a, xa, xy ¡ α

x, xa, xy ¤ α.
(1.2.23)

pvq If K is the range of an m � n matrix A with full column rank, then PK pxq �
A
�
A

�
A
��1

A
�
x where A

�
is the adjoint of A. 3

The following example appears in [12, Definition 3.1, page 66].

Example 1.2.41 (Metric projection - intersection of two half-spaces). In the Hilbert space

setting, the orthogonal projection onto the intersection of two half-spaces

T � tx P H : xa1, xy ¤ b1, xa2, xy ¤ b2u pa1, a2 P H, b1, b2 P Rq

is given by the following explicit formula:

PT pxq �

$''''&''''%
x, α ¤ 0 and β ¤ 0,

x� pβ{νq a2, α ¤ π pβ{νq and β ¡ 0,

x� pα{µq a1, β ¤ π pα{µq and α ¡ 0,

x� pα{ρq pπa2 � νa1q � pβ{ρq pπa1 � µa2q , otherwise,

where here

π � xa1, a2y , µ � }a1}2 , ν � }a2}2 , ρ � µν � π2, α � xa1, xy � b1 and β � xa2, xy � b2.

1.2.4 Properties of Bregman Distances

With an admissible function f : X Ñ p�8,�8s (see Definition 1.2.1), we associate the
bifunction W f : dom f

� � dom f Ñ r0,�8s defined by

W f pξ, xq � f pxq � xξ, xy � f
� pξq . (1.2.24)

Now we list several properties of the bifunction W f (cf. [74, Proposition 1, page 5]).

Proposition 1.2.42 (Properties ofW f ). Let f : X Ñ p�8,�8s be an admissible function.

The following assertions are true.

piq The function W f p�, xq is convex for any x P dom f .

piiq W f p∇fpxq, yq � Df py, xq for any x P int dom f and y P dom f .
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piiiq For any ξ, η P dom f
�

and x P dom f , we have

W f pξ, xq �
A
η,
�
∇f�

	
pξq � x

E
¤ W f pξ � η, xq .

Proof. piq This is clear since f
�

is convex (see Remark 1.1.26(i)).

piiq Let x P int dom f and let y P dom f . It is known from Proposition 1.1.29(v) that

f pxq � f
� p∇f pxqq � x∇f pxq , xy .

Therefore

W f p∇f pxq , yq � f pyq � x∇f pxq , yy � f
� p∇f pxqq

� f pyq � x∇f pxq , yy � rx∇f pxq , xy � f pxqs
� f pyq � f pxq � x∇f pxq , y � xy
� Df py, xq .

piiiq Let x P dom f be given. Define a function g : X
� Ñ p�8,�8s by g pξq � W f pξ, xq.

Then

∇g pξq � ∇
�
f
� � x�, xy

	
pξq � ∇f� pξq � x.

Hence from the subdifferentiability inequality (see (1.1.5)) we get

g pξ � ηq � g pξq ¥
A
η,∇f� pξq � x

E
,

that is,

W f pξ, xq �
A
η,∇f� pξq � x

E
¤ W f pξ � η, xq

for all ξ, η P dom f
�
.

In order to prove several properties of Bregman distances we first prove simple observa-
tion of strictly convex functions which is essential for our later study (cf. [74, Lemma 6.1,
page 14]).

Lemma 1.2.43 (Property of strictly convex functions). Let f : X Ñ p�8,�8s be a

strictly convex function and let ttiuNi�1 � p0, 1q which satisfy
°N
i�1 ti � 1. Let txiuNi�1 be a

subset of int dom f and assume that

f

�
Ņ

i�1

tixi

�
�

Ņ

i�1

tif pxiq . (1.2.25)

Then x1 � x2 � . . . � xN .
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Proof. Assume, by way of contradiction, that xk � xl for some k, l P t1, 2, . . . , Nu. Then

from the strict convexity of f we get

f

�
tk

tk � tl
xk � tl

tk � tl
xl



  tk
tk � tl

f pxkq � tl
tk � tl

f pxlq .

Using this inequality, we obtain

f

�
Ņ

i�1

tixi

�
� f

�
ptk � tlq

�
tk

tk � tl
xk � tl

tk � tl
xl



�

¸
i�k,l

tixi

�

¤ ptk � tlq f
�

tk
tk � tl

xk � tl
tk � tl

xl



�

¸
i�k,l

tif pxiq

  ptk � tlq
�

tk
tk � tl

f pxkq � tl
tk � tl

f pxlq


�

¸
i�k,l

tif pxiq

�
Ņ

i�1

tif pxiq .

This contradicts the assumption (1.2.25).

Using the previous technical result we now prove the following lemma which concerns
the Bregman distance (cf. [74, Lemma 6.2, page 15]).

Lemma 1.2.44 (Basic property of Bregman distances). Let f : X Ñ p�8,�8s be a

Legendre function and let ttiuNi�1 � p0, 1q which satisfy
°N
i�1 ti � 1. Let z P X and let

txiuNi�1 be a finite subset in int dom f such that

Df

�
z,∇f�

�
Ņ

i�1

ti∇f pxiq
��

�
Ņ

i�1

tiDf pz, xiq . (1.2.26)

Then x1 � x2 � . . . � xN .

Proof. Equality (1.2.26) can be reformulated as follows (see Proposition 1.2.42(ii))

Df

�
z,∇f�

�
Ņ

i�1

ti∇f pxiq
��

� W f

�
Ņ

i�1

ti∇f pxiq , z
�
�

Ņ

i�1

tiDf pz, xiq . (1.2.27)

Now from the definition of W f (see (1.2.24)) and the definition of the Bregman distance

(see (1.2.1)) we get that the second equality in (1.2.27) can be written as

f pzq�f�

�
Ņ

i�1

ti∇f pxiq
�
�
C

Ņ

i�1

ti∇f pxiq , z
G
�

Ņ

i�1

ti pf pzq � f pxiq � x∇f pxiq , z � xiyq .
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Thus

f
�

�
Ņ

i�1

ti∇f pxiq
�
�

Ņ

i�1

ti px∇f pxiq , xiy � f pxiqq .

Since f pxiq � f
� p∇f pxiqq � x∇f pxiq , xiy for any 1 ¤ i ¤ N (see Proposition 1.1.29(v)),

we obtain

f
�

�
Ņ

i�1

ti∇f pxiq
�
�

Ņ

i�1

tif
� p∇f pxiqq .

Since f Legendre, f
�

is strictly convex on int dom f
�

and from Lemma 1.2.43 it follows that

∇f px1q � ∇f px2q � . . . � ∇f pxNq and therefore x1 � x2 � . . . � xN , as claimed.

The following proposition will be very useful for proving our main results. This result
shows an important property of totally convex functions (cf. [96, Proposition 2.2, page 3]).

Proposition 1.2.45 (Convergence in the Bregman distance). Let f : X Ñ p�8,�8s
be a convex function and take x P dom f . Then f is totally convex at x if and only if

limnÑ8Df pyn, xq � 0 implies that limnÑ8 }yn � x} � 0 for any sequence tynunPN � dom f .

Proof. Suppose that f is totally convex at x (see Definition 1.2.6). Take tynunPN � dom f

such that

lim
nÑ8

Df pyn, xq � 0.

Since, by definition, νf px, }yn � x}q ¤ Df pyn, xq for all n P N, it follows that

lim
nÑ8

νf px, }yn � x}q � 0. (1.2.28)

Suppose, by way of contradiction, that there exist a positive number ε and a subsequence

tynkukPN of tynunPN such that }ynk � x} ¥ ε for all k P N. It was shown in Proposition

1.2.11(iv) that the function νf px, �q is strictly increasing whenever x P int dom f . It is easy

to see that this result is still valid when x P dom f . Consequently, we get that

lim
kÑ8

νf px, }ynk � x}q ¡ νf px, εq ¡ νf px, 0q � 0,

contradicting (1.2.28). Conversely, suppose that there exists t0 ¡ 0 such that νf px, t0q � 0,

that is, there exists a sequence tynunPN � dom f such that }yn � x} � t0 and in addition

limnÑ8Df pyn, xq � 0. Then limnÑ8 }yn � x} � 0 yields t0 � 0, a contradiction. Therefore,

the function f is totally convex at x P dom f .

The following result (cf. [35, Lemma 2.1.2, page 67]) shows a strong connection between
the two concepts of sequential consistency (see Definition 1.2.20) and of total convexity on
bounded subsets (see Definition 1.2.10).
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Proposition 1.2.46 (Characterization of sequential consistency). A function f : X Ñ
p�8,�8s is totally convex on bounded subsets if and only if it is sequentially consistent.

Proof. Suppose that f is totally convex on bounded subsets (see Definition 1.2.10) and

suppose, by way of contradiction, that there exists two sequences txnunPN and tynunPN in

dom f and int dom f , respectively, such that txnunPN is bounded and limnÑ8Df pyn, xnq � 0

but t}yn � xn}unPN does not converge to zero. Then, there exists a positive number α and

subsequences txnkukPN of txnunPN and tynkukPN of tynunPN, such that α ¤ }ynk � xnk} for all

n P N. The set E of all xk’s is bounded since txnunPN is bounded. Therefore, for all n P N,

we have from Proposition 1.2.11(iv) that

Df pynk , xnkq ¥ νf pxnk , }ynk � xnk}q ¥ νf pxnk , αq ¥ inf
xPE

νf px, αq ,

which implies that infxPE νf px, αq � 0 and, thus, contradicts our assumption.

Conversely, suppose, by way of contradiction, that there exists a nonempty and bounded

subset E of dom f such that infxPE νf px, tq � 0 for some positive real number t. Then there

exists a sequence txnunPN contained in E such that, for each positive integer n, we have

1

n
¡ νf pxn, tq � inf tDf py, xnq : }y � xn} � tu .

Therefore, there exists a sequence tynunPN � dom f such that, for each integer n ¥ 1, one

has }yn � xn} � t and Df pyn, xnq   1{n. The sequence txnunPN is bounded because it is

contained in E. Also, we have that limnÑ8Df pyn, xnq � 0. Hence,

0   t � lim
nÑ8

}yn � xn} � 0

and this is a contradiction.

Now we prove several technical results which will be very useful in the proofs of our
main results (cf. [90, Lemma 3.1, page 31] and [74, Proposition 10, page 10]).

Proposition 1.2.47 (Boundedness property - left variable). Let f : X Ñ p�8,�8s
be a Legendre and totally convex function. Let x P int dom f and txnunPN � dom f . If

tDf pxn, xqunPN is bounded, then the sequence txnunPN is bounded too.

Proof. Since the sequence tDf pxn, xqunPN is bounded then there exists M ¡ 0 such that

Df pxn, xq   M for any n P N. Therefore, from (1.2.6), the sequence tνf px, }xn � x}qunPN
is bounded by M since

νf px, }xn � x}q ¤ Df pxn, xq ¤M. (1.2.29)

The function f is totally convex (see Definition 1.2.8), therefore from Proposition 1.2.11(iv)
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the function νf px, �q is strictly increasing and positive on p0,8q. This implies, in particular,

that νf px, 1q ¡ 0 for all x P X. Now suppose, by way of contradiction, that the sequence

txnunPN is not bounded. Then it contains a subsequence txnkukPN such that

lim
kÑ8

}xnk} � �8.

Consequently, limkÑ8 }xnk � x} � �8. This shows that tνf px, }xn � x}qunPN is not bounded.

Indeed, there exists some k0 ¡ 0 such that }xnk � x} ¡ 1 for all k ¡ k0 and then, from

Proposition 1.2.11(ii), we see

lim
kÑ8

νf px, }xnk � x}q ¥ lim
kÑ8

}xnk � x} νf px, 1q � �8,

because, as noted above, νf px, 1q ¡ 0. This contradicts (1.2.29). Hence the sequence

txnunPN is indeed bounded, as claimed.

Proposition 1.2.48 (Boundedness property - right variable). Let f : X Ñ p�8,�8s be

an admissible function such that ∇f� is bounded on bounded subsets of int dom f
�
. Let

x P dom f and txnunPN � int dom f . If tDf px, xnqunPN is bounded, so is the sequence

txnunPN.

Proof. Let β be an upper bound of the sequence tDf px, xnqunPN. Then from the definition

of W f (see (1.2.24)) and Proposition 1.2.42(ii) we obtain

f pxq � x∇f pxnq , xy � f� p∇f pxnqq � W f p∇f pxnq , xq � Df px, xnq ¤ β.

This implies that t∇f pxnqunPN is contained in the sub-level set, levψ¤ pβ � f pxqq, of the

function ψ :� f
� � x�, xy. Since the function f

�
is proper and lower semicontinuous (see

Remark 1.1.26), an application of the Moreau-Rockafellar Theorem (see [7, Fact 3.1, page

623]) shows that ψ is super-coercive (see Definition 1.2.33(ii)). Consequently, all sub-level

sets of ψ are bounded. Indeed, if this is not the case then there is a sequence tξnunPN in

levψ¤ pαq such that }ξn} Ñ 8 as nÑ 8. Then we have that

ψ pξnq
}ξn} ¤ α

}ξn} .

This, since ψ is super-coercive, implies that the left-hand side converges to 8 as n Ñ 8,

which is a contradiction since the right-hand side converges to zero.

Hence the sequence t∇f pxnqunPN is bounded. By hypothesis, ∇f�
is bounded on

bounded subsets of int dom f
�
. Therefore the sequence

 
xn � ∇f� p∇f pxnqq

(
nPN is bounded

too, as claimed.
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Remark 1.2.49. The previous result can be also proved by combining known results. More

precisely, according to [7, Theorem 3.3, page 624], f is super-coercive (see Definition

1.2.33(ii)) because dom∇f� � X
�

and ∇f�
is bounded on bounded subsets of X

�
. From

[7, Lemma 7.3(viii), page 642] it follows that Df px, �q is coercive (see Definition 1.2.33(i)).

If the sequence txnunPN were unbounded, then there would exist a subsequence txnkukPN with

}xnk} Ñ 8 as k Ñ 8. This, since Df px, �q is coercive, implies that Df px, xnkq Ñ 8 as

k Ñ 8, which is a contradiction. Thus txnunPN is indeed bounded, as claimed. 3

Proposition 1.2.50 (Property of Bregman distances). Let f : X Ñ R be a Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex on bounded

subsets of X. Suppose that a sequence txnunPN is bounded and tenunPN is a sequence which

satisfies limnÑ8 }en} � 0. If

lim
nÑ8

Df pxn�1, xnq � 0 (1.2.30)

then

lim
nÑ8

Df pxn�1, xn � enq � 0.

Proof. From Proposition 1.2.46, (1.2.30) and the fact that txnunPN is bounded, we have

lim
nÑ8

}xn�1 � xn} � 0. (1.2.31)

It follows from the definition of the Bregman distance (see (1.2.1)) that

Df pxn, xn � enq � f pxnq � f pxn � enq � x∇f pxn � enq , xn � pxn � enqy
� f pxnq � f pxn � enq � x∇f pxn � enq , eny .

The function f is bounded on bounded subsets of X and therefore ∇f is also bounded

on bounded subsets of X (see Proposition 1.1.15). In addition, f is uniformly Fréchet

differentiable on bounded subsets of X and therefore f is uniformly continuous on bounded

subsets of X (see Proposition 1.1.22(i)). Hence, since limnÑ8 }en} � 0, we have

lim
nÑ8

Df pxn, xn � enq � 0. (1.2.32)

The three point identity (see (1.2.2)) implies that

Df pxn�1, xn � enq � Df pxn�1, xnq �Df pxn, xn � enq
� x∇f pxnq �∇f pxn � enq , xn�1 � xny .
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Since ∇f is bounded on bounded subsets of X, we get from (1.2.30), (1.2.31) and (1.2.32)

lim
nÑ8

Df pxn�1, xn � enq � 0,

as required.

The following result is frequently used in this thesis because of the usage of the total
convexity property to prove strong convergence when weak convergence is already known
(cf. [90, Lemma 3.2, page 31]).

Proposition 1.2.51 (Strong converges result). Let f : X Ñ p�8,�8s be an admissible

and totally convex function, x0 P X and let K be a nonempty, closed and convex subset of

dom f . Suppose that a sequence txnunPN � dom f is bounded and any weak subsequential

limit of txnunPN belongs to K. If Df pxn, x0q ¤ Df

�
projfK px0q , x0

	
for any n P N, then

txnunPN converges strongly to projfK px0q.
Proof. Denote projfK px0q � ũ. The three point identity (see (1.2.2)) and the assumption

that Df pxn, x0q ¤ Df pũ, x0q yields

Df pxn, ũq � Df pxn, x0q �Df px0, ũq � x∇f pũq �∇f px0q , xn � x0y
¤ Df pũ, x0q �Df px0, ũq � x∇f pũq �∇f px0q , xn � x0y
� x∇f pũq �∇f px0q , ũ� x0y � x∇f pũq �∇f px0q , xn � x0y
� x∇f pũq �∇f px0q , ũ� xny . (1.2.33)

Since txnunPN is bounded, it has weakly convergent subsequence txnkukPN and denote its

weak limit by v. We know that v P K. It follows from (1.2.33) and Proposition 1.2.35(ii)

that

lim sup
kÑ8

Df pxni , ũq ¤ lim sup
kÑ8

x∇f pũq �∇f px0q , ũ� xnky � x∇f pũq �∇f px0q , ũ� vy ¤ 0.

Hence

lim
kÑ8

Df pxnk , ũq � 0.

Since f is totally convex (see Remark 1.2.9), Proposition 1.2.45 now implies that xnk Ñ ũ

as k Ñ 8. It follows that the whole sequence txnunPN converges strongly to ũ � projfK px0q,
as claimed.

Definition 1.2.52 (Weakly sequentially continuous). A mapping A : X Ñ X
�

is called

weakly sequentially continuous if xn á x implies that Axn á Ax.

Using this definition for the gradient∇f leads to the following result (cf. [74, Proposition
9, page 10]).
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Proposition 1.2.53 (Weak convergence result). Let f : X Ñ p�8,�8s be a Legendre

function such that ∇f is weakly sequentially continuous. Suppose that a sequence txnunPN
in int dom f is bounded and

lim
nÑ8

Df pu, xnq (1.2.34)

exists for any weak subsequential limit u of txnunPN. Then txnunPN converges weakly.

Proof. It is suffices to show that there is exactly one weak subsequential limit of txnunPN.

Since txnunPN is bounded and X is reflexive, there is at least one weak subsequential limit of

txnunPN. Assume that u and v are two weak subsequential limits of txnunPN. From (1.2.34)

we have that the limit

lim
nÑ8

pDf pu, xnq �Df pv, xnqq

exists. From the definition of the Bregman distance (see (1.2.1)) we get that

Df pu, xnq �Df pv, xnq � rf puq � f pxnq � x∇f pxnq , u� xnys
� rf pvq � f pxnq � x∇f pxnq , v � xnys
� f puq � f pvq � x∇f pxnq , v � uy

and therefore

lim
nÑ8

x∇f pxnq , v � uy

exists. Since u and v are weak subsequential limits of txnunPN, there are subsequences

txnkukPN and txnmumPN of txnunPN such that xnk á u and xnm á v as k Ñ 8 and mÑ 8,

respectively. Since ∇f is weakly sequentially continuous, we have that ∇f pxnkq á ∇f puq
and ∇f pxnmq á ∇f pvq as k Ñ 8 and mÑ 8, respectively. Then we have

x∇f puq , v � uy � lim
kÑ8

x∇f pxnkq , v � uy � lim
nÑ8

x∇f pxnq , v � uy
� lim

mÑ8
x∇f pxnmq , v � uy � x∇f pvq , v � uy .

Thus x∇f pvq �∇f puq , v � uy � 0 implies that u � v since f is strictly convex because f

is Legendre.

The following result will play a key tool in the proof of several results in this thesis.

Proposition 1.2.54 (Closed and convex half-space). Let f : X Ñ R be an admissible

function. Let u, v P X. Then the set

K � tz P X : Df pz, uq ¤ Df pz, vqu
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is a closed and convex half-space.

Proof. If K is empty then the result is obvious. Now assume that K is nonempty. Directly

from the definition of the Bregman distance (see (1.2.1)) we can write the set K in the

following way:

K � tz P X : x∇f pvq �∇f puq , zy ¤ x∇f puq , uy � x∇f pvq , vy � f puq � f pvqu .

This of course proves that K is a half-space. We first show that K is closed. Let tznunPN
be a sequence in K which converges strongly to z. From the definition of the Bregman

distance (see (1.2.1)), for any n P N, we have that

f pznq�f puq�x∇f puq , zn � uy � Df pzn, uq ¤ Df pzn, vq � f pznq�f pvq�x∇f pvq , zn � vy ,

that is,

f pvq � f puq ¤ x∇f puq , zn � uy � x∇f pvq , zn � vy .

Letting nÑ 8, we get that

f pvq � f puq ¤ x∇f puq , z � uy � x∇f pvq , z � vy ,

that is,

f pzq � f puq � x∇f puq , z � uy � Df pz, uq ¤ Df pz, vq � f pzq � f pvq � x∇f pvq , z � vy ,

which means that z P K, this proves that K is closed. Now we show that K is convex. Let

z1, z2 P K and t P p0, 1q. Denote zt � tz1 � p1� tq z2. Then

f pvq � f puq ¤ x∇f puq , z1 � uy � x∇f pvq , z1 � vy

and

f pvq � f puq ¤ x∇f puq , z2 � uy � x∇f pvq , z2 � vy .

If we multiply the first inequality by t and the second by p1� tq and summing up, then we

get

f pvq � f puq ¤ x∇f puq , zt � uy � x∇f pvq , zt � vy ,

that is,

f pztq � f puq � x∇f puq , zt � uy � Df pzt, uq ¤ Df pzt, vq � f pztq � f pvq � x∇f pvq , zt � vy

which means that zt P K. This proves that K is convex.
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1.3 Operators

In this section we introduce and study several classes of nonexpansive operators. The
theory of nonexpansive operators in Banach spaces is a recent branch of nonlinear functional
analysis. It has flourished during the last hundred years with many papers, results, and
still many unsolved problems. The simplest and perhaps the most useful result in Fixed
Point Theory is the Banach fixed point theorem from 1922. The theorem holds for any
complete metric space, in particular for Banach spaces.

Let K be a nonempty and convex subset of a Banach space X. An operator T : K Ñ K
is said to be nonexpansive (or 1-Lipschitz) if

}Tx� Ty} ¤ }x� y} (1.3.1)

for all x, y P K. The operator T is called a strict contraction if its Lipschitz constant
smaller than 1. The Banach fixed point theorem is the following result (cf. [56, Theorem
1.1, page 2]).

Theorem 1.3.1 (Banach’s fixed point theorem). Let K be a nonempty, closed, and convex

subset of a Banach space X. If T : K Ñ K is a strict contraction, then it has a unique

fixed point p and limnÑ8 T
nx � p for all x P K.

Remark 1.3.2 (Nonexpansive operator without fixed point). Theorem 1.3.1 requires the

Lipschitz constant, L, of T to satisfy L   1. If L � 1, i.e., T is nonexpansive (see (1.3.1)),

then T need not have a fixed point as the example T pxq � x� 1, x P R, shows. 3

Definition 1.3.3 (Fixed point property). We say that a closed and convex subset K of X

has the fixed point property for nonexpansive operators if every nonexpansive T : K Ñ K

has a fixed point.

Browder [28] proved in 1965 that if X is uniformly convex Banach space (see Definition
1.1.33(iv)) and K is closed, convex and bounded, then K has the fixed point property.
Notice that uniqueness may not hold as the example T pxq � x, x P K � r0, 1s, shows.

It turns out that nonexpansive fixed point theory in Hilbert spaces can be applied to the
solution of diverse problems such as finding zeroes of monotone mappings and solutions to
certain evolution equations, as well as solving convex feasibility (CFP), variational inequal-
ity (VIP) and equilibrium problems (EP) (these problems will be studied in full detail in
the following chapters of this dissertation). In some cases it is enough to assume that an
operator T : K Ñ K is quasi-nonexpansive, that is,

}p� Tx} ¤ }p� x} (1.3.2)

for all p P Fix pT q and x P K, where Fix pT q stands for the (nonempty) fixed point set of T .
There are many papers that deal with methods for finding fixed points of nonexpansive

and quasi-nonexpansive operators in Hilbert spaces. Another class of operators which is
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very useful in Fixed Point Theory is the class of firmly nonexpansive operators. Recall that
an operator T : K Ñ K is called firmly nonexpansive if

}Tx� Ty}2 ¤ xTx� Ty, x� yy (1.3.3)

for all x, y P K.

Remark 1.3.4. It is clear that the following implications hold:

firmly nonexpansive ùñ nonexpansive ùñ quasi-nonexpansive,

where the second implication is true only if Fix pT q � H. 3

When we try to extend this theory to Banach spaces we encounter some difficulties
because many of the useful examples of nonexpansive operators in Hilbert space are no
longer firmly nonexpansive or even nonexpansive in Banach spaces. For example, the
classical resolvent RA � pI � Aq�1 of a maximal monotone mapping A : H Ñ 2H and
the metric projection PK onto a nonempty, closed and convex subset K of H (for more
details see the relevant chapters). There are several ways to overcome these difficulties.
The way we choose in this thesis is to use Bregman distances (see (1.2.1)) with respect to
convex functions instead of with respect to the norm. Then the definitions of nonexpansive,
quasi-nonexpansive and firmly nonexpansive will be defined with respect to the Bregman
distance instead of with respect to the norm.

These definitions are useful in the setting of Banach spaces since we have several ex-
amples of operators which satisfy them, for example, the Bregman projection and the
f -resolvent (see (1.2.14) and (0.0.2), respectively). In addition, if we go back to Hilbert
space and take these new definitions with respect to the function f � p1{2q }�}2, then they
coincide with the usual definitions.

A naive way to define nonexpansive operator with respect to the Bregman distance is
by the following inequality

Df pTx, Tyq ¤ Df px, yq
for any x, y P K � int dom f .

But it turns out that this notion of nonexpansive operators with respect to Bregman
distances encounters several difficulties. This generalization does not satisfy any of the
properties that the classical nonexpansive operators do (for instance, the Bregman projec-
tion is not necessarily Bregman nonexpansive). Therefore it seems that the well-defined
notions with respect to the Bregman distance are firmly, strongly and quasi-nonexpansive.

1.3.1 Bregman Nonexpansive Operators

We fix an admissible function f (see Definition 1.2.1) and let K and S be two nonempty
subsets of int dom f . We next list significant types of nonexpansivity with respect to the
Bregman distance (see 1.2.1).
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Definition 1.3.5 (Bregman nonexpansivity). Let K and S be two nonempty subsets of

int dom f . We say that an operator T : K � int dom f Ñ int dom f is:

piq Bregman firmly nonexpansive (BFNE) if

x∇f pTxq �∇f pTyq , Tx� Tyy ¤ x∇f pxq �∇f pyq , Tx� Tyy (1.3.4)

for any x, y P K, or equivalently,

Df pTx, Tyq �Df pTy, Txq �Df pTx, xq �Df pTy, yq ¤ Df pTx, yq �Df pTy, xq .
(1.3.5)

piiq Quasi-Bregman firmly nonexpansive (QBFNE) with respect to S if

0 ¤ x∇f pxq �∇f pTxq , Tx� py @x P K, p P S, (1.3.6)

or equivalently,

Df pp, Txq �Df pTx, xq ¤ Df pp, xq . (1.3.7)

piiiq Quasi-Bregman nonexpansive (QBNE) with respect to S if

Df pp, Txq ¤ Df pp, xq , @x P K, p P S. (1.3.8)

The class of Bregman firmly nonexpansive operators was introduced first by Bauschke,
Borwein and Combettes in [8] (they call those operators Df -firmly nonexpansive).

The natural option for the set S in Definition 1.3.5 is the fixed point set of the operator.
Another option that seems to be important in applications is the asymptotic fixed point
set defined first by Reich in [88].

Definition 1.3.6 (Asymptotic fixed point). A point u P K is said to be an asymptotic

fixed point of T : K Ñ K if there exists a sequence txnunPN in K such that xn á u and

}xn � Txn} Ñ 0 as nÑ 8. We denote the asymptotic fixed point set of T by xFix pT q.
Remark 1.3.7 (Types of quasi-Bregman nonexpansivity). We will use the following par-

ticular cases.

piq An operator which satisfies (1.3.7) (or (1.3.8)) with respect to S :� Fix pT q is called

properly QBFNE (or properly QBNE).

piiq An operator which satisfies (1.3.7) (or (1.3.8)) with respect to S :� xFix pT q is called

strictly QBFNE (or strictly QBNE).

piiiq An operator which satisfies (1.3.7) (or (1.3.8)) with respect to S :� Fix pT q � xFix pT q
is called QBFNE (or QBNE).



Iterative Methods for Solving Optimization Problems 57

3

Another class of operators which was introduced in [46, 88] is the class of Bregman
strongly nonexpansive operators.

Definition 1.3.8 (Bregman strongly nonexpansive). We say that an operator T : K �
int dom f Ñ int dom f is Bregman strongly nonexpansive (BSNE) with respect to S � dom f

if

Df pp, Txq ¤ Df pp, xq (1.3.9)

for all p P S and x P K, and if whenever txnunPN � K is bounded, p P S, and

lim
nÑ8

pDf pp, xnq �Df pp, Txnqq � 0, (1.3.10)

it follows that

lim
nÑ8

Df pTxn, xnq � 0. (1.3.11)

Remark 1.3.9 (Types of Bregman strong nonexpansivity). We will use the following

particular cases.

piq An operator which satisfies (1.3.9)–(1.3.11) with respect to S :� Fix pT q is called

properly BSNE.

piiq An operator which satisfies (1.3.9)–(1.3.11) with respect to S :� xFix pT q is called

strictly BSNE (this class of operators was first defined in [88]).

piiiq An operator which satisfies (1.3.9)–(1.3.11) with respect to S :� Fix pT q � xFix pT q is

called BSNE. 3

The relations among all these classes of Bregman nonexpansive operators are summa-
rized in the following scheme.

Figure 1.3: Implications between types of Bregman nonexpansivity

Remark 1.3.10 (Particular cases - nonexpansivity). Assume that f � }�}2 and the space

X is a Hilbert space H. In this case we have that ∇f � 2I (where I is the identity
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operator) and Df py, xq � }x� y}2 (see Remark 1.2.5). Thence, Definition 1.3.5(i)-(iii)

with S � Fix pT q implies the known classes of nonexpansive operators. 3

Definition 1.3.11 (Nonexpansivity). Let K be a subset of H. We say that an operator

T : K Ñ H is:

(i’) firmly nonexpansive (FNE) if

}Tx� Ty}2 ¤ xx� y, Tx� Tyy , @x, y P H; (1.3.12)

(ii’) quasi-firmly nonexpansive (QFNE) if

}Tx� p}2 � }Tx� x}2 ¤ }x� p}2 , (1.3.13)

for any x P H and p P Fix pT q, or equivalently,

0 ¤ xx� Tx, Tx� py ; (1.3.14)

(iii’) quasi-nonexpansive (QNE) if

}Tx� p} ¤ }x� p} , @x P H, p P Fix pT q . (1.3.15)

The analog of Definition 1.3.8 for the particular case when f � }�}2 and the space X
is a Hilbert space H is presented in the following definition. This latter class of operators
was first studied in [32].

Definition 1.3.12 (Strong nonexpansivity). Let K be a subset of H. We say that an

operator T : K Ñ H is strongly nonexpansive (SNE) if it nonexpansive and for any two

bounded sequences txnunPN and tynunPN satisfying

lim
nÑ8

p}xn � yn} � }Txn � Tyn}q � 0, (1.3.16)

it follows that

lim
nÑ8

ppxn � ynq � pTxn � Tynqq � 0. (1.3.17)

Since the norm variant does not follow from the Bregman case as do the other classes
we emphasize the connection between the two classes of Bregman strongly nonexpansive
and strongly nonexpansive.

Remark 1.3.13 (Connection between BSNE and SNE operators). Let K be a subset of

H. When f � }�}2 and S � Fix pT q, Definition 1.3.12 means that T : K Ñ H is SNE

with respect to Fix pT q if T is QNE (see (1.3.15)) and if for any bounded sequence txnunPN
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satisfying

lim
nÑ8

�}xn � p}2 � }Txn � p}2� � 0 (1.3.18)

for all p P Fix pT q, it follows that

lim
nÑ8

}xn � Txn} � 0. (1.3.19)

One is able to show that, in this case, strong nonexpansivity implies properly Bregman strong

nonexpansivity. Indeed, if T is SNE, the quasi-nonexpansivity is guaranteed by definition.

Now, given a bounded sequence txnunPN satisfying (1.3.18) for some p P Fix pT q, we have

lim
nÑ8

p}xn � p} � }Txn � p}q � 0. (1.3.20)

By taking in Definition 1.3.12 the sequence tynunPN to be the constant sequence defined by

yn � p for all n P N, we see that (1.3.19) follows from (1.3.17), so T is properly BSNE, as

claimed. The converse does not hold in general, mainly because nonexpansivity is required.

Note that if S � xFix pT q, the previous implication is no longer true. However, in the

finite dimensional case, H � Rn, if T is continuous, then Fix pT q � xFix pT q. This happens,

in particular, when T is SNE. Therefore, in finite dimensions, any SNE mapping (called

paracontraction in [46]) is also strictly BSNE.

To sum up, we can say that Bregman strong nonexpansivity turns out to be a general-

ization of strong nonexpansivity. 3

Definition 1.3.14 (Asymptotically regular). An operator T : X Ñ X is called asymptoti-

cally regular if for any x P X we have

lim
nÑ8

��T n�1x� T nx
�� � 0. (1.3.21)

1.4 Monotone Mappings

Definition 1.4.1 (Notions of mappings). Let A : X Ñ 2X
�

be a mapping.

piq The domain of A is the set

domA � tx P X : Ax � Hu .

piiq The range of A is the set

ranA � tξ P Ax : x P domAu .
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piiiq The graph of A is the subset of X �X
�

defined by

graphA �
!
px, ξq P X �X

�

: ξ P Ax
)
.

Definition 1.4.2 (Monotone mapping). Let A : X Ñ 2X
�

be a mapping.

piq The mapping A is said to be monotone if for any x, y P domA, we have

ξ P Ax and η P Ay ùñ xξ � η, x� yy ¥ 0. (1.4.1)

piiq The mapping A is called strictly monotone if the inequality in (1.4.1) is strict whenever

x � y.

Example 1.4.3 (Monotonicity of the subdifferential mapping). Let f : X Ñ p�8,�8s be

a proper and convex function. The subdifferential mapping Bf : X Ñ 2X
�

(see Definition

1.1.12) is monotone since for any x, y P dom Bf , any ξ P Bf pxq and for any η P Bf pyq, we

have from the subdifferential inequality (see (1.1.5)) that

f pyq � f pxq ¥ xξ, y � xy and f pxq � f pyq ¥ xη, x� yy .

Summing up these two inequalities we get that xξ � η, x� yy ¥ 0 for any x, y P dom Bf ,

that is, Bf is a monotone mapping (see (1.4.1)). If f is a strictly convex function then Bf
is strictly monotone. Indeed, if ξ P Bf pxq then again from (1.1.5) we obtain

f px� t py � xqq � f pxq ¥ xξ, x� t py � xq � xy @t ¡ 0, y P X.

Hence

f � px, y � xq � lim
t×0

f px� t py � xqq � f pxq
t

¥ xξ, y � xy , y P X.

From Proposition 1.1.10(ii) we get that

xξ, y � xy ¤ f � px, y � xq   f pyq � f pxq .

In the same way, if η P Bf pyq, then xη, x� yy ¤ f � py, x� yq   f pxq� f pyq. Adding these

two inequalities and we get that

xξ � η, x� yy ¡ 0, @x, y P dom Bf.

Hence Bf is a strictly monotone mapping (see Definition 1.4.2(ii)).
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Example 1.4.4 (Monotonicity of an increasing one variable function). Increasing function

f : RÑ R determines a single-valued monotone mapping which is defined by Ax � tf pxqu.
Definition 1.4.5 (Inverse mapping). Let A : X Ñ 2X

�

be mapping. The inverse mapping

A�1 : X
� Ñ 2X is defined by

A�1ξ � tx P X : ξ P Axu .

Remark 1.4.6 (Monotonicity of inverse mapping). A mapping A : X Ñ 2X
�

is monotone

if and only if the inverse mapping A�1 is monotone. 3

Definition 1.4.7 (Demi-closed). A mapping A : X Ñ 2X
�

is called demi-closed at x P
domA if

xn ÝÑ x

ξn P Axn
ξn á ξ

,/./- ùñ ξ P Ax. (1.4.2)

Definition 1.4.8 (Hemicontinuous). The mapping A : X Ñ X� is called hemicontinuous

if for any x P domA we have

x� tny P domA, y P X
limnÑ8 tn � 0�

+
ùñ A px� tnyq á Ax. (1.4.3)

Definition 1.4.9 (Maximal monotone). A mapping A : X Ñ 2X
�

is called maximal

monotone if it is monotone and there does not exist a monotone mapping B : X Ñ 2X
�

such that graphA � graphB.

Remark 1.4.10 (Maximal monotonicity of the inverse mapping). Note that a mapping

A : X Ñ 2X
�

is maximal monotone if and only if A�1 is maximal monotone mapping. 3

Let A be a monotone mapping. A maximal monotone mapping Ā such that graphA �
graph Ā is called a maximal monotone extension of A.

Proposition 1.4.11 (Maximal monotone extension). If A : X Ñ 2X
�

is a monotone

mapping, then there exists at least one maximal monotone extension Ā : X Ñ 2X
�

of A.

In the case of demi-closed and monotone mappings which are closed- and convex-valued
(that is, Ax is closed and convex for any x P domA), any two maximal monotone extensions
differ on the boundary of their domain only. This means that if the domain of a demi-closed
and monotone mapping A which is closed- and convex-valued, is an open set, then it has a
single maximal monotone extension (cf. [1, Lemma 2.2, page 7]).

Proposition 1.4.12 (Uniqueness of maximal monotone extension). Let A : X Ñ 2X
�

be a

monotone and demi-closed mapping. If x P int domA and if Ax is closed and convex, then

any maximal monotone extension Ā of A satisfies Āx � Ax.
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The following result provides a characterization of maximal monotone mappings.

Proposition 1.4.13 (Characterization of maximal monotonicity). A mapping A : X Ñ
2X

�

is maximal monotone if and only if

@ py, ηq P graphA

xξ � η, x� yy ¥ 0

+
ùñ ξ P Ax.

Corollary 1.4.14 (Maximal monotonicity implies demi-closedness). Any maximal mono-

tone mapping A : X Ñ 2X
�

is demi-closed.

Maximal monotone mappings are with closed and convex values as shown in the following
result (cf. [82, page 105]).

Proposition 1.4.15 (Closed and convex values). If a mapping A : X Ñ 2X
�

is maximal

monotone then, for any x P domA, the set Ax is closed and convex in X
�
.

Definition 1.4.16 (Surjectivity). A mapping A : X Ñ 2X
�

is called surjective if for each

element ξ P X�
there exists an element x P domA such that ξ P Ax, i.e., ranA � X

�
.

The following result gives a characterization of maximal monotone mappings by means
of surjectivity (cf. [47, Theorem 3.11, page 166]).

Proposition 1.4.17 (Surjectivity result). Let X be a strictly convex and smooth Banach

space and let A : X Ñ 2X
�

be a monotone mapping. Then A is a maximal monotone

mapping if and only if A� JX is surjective.

The following is a generalization of this result (cf. [15, Corollary 2.3, page 59]).

Proposition 1.4.18 (General surjectivity result). Let A : X Ñ 2X
�

be a monotone map-

ping. Assume that f : X Ñ R is a Gâteaux differentiable, strictly convex, and cofinite

function. Then A is maximal monotone if and only if ran pA�∇fq � X
�
.

Among the most important examples of maximal monotone mappings are the subdif-
ferential of proper, convex and lower semicontinuous functions. Maximal monotonicity of
such subdifferentials was shown in [98] (see also [82, Theorem 2.13, page 124]).

Proposition 1.4.19 (Maximal monotonicity of the subdifferential mapping). Let f be

a proper, convex and lower semicontinuous function. Then the subdifferential mapping

Bf : X Ñ 2X
�

is maximal monotone.

Definition 1.4.20 (Sum of monotone mappings). The sum of two mappings A1 : X Ñ 2X
�

and A2 : X Ñ 2X
�

is defined by

pA1 � A2qx :�
#

H ifx R pdomA1q
� pdomA2q

A1x� A2x ifx P pdomA1q
� pdomA2q

,
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where the addition defined by

A1x� A2x � tξ � η : ξ P A1x, η P A2xu .

Remark 1.4.21. Note that the set of all monotone mappings is closed under addition. 3

In the spirit of the previous remark, the problem of under which conditions, the sum of
two maximal monotone mappings is again a maximal monotone mapping is essential and
is of interest for many researchers. For instance, we present the following result in this
direction (cf. [82, Theorem 3.6, page 142]).

Proposition 1.4.22 (Maximality of the sum of two mappings). Let A : X Ñ 2X
�

and

B : X Ñ 2X
�

be two maximal monotone mappings. If

int domA
£

domB � H,

then the sum A�B is maximal monotone too.

Corollary 1.4.23 (Maximality of the sum of two subdifferential mappings). Suppose that

f : X Ñ p�8,�8s and g : X Ñ p�8,�8s are two proper, convex and lower semicontin-

uous functions, such that the domain of one of them intersects the interior of the domain

of the other. Then

B pf � gq pxq � Bf pxq � Bg pxq @x P dom pf � gq.

The following concept of monotonicity generalizes the classical notion.

Definition 1.4.24 (T -monotonicity). Let A : X Ñ 2X
�

be a mapping, K � domA and let

T : K Ñ X be an operator. We say that the mapping A is monotone with respect to the

operator T , or T -monotone, if

0 ¤ xξ � η, Tx� Tyy (1.4.4)

for any x, y P K, where ξ P Ax and η P Ay.

Clearly, when T � I the classes of monotone and I-monotone operators coincide.

Definition 1.4.25 (Set-valued indicator). The set-valued indicator of a subset S of X is

defined by

IS : x ÞÑ
$&%t0u , x P S;

H, otherwise.

The concept of T -monotonicity can also be defined by using this set-valued indicator
(as kindly suggested by Heinz H. Bauschke).
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Remark 1.4.26 (T -monotonicity via set-valued indicator). A mapping A : X Ñ 2X
�

is

T -monotone if and only if T � �A�1 � IApKq
�

is monotone. 3

Remark 1.4.27 (Other T -monotonicity concept). An unrelated concept of a T -monotone

operator can be found in several papers of Calvert (see, for example, [43]). 3

Remark 1.4.28 (d-accretive). Let F : X Ñ X be an operator which satisfies

0 ¤ xJX pxq � JX pyq , Fx� Fyy (1.4.5)

for any x, y P dom f . An operator F which satisfies inequality (1.4.5) is called d-accretive

(see [2]). Clearly in our terms JX is F -monotone whenever F is d-accretive. 3

1.4.1 Bregman Inverse Strongly Monotone Mappings

This class of mappings was introduced by Butnariu and Kassay (see [38]). We assume that
the Legendre function f (see Definition 1.2.7) satisfies the following range condition:

ran p∇f � Aq � ran∇f. (1.4.6)

Definition 1.4.29 (Bregman inverse strongly monotone). Let Y be a subset of X. A

mapping A : X Ñ 2X
�

is called Bregman inverse strongly monotone (BISM for short) on

the set Y if

Y
£
pdomAq

£
pidomfq � H (1.4.7)

and for any x, y P Y � pint dom fq and ξ P Ax, η P Ay, we haveA
ξ � η,∇f� p∇f pxq � ξq �∇f� p∇f pyq � ηq

E
¥ 0. (1.4.8)

From the definition of the bifunction W f (see (1.2.24)) it is easy to check that (1.4.8) is
equivalent to

W f
�
ξ,∇f� p∇f pxq � ξq

	
�W f

�
η,∇f� p∇f pyq � ηq

	
¤ W f

�
ξ,∇f� p∇f pyq � ηq

	
�W f

�
η,∇f� p∇f pxq � ξq

	
.

Remark 1.4.30 (Particular cases of BISM). The BISM class of mappings is a generaliza-

tion of the class of firmly nonexpansive operators in Hilbert spaces (see (1.3.12)). Indeed,

if f � p1{2q }�}2, then ∇f � ∇f� � I, where I is the identity operator, and (1.4.8) becomes

xξ � η, x� ξ � py � ηqy ¥ 0, (1.4.9)
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that is,

}ξ � η}2 ¤ xx� y, ξ � ηy . (1.4.10)

In other words, A is a (single-valued) firmly nonexpansive operator.

It is interesting to note that if, instead of the function f � p1{2q }�}2, we take the Hilbert

space H with the Legendre function p1{ p2αqq }�}2 for some positive real number α, then

the inequality in (1.4.8) becomes the usual α-inverse strongly monotone operator, that is,

operator which satisfies

α }Tx� Ty}2 ¤ xTx� Ty, x� yy

for all x, y P K. 3

The following example shows that a BISM mapping might not be maximal monotone
(see [66, Example 1, page 1324]).

Example 1.4.31 (BISM mapping which is not maximal monotone). Let K be any proper,

closed and convex subset of X. Let A : X Ñ 2X
�

be any BISM mapping with domA � K

such that Ax is a bounded set for any x P X. Then A is not maximal monotone. Indeed,

clK � K � X, which means that bdrK � clKzintK � H. Now for any x P bdrK we

know that Ax is a nonempty and bounded set. On the other hand, Ax is unbounded whenever

A is maximal monotone, since we know that the image of a point on the boundary of the

domain of a maximal monotone mapping, if non-empty, is unbounded because it contains

a half-line.

A very simple particular case is the following one: X is a Hilbert space, f � p1{2q }�}2
(in this case BISM reduces to firm nonexpansivity (see Remark 1.4.30), K is a nonempty,

closed, convex and bounded subset of X (e.g., a closed ball) and A is any single-valued

BISM operator on K (e.g., the identity) and H otherwise.

Problem 1. Since a BISM mapping need not be maximal monotone, it is of interest to

determine if it must be a monotone mapping.

Remark 1.4.32 (BISM is not necessarily FNE). It is important to note that a mapping

A (even in a Hilbert space provided that f is not p1{2q }�}2) does not have to be firmly

nonexpansive (see (1.3.12)) in order to be BISM on Y (see, for example, [38, pages 2108-

2109]). 3



Chapter 2

Fixed Point Properties of Bregman

Nonexpansive Operators

In this chapter we present properties of Bregman nonexpansive operators from the point
of view of their fixed points. We will present properties of the fixed point set of Bregman
nonexpansive operators. In addition, existence results (sufficient and necessary conditions)
are presented too. A characterization of BFNE operators is presented. It leads us to finding
many examples of BFNE operators in Euclidean spaces and in Hilbert spaces.

2.1 Properties of Bregman Nonexpansive Operators

We will start with the following simple property (cf. [91, Lemma 15.5, page 305]) of the
fixed point set of properly QBNE operators (see Definition 1.3.5 and Remark 1.3.7).

Proposition 2.1.1 (Fixed point set is closed and convex). Let f : X Ñ p�8,�8s be a

Legendre function. Let K be a nonempty, closed and convex subset of int dom f , and let

T : K Ñ K be a properly QBNE operator. Then Fix pT q is closed and convex.

Proof. If Fix pT q is empty then the result follows immediately. Otherwise we assume that

Fix pT q is nonempty. We first show that Fix pT q is closed. To this end, let txnunPN be a

sequence in Fix pT q such that xn Ñ x̄ as n Ñ 8. From the definition of strictly QBNE

operator (see (1.3.8)) it follows that

Df pxn, T x̄q ¤ Df pxn, x̄q (2.1.1)

for any n P N. Since f is continuous at x̄ P K � int dom f (see Corollary 1.1.7) and xn Ñ x̄

66
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as nÑ 8, it follows that

lim
nÑ8

Df pxn, T x̄q � lim
nÑ8

rf pxnq � f pT x̄q � x∇f pT x̄q , xn � T x̄ys
� rf px̄q � f pT x̄q � x∇f pT x̄q , x̄� T x̄ys � Df px̄, T x̄q .

On the other hand, replacing T x̄ with x̄, one gets

lim
nÑ8

Df pxn, x̄q � Df px̄, x̄q � 0.

Thus (2.1.1) implies that Df px̄, T x̄q � 0 and therefore it follows from Proposition 1.2.4

that x̄ � T x̄. Hence x̄ P Fix pT q and this means that Fix pT q is closed, as claimed.

Next we show that Fix pT q is convex. For any x, y P Fix pT q and t P p0, 1q, put z �
tx � p1� tq y. We have to show that Tz � z. Indeed, from the definition of the Bregman

distance (see (1.2.1)) and the definition of strictly QBNE operator (see (1.3.8)) it follows

that

Df pz, Tzq � f pzq � f pTzq � x∇f pTzq , z � Tzy
� f pzq � f pTzq � x∇f pTzq , tx� p1� tq y � Tzy
� f pzq � tDf px, Tzq � p1� tqDf py, Tzq � tf pxq � p1� tq f pyq
¤ f pzq � tDf px, zq � p1� tqDf py, zq � tf pxq � p1� tq f pyq
� x∇f pzq , z � tx� p1� tq yy � 0.

Again from Proposition 1.2.4 it follows that Tz � z. Therefore Fix pT q is also convex, as

asserted.

Next we show that if f is an admissible function (see Definition 1.2.1) which is bounded
and uniformly Fréchet differentiable on bounded subsets of X (see Definition 1.1.20(ii)),
and T is a BFNE operator (see Definition 1.3.5(i)), then the fixed point set of T coincides
with the set of its asymptotic fixed points (cf. [91, Lemma 15.6, page 306]).

Proposition 2.1.2 (Sufficient condition for xFix pT q � Fix pT q). Let f : X Ñ R be an ad-

missible function which is uniformly Fréchet differentiable and bounded on bounded subsets

of X. Let K be a nonempty, closed and convex subset of X and let T : K Ñ int dom f be

a BFNE operator. Then xFix pT q � Fix pT q.

Proof. The inclusion Fix pT q � xFix pT q is obvious. To show that Fix pT q � xFix pT q, let

u P xFix pT q be given. Then, from Definition 1.3.6 we get a sequence txnunPN in K such that

both xn á u and }xn � Txn} Ñ 0 as n Ñ 8. Since f is bounded and uniformly Fréchet

differentiable on bounded subsets of X, ∇f is uniformly continuous on bounded subsets of
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X (see Proposition 1.1.22(ii)). Hence }∇f pTxnq �∇f pxnq}� Ñ 0 as nÑ 8 and therefore

lim
nÑ8

x∇f pTxnq �∇f pxnq , yy � 0 (2.1.2)

for any y P X, and

lim
nÑ8

x∇f pTxnq �∇f pxnq , xny � 0 (2.1.3)

because txnunPN is bounded as a weakly convergent sequence. On the other hand, since T

is a BFNE operator (see (1.3.4)), we have

0 ¤ Df pTxn, uq �Df pTxn, Tuq �Df pTu, xnq �Df pTu, Txnq . (2.1.4)

From the three point identity (see (1.2.2)) and (2.1.4) we now obtain

Df pu, Tuq � Df pTxn, Tuq �Df pTxn, uq � x∇f puq �∇f pTuq , Txn � uy
¤ Df pTu, xnq �Df pTu, Txnq � x∇f puq �∇f pTuq , Txn � uy
� rf pTuq � f pxnq � x∇f pxnq , Tu� xnys�
rf pTuq � f pTxnq � x∇fpTxnq, Tu� Txnys
� x∇f puq �∇f pTuq , Txn � uy
� f pTxnq � f pxnq � x∇f pxnq , Tu� xny � x∇f pTxnq , Tu� Txny
� x∇f puq �∇f pTuq , Txn � uy
� � rf pxnq � f pTxnq � x∇f pTxnq , xn � Txnys � x∇f pTxnq , xn � Txny
� x∇f pxnq , Tu� xny � x∇f pTxnq , Tu� Txny
� x∇f puq �∇f pTuq , Txn � uy
� �Df pxn, Txnq � x∇f pTxnq , xn � Txny � x∇f pxnq , Tu� xny
� x∇f pTxnq , Tu� Txny � x∇f puq �∇f pTuq , Txn � uy
¤ � x∇f pTxnq , xn � Txny � x∇f pxnq , Tu� xny
� x∇f pTxnq , Tu� Txny � x∇f puq �∇f pTuq , Txn � uy
� x∇f pxnq �∇f pTxnq , xn � Tuy � x∇f puq �∇f pTuq , Txn � xny
� x∇f puq �∇f pTuq , xn � uy .

From (2.1.2), (2.1.3), and the hypotheses that both xn á u and }xn � Txn} Ñ 0 as nÑ 8,

we get that Df pu, Tuq ¤ 0. Consequently Df pu, Tuq � 0 and from Proposition 1.2.4 it

follows that Tu � u. That is, u P Fix pT q, as required.

Remark 2.1.3 (BFNE is BSNE). From Proposition 2.1.2 it follows that if an admissible
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function f : X Ñ R is uniformly Fréchet differentiable and bounded on bounded subsets of

X, then any BFNE operator is also a BSNE operator (see Figure 1.3). 3

Now we obtain necessary and sufficient conditions for BFNE operators to have a (com-
mon) fixed point in general reflexive Banach spaces. We begin with a theorem for a single
strictly QBNE operator; hence it also holds for a BFNE operator.

Proposition 2.1.4 (Necessary condition for xFix pT q to be nonempty). Let f : X Ñ
p�8,�8s be a Legendre function such that ∇f�

is bounded on bounded subsets of int dom f
�
.

Let K be a nonempty subset of int dom f and let T : K Ñ K be a strictly QBNE operator.

If xFix pT q is nonempty, then tT nyunPN is bounded for each y P K.

Proof. We know from the definition of strictly QBNE operators (see (1.3.8)) that

Df pp, Tyq ¤ Df pp, yq

for any p P xFix pT q and y P K. Therefore

Df pp, T nyq ¤ Df pp, yq

for any p P xFix pT q and y P K. This inequality shows that the nonnegative sequence

tDf pp, T nyqunPN is bounded. Now Proposition 1.2.48 implies that the sequence tT nyunPN
is bounded too, as claimed.

A result in this spirit for properly QBNE operators was first proved in [91, Theorem
15.7, page 307].

Corollary 2.1.5 (Necessary condition for Fix pT q to be nonempty). Let f : X Ñ p�8,�8s
be a Legendre function such that ∇f�

is bounded on bounded subsets of int dom f
�
. Let K

be a nonempty subset of int dom f and let T : K Ñ K be a properly QBNE operator. If

Fix pT q is nonempty, then tT nyunPN is bounded for each y P K.

Proof. Follow the arguments in the proof of Proposition 2.1.4 and replace p P xFix pT q with

p P Fix pT q.
For an operator T : K Ñ K, let Sn pzq :� p1{nq°n

k�1 T
kz for all z P K. The next result

give a sufficient condition for BFNE operators to have a fixed point (cf. [91, Theorem 15.8,
page 310]).

Proposition 2.1.6 (Sufficient condition for Fix pT q to be nonempty). Let f : X Ñ
p�8,�8s be an admissible function. Let K be a nonempty, closed and convex subset

of int dom f and let T : K Ñ K be a BFNE operator. If there exists y P K such that

}Sn pyq} Û 8 as nÑ 8, then Fix pT q is nonempty.
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Proof. Suppose that there exists y P K such that }Sn pyq} Û 8 as n Ñ 8. Let x P K,

k P N and n P N be given. Since T is BFNE (see (1.3.4)), we have

Df

�
T k�1y, Tx

��Df

�
Tx, T k�1y

� ¤ Df

�
Tx, T ky

��Df

�
T k�1y, x

�
. (2.1.5)

From the three point identity (see (1.2.2)) we get that

Df

�
T k�1y, Tx

��Df

�
Tx, T k�1y

� ¤ Df

�
Tx, T ky

��Df

�
T k�1y, Tx

��Df pTx, xq
� @
∇f pTxq �∇f pxq , T k�1y � Tx

D
.

This implies that

0 ¤ Df pTx, xq �Df

�
Tx, T ky

��Df

�
Tx, T k�1y

�� @
∇f pTxq �∇f pxq , T k�1y � Tx

D
.

Summing up these inequalities with respect to k � 0, 1, . . . , n� 1, we now obtain

0 ¤ nDf pTx, xq �Df pTx, yq �Df pTx, T nyq �
C
∇f pTxq �∇f pxq ,

n�1̧

k�0

T k�1y � nTx

G

where T 0 � I is the identity operator. Dividing this inequality by n, we have

0 ¤ Df pTx, xq � 1

n
rDf pTx, yq �Df pTx, T nyqs � x∇f pTxq �∇f pxq , Sn pyq � Txy

and

0 ¤ Df pTx, xq � 1

n
Df pTx, yq � x∇f pTxq �∇f pxq , Sn pyq � Txy . (2.1.6)

Since }Sn pyq} Û 8 as n Ñ 8 by assumption, there exists a subsequence tSnk pyqukPN of

tSn pyqunPN such that Snk pyq á u P K as k Ñ 8. Letting k Ñ 8 in (2.1.6), we obtain

0 ¤ Df pTx, xq � x∇f pTxq �∇f pxq , u� Txy . (2.1.7)

Setting x � u in (2.1.7), we get from the four point identity (see (1.2.3)) that

0 ¤ Df pTu, uq � x∇f pTuq �∇f puq , u� Tuy
� Df pTu, uq �Df pu, uq �Df pu, Tuq �Df pTu, uq �Df pTu, Tuq
� �Df pu, Tuq .

Hence Df pu, Tuq ¤ 0 and so Df pu, Tuq � 0. It now follows from Proposition 1.2.4 that

Tu � u. That is, u P Fix pT q.

Remark 2.1.7 (Non-spreading). As can be seen from the proof of Proposition 2.1.6, the
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result remains true for those operators which only satisfy (2.1.5). In the special case where

f � p1{2q }�}2, such operators are called non-spreading. For more information see [69]. 3

We remark in passing that we still do not know if the analog of Proposition 2.1.6 for
nonexpansive operators holds outside Hilbert space (cf. [84, Remark 2, page 275]).

The following corollary brings out conditions for the fixed point property of BFNE
operators (cf. [91, Corollary 15.11, page 309]).

Corollary 2.1.8 (Fixed point property of BFNE operators). Let f : X Ñ p�8,�8s be

an admissible function. Every nonempty, bounded, closed and convex subset of int dom f

has the fixed point property for BFNE self-operators.

In order to prove a common fixed point theorem, we need the following lemma.

Lemma 2.1.9 (Common fixed point - finite family). Let f : X Ñ p�8,�8s be an admis-

sible function. Let K be a nonempty, bounded, closed and convex subset of int dom f . Let

tT1, T2, . . . , TNu be a commutative finite family of N BFNE operators from K into itself.

Then tT1, T2, . . . , TNu has a common fixed point.

Proof. The proof is by way of induction over N . We first show the result for the case

N � 2. From Proposition 2.1.1 and Corollary 2.1.8, Fix pT1q is nonempty, bounded, closed

and convex. It follows from T1 � T2 � T2 � T1 that if u P Fix pT1q, then we have T1 � T2u �
T2 �T1u � T2u. Thus T2u P Fix pT1q. Hence the restriction of T2 to Fix pT1q is a BFNE self-

operator. From Corollary 2.1.8, T2 has a fixed point in Fix pT1q, that is, we have v P Fix pT1q
such that T2v � v. Consequently, v P Fix pT1q

�
Fix pT2q.

Suppose that for some N ¥ 2, F � �N
i�1 Fix pTiq is nonempty. Then F is a nonempty,

bounded, closed and convex subset of K and the restriction of TN�1 to F is BFNE self-

operator. From Corollary 2.1.8, TN�1 has a fixed point in F . This shows that F
�

Fix pTN�1q
is nonempty. This complete the proof.

Using Lemma 2.1.9, we finally prove the following common fixed point theorem for a
commutative family of BFNE operators (cf. [91, Theorem 15.12, page 309]).

Theorem 2.1.10 (Common fixed point - infinite family). Let f : X Ñ p�8,�8s be an

admissible function. Let K be a nonempty, bounded, closed and convex subset of int dom f .

Let tTαuαPA be a commutative family of BFNE operators from K into itself. Then the

family tTαuαPA has a common fixed point.

Proof. From Proposition 2.1.1 we know that each Fix pTαq, α P A, is closed and convex sub-

set of K. Since X is reflexive and K is bounded, closed and convex, K is weakly compact.

Thus, to show that
�
αPA Fix pTαq is nonempty, it is sufficient to show that tFix pTαquαPA

has the finite intersection property. From Lemma 2.1.9 we know that tFix pTαquαPA has

this property. Thus the proof is complete.
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Now we present two important properties of strictly BSNE operators (see Definition
1.3.8) which were proved in [88, Lemma 1, page 314] and [88, Lemma 2, page 314]. Both
results deal with the composition of N strictly BSNE operators. We start with the following
result.

Proposition 2.1.11 (Asymptotic fixed points of strictly BSNE operators). Let f : X Ñ R
be a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex

on bounded subsets of X such that ∇f�
is bounded on bounded subsets of int dom f

�
. Let

K be a nonempty subset of X. If tTi : 1 ¤ i ¤ Nu are N strictly BSNE operators from K

into itself, and the set pF �
£!xFix pTiq : 1 ¤ i ¤ N

)
is not empty, then xFix pTN � � � � � T1q � pF .

Proof. Let u P pF . Given x P xFix pT q, Definition 1.3.6 implies that there exists a sequence

txnunPN � K converging weakly to x such that

lim
nÑ8

}xn � Txn} � 0. (2.1.8)

we first note that since the function f is bounded on bounded subsets of X, the gradient

∇f is also bounded on bounded subsets of X (see Proposition 1.1.15). Thus the sequences

txnunPN and t∇f pTxnqunPN are bounded. Since f is uniformly Fréchet differentiable on

bounded subsets of X, it is also uniformly continuous on bounded subsets of X (see Propo-

sition 1.1.22(i)) and therefore

lim
nÑ8

pf pTxnq � f pxnqq � 0. (2.1.9)

In addition, from Proposition 1.1.22(ii) we obtain that ∇f is also uniformly continuous on

bounded subsets of X and thus

lim
nÑ8

}∇f pTxnq �∇f pxnq}� � 0. (2.1.10)

From the definition of the Bregman distance (see (1.2.1)) we obtain that

Df pu, xnq �Df pu, Txnq � rf puq � f pxnq � x∇f pxnq , u� xnys
� rf puq � f pTxnq � x∇f pTxnq , u� Txnys
� f pTxnq � f pxnq � x∇f pxnq , u� xny � x∇f pTxnq , u� Txny
� f pTxnq � f pxnq � x∇f pxnq �∇f pTxnq , u� xny
� x∇f pTxnq , xn � Txny .
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Hence from the fact that both the sequences txnunPN and t∇f pTxnqunPN are bounded,

along with (2.1.8), (2.1.9) and (2.1.10) we obtain that

lim
nÑ8

pDf pu, xnq �Df pu, Txnqq � 0. (2.1.11)

Set yn � TN�1 � � � � � T1xn so that TNyn � Txn. From the first part of the definition of

strictly QBNE operator (see (1.3.9)) we get

Df pu, Txnq � Df pu, TNynq ¤ Df pu, ynq ¤ Df pu, xnq . (2.1.12)

Hence from (2.1.11) we get that

lim
nÑ8

pDf pu, ynq �Df pu, TNynqq � lim
nÑ8

pDf pu, xnq �Df pu, Txnqq � 0. (2.1.13)

Since txnunPN is bounded and both f and∇f are bounded on bounded subsets ofX, we have

that tDf pu, xnqunPN is also bounded. Therefore if follows from (2.1.12) that tDf pu, ynqunPN
is bounded too. Since ∇f�

is bounded on bounded subsets of int dom f
�

it follows from

Proposition 1.2.48 that tynunPN is bounded. This together with (2.1.13) implies that

lim
nÑ8

Df pTNyn, ynq � 0,

because TN is strictly BSNE (see Definition 1.3.8). Since tynunPN is bounded, Proposition

1.2.46 now implies that limnÑ8 }yn � TNyn} � 0. Consequently,

lim
nÑ8

}xn � TN�1 � � � � � T1xn} � lim
nÑ8

}xn � yn} ¤ lim
nÑ8

p}xn � Txn} � }yn � TNyn}q � 0.

This implies, on one hand, that the sequence tynunPN also converges weakly to x and

thus x P xFix pTNq, and on the other hand, that x P xFix pTN�1 � � � � � T1q. Repeating the

same argument we obtain that x P xFix pTiq for any i � 1, 2, . . . , N � 1, thence x P pF , as

asserted.

The next result shows that the composition of N strictly BSNE operators is also strictly
BSNE operator.

Proposition 2.1.12 (Composition of strictly BSNE operators). Let f : X Ñ R be a

Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on

bounded subsets of X such that ∇f�
is bounded on bounded subsets of int dom f

�
. Let K be

a nonempty subset of X. Let tTi : 1 ¤ i ¤ Nu be N strictly BSNE operators from K into

itself and let T � TN � TN�1 � � � � � T1. If the sets

pF �
£!xFix pTiq : 1 ¤ i ¤ N

)
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and xFix pT q are not empty, then T is also strictly BSNE.

Proof. Letu P xFix pT q and x P K, then the first part of the definition of strictly BSNE

operator (see (1.3.9)) is satisfied because u P pF by Proposition 2.1.11 and since any strictly

BSNE operator is strictly QBNE (see Figure 1.3). Assume that u P xFix pT q and txnunPN is

a bounded sequence such that

lim
nÑ8

pDf pu, xnq �Df pu, Txnqq � 0.

In order to prove the second part of the definition of strictly BSNE operator (see (1.3.11)),

note that for any i � 2, 3, . . . , N , we have from (1.3.9) that

0 ¤ Df pu, Ti�1 � � � � � T1xnq �Df pu, Ti � Ti�1 � � � � � T1xnq ¤ Df pu, xnq �Df pu, Txnq ,

and using the same arguments as in the proof of Proposition 2.1.11, we get

lim
nÑ8

Df pTi � Ti�1 � � � � � T1xn, Ti�1 � � � � � T1xnq � 0,

where the sequence tTi�1 � � � � � T1xnunPN is bounded. Now Proposition 1.2.46 implies that

lim
nÑ8

}Ti � Ti�1 � � � � � T1xn � Ti�1 � � � � � T1xn} � 0

for each i � 2, 3, . . . , N . Since

}xn � Txn} ¤ }xn � T1xn} � }T1xn � T2 � T1xn} � � � � � }TN�1 � TN�2 � � � � � T1xn � Txn}

we get that

lim
nÑ8

}xn � Txn} � 0.

The function f is bounded on bounded subsets of X and therefore ∇f is also bounded

on bounded subsets of X (see Proposition 1.1.15). Thus both the sequences txnunPN and

t∇f pTxnqunPN are bounded. Since f is also uniformly continuous on bounded subsets of

X (see Proposition 1.1.22(i)), we have that

lim
nÑ8

pf pTxnq � f pxnqq � 0.

So from the definition of the Bregman distance (see (1.2.1)) we obtain that

lim
nÑ8

Df pTxn, xnq � 0.

Hence T is strictly L-BSNE, as asserted.
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In applications it seems that the assumption xFix pT q � Fix pT q imposed on the operator
T is essential for the convergence of iterative methods. In Proposition 2.1.2 we gave suf-
ficient condition for BFNE operators to satisfy this condition (see also Remark 2.1.3). In
the following remark we show that this condition holds for the composition of N strictly
BSNE operators where each operator satisfy this condition.

Remark 2.1.13 (Property of the composition). Let f : X Ñ R be a Legendre function

which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of

X such that ∇f�
is bounded on bounded subsets of int dom f

�
. Let K be a nonempty subset

of X. Let tTi : 1 ¤ i ¤ Nu be N strictly BSNE operators and let T � TN � TN�1 � � � � � T1.

If F � � tFix pTiq : 1 ¤ i ¤ Nu and Fix pT q are nonempty, then T is also strictly BSNE

with xFix pT q � Fix pT q. Indeed, from Proposition 2.1.11 we get that

Fix pT q � xFix pT q �
£!xFix pTiq : 1 ¤ i ¤ N

)
�
£
tFix pTiq : 1 ¤ i ¤ Nu � Fix pT q ,

which implies that xFix pT q � Fix pT q, as claimed.

In the following result we prove that any BSNE operator is asymptotically regular (cf.
[74, Proposition 11, page 11]).

Proposition 2.1.14 (BSNE operators are asymptotically regular). Assume that f : X Ñ
p�8,�8s is a Legendre function which is totally convex on bounded subsets of int dom f

and assume that ∇f�
is bounded on bounded subsets of int dom f

�
. Let K be a nonempty

subset of int dom f . Let T be a strictly (properly) BSNE operator from K into itself such

that xFix pT q � H (Fix pT q � H). Then T is asymptotically regular.

Proof. Assume that T is strictly BSNE. Let u P xFix pT q and let x P K. From (1.3.9) we

get that

Df

�
u, T n�1x

� ¤ Df pu, T nxq ¤ . . . ¤ Df pu, Txq .

Thus limnÑ8Df pu, T nxq exists and the sequence tDf pu, T nxqunPN is bounded. Now Propo-

sition 1.2.48 implies that tT nxunPN is also bounded for any x P K. Since the limit

limnÑ8Df pu, T nxq exists, we have

lim
nÑ8

�
Df pu, T nxq �Df

�
u, T n�1x

�� � 0.

From the definition of strictly BSNE operator (see (1.3.10) and (1.3.11)) we get

lim
nÑ8

Df

�
T n�1x, T nx

� � 0.
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Since tT nxunPN is bounded, we now obtain from Proposition 1.2.46 that

lim
nÑ8

��T n�1x� T nx
�� � 0.

In other words, T is asymptotically regular (see Definition 1.3.14). The proof when T is

properly BSNE is identical when we take u P Fix pT q.

Definition 2.1.15 (Block operator). Let f : X Ñ p�8,�8s be a Legendre function. Let

tTi : 1 ¤ i ¤ Nu be N operators from X to X and let twiuNi�1 � p0, 1q satisfy
°N
i�1wi � 1.

Then the block operator corresponding to tTi : 1 ¤ i ¤ Nu and twi : 1 ¤ i ¤ Nu is defined

by

TB :� ∇f�

�
Ņ

i�1

wi∇f pTiq
�
. (2.1.14)

The following inequality will be essential in our next results. From Proposition 1.2.42(i)
and (ii) we have

Df pp, TBxq � Df

�
p,∇f�

�
Ņ

i�1

wi∇f pTixq
��

� W f

�
Ņ

i�1

wi∇f pTixq , p
�

¤
Ņ

i�1

wiW
f p∇f pTixq , pq �

Ņ

i�1

wiDf pp, Tixq (2.1.15)

In our next result we prove that the block operator defined by (2.1.14) is properly QBNE
when each Ti, 1 ¤ i ¤ N , is properly QBNE (cf. [74, Proposition 12, page 16]).

Proposition 2.1.16 (Block operator of properly QBNE operators). Assume that f : X Ñ
p�8,�8s is a Legendre function and let tTi : 1 ¤ i ¤ Nu be N properly QBNE operators

from X into X such that F � � tFix pTiq : 1 ¤ i ¤ Nu � H. Let twiuNi�1 � p0, 1q which

satisfy
°N
i�1wi � 1. Then TB is properly QBNE with respect to F � Fix pTBq.

Proof. Let p P F . Since each Ti, i � 1, 2, . . . , N , is properly QBNE (see (1.3.8)), we obtain

from (2.1.15) that

Df pp, TBxq ¤
Ņ

i�1

wiDf pp, Tixq ¤
Ņ

i�1

wiDf pp, xq � Df pp, xq (2.1.16)

for all x P X. Thus TB is a properly QBNE operator with respect to F . Next we show

that Fix pTBq � F .

The inclusion F � Fix pTBq is obvious, so it is enough to show that Fix pTBq � F . To

this end, let u P Fix pTBq and take k P t1, 2, . . . , Nu. For all p P F , such that p � u, we
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obtain from (2.1.15) that

Df pp, uq � Df pp, TBuq ¤
Ņ

i�1

wiDf pp, Tiuq ¤
¸
i�k

wiDf pp, uq � wkDf pp, Tkuq .

Therefore

wkDf pp, uq �
�

1�
¸
i�k

wi

�
Df pp, uq ¤ wkDf pp, Tkuq ,

that is,

wkDf pp, uq ¤ wkDf pp, Tkuq .

Since wk ¡ 0, it follows that Df pp, uq ¤ Df pp, Tkuq. On the other hand, since Tk is properly

QBNE and p P F � Fix pTkq, we have that Df pp, Tkuq ¤ Df pp, uq. Thus Df pp, uq �
Df pp, Tkuq for all k P t1, 2, . . . , Nu. Hence

Df

�
p,∇f�

�
Ņ

i�1

wi∇f pTiuq
��

� Df pp, TBuq � Df pp, uq �
Ņ

i�1

wiDf pp, Tiuq . (2.1.17)

Now Lemma 1.2.44 implies that T1u � T2u � . . . � Tnu. Therefore u P F .

In the following result we prove that the asymptotic fixed point set of the block operator
is a subset of the intersection of the asymptotic fixed point sets of the strictly BSNE
operators generating the block operator (cf. [74, Proposition 13, page 17]).

Proposition 2.1.17 (Asymptotic fixed point of the block operator). Let f : X Ñ R be a

Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on

bounded subsets of X. Let K be a nonempty subset of X. If each Ti, i � 1, 2, . . . , N , is a

strictly BSNE operator from X into itself, and the set

pF :�
£!xFix pTiq : 1 ¤ i ¤ N

)
is not empty, then xFix pTBq � pF .

Proof. Let u P pF and let x P xFix pTBq. Then, from the definition of asymptotic fixed

point (see Definition 1.3.6), there exists a sequence txnunPN which converges weakly to x

such that limnÑ8 }xn � TBxn} � 0. Since the function f is bounded on bounded subsets

of X, ∇f is also bounded on bounded subsets of X (see Proposition 1.1.15). So the

sequences txnunPN and t∇f pTBxnqunPN are bounded. Since f is also uniformly Fréchet

differentiable on bounded subsets of X, it is uniformly continuous on bounded subsets of
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X (see Proposition 1.1.22(i)), and therefore

lim
nÑ8

pf pTBxnq � f pxnqq � 0. (2.1.18)

In addition, from Proposition 1.1.22(ii) we obtain that ∇f is also uniformly continuous on

bounded subsets of X and thus

lim
nÑ8

}∇f pTBxnq �∇f pxnq}� � 0. (2.1.19)

From the definition of the Bregman distance (see (1.2.1)) we obtain that

Df pu, xnq �Df pu, TBxnq � rf puq � f pxnq � x∇f pxnq , u� xnys
� rf puq � f pTBxnq � x∇f pTBxnq , u� TBxnys
� f pTBxnq � f pxnq � x∇f pxnq , u� xny
� x∇f pTBxnq , u� TBxny
� f pTBxnq � f pxnq � x∇f pxnq �∇f pTBxnq , u� xny
� x∇f pTBxnq , xn � TBxny .

Since limnÑ8 }xn � TBxn} � 0, the sequences txnunPN and t∇f pTBpxnqqunPN are bounded,

(2.1.18) and (2.1.19), we obtain that

lim
nÑ8

pDf pu, xnq �Df pu, TBxnqq � 0. (2.1.20)

Since each operator Ti, i � 1, 2, . . . , N , is strictly BSNE, we deduce from (1.3.9) and (2.1.15)

that for any k � 1, 2, . . . , N ,

Df pu, TBxnq ¤
Ņ

i�1

wiDf pu, Tixnq � wkDf pu, Tkxnq �
¸
i�k

wiDf pu, Tixnq

¤ wkDf pu, Tkxnq �
¸
i�k

wiDf pu, xnq

� wkDf pu, Tkxnq � p1� wkqDf pu, xnq
� wk pDf pu, Tkxnq �Df pu, xnqq �Df pu, xnq .

Hence, for any k P t1, 2, . . . , Nu, we have from (2.1.20) that

lim
nÑ8

wk pDf pu, xnq �Df pu, Tkxnqq ¤ lim
nÑ8

pDf pu, xnq �Df pu, TBxnqq � 0.
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Thence

lim
nÑ8

pDf pu, xnq �Df pu, Tkxnqq � 0

for any k P t1, 2, . . . , Nu. Since each operator Ti, i � 1, 2, . . . , N , is strictly BSNE and

txnunPN is bounded, we get from (1.3.10) and (1.3.11) that

lim
nÑ8

Df pTixn, xnq � 0.

Since f is totally convex (see Definition 1.2.8) and txnunPN is bounded, it follows from

Proposition 1.2.46 that

lim
nÑ8

}Tixn � xn} � 0.

This means that x belongs to xFix pTiq because we also know that xn á x as n Ñ 8.

Therefore x P pF , which proves that xFix pTBq � pF , as claimed.

Now we prove that the block operator of strictly BSNE operators also is a strictly BSNE
operator (cf. [74, Proposition 14, page 18]).

Proposition 2.1.18 (Block operator of strictly BSNE operators). Let f : X Ñ R be a

Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on

bounded subsets of X. Assume that ∇f�
is bounded on bounded subsets of int dom f

�
. If

each Ti, i � 1, 2, . . . , N , is a strictly BSNE operator from X into itself, and the sets

pF :�
£! xFix pTiq : 1 ¤ i ¤ N

)
and xFix pTBq are not empty, then TB is also strictly BSNE.

Proof. If u P xFix pTBq, then u P pF by Proposition 2.1.17. Therefore the fact that each Ti,

i � 1, 2, . . . , N , is strictly BSNE, with respect to xFix pTiq, implies that (1.3.9) holds for TB

and any x P X.

Now we assume that there exists a bounded sequence txnunPN in X such that

lim
nÑ8

pDf pu, xnq �Df pu, TBxnqq � 0

and therefore, as we proved in Proposition 2.1.17, we get

lim
nÑ8

pDf pu, xnq �Df pu, Tixnqq � 0

for any i P t1, 2, . . . , Nu. Since each Ti, i � 1, 2, . . . , N , is strictly BSNE and u P xFix pTBq �
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xFix pTiq, it follows from (1.3.10) and (1.3.11) that

lim
nÑ8

Df pTixn, xnq � 0.

Since f is totally convex and txnunPN is bounded, it follows from Proposition 1.2.46 that

lim
nÑ8

}Tixn � xn} � 0.

Since f is bounded and uniformly Fréchet differentiable on bounded subsets of X, it follows

from Proposition 1.1.22(ii) that ∇f is uniformly continuous on bounded subsets of X and

thus

lim
nÑ8

}∇f pTixnq �∇f pxnq}� � 0.

By the definition of the block operator (see (2.1.14)), we have

∇f pTBxnq �∇f pxnq �
Ņ

i�1

wi p∇f pTixnq �∇f pxnqq

and therefore

lim
nÑ8

}∇f pTBxnq �∇f pxnq}� � 0. (2.1.21)

On the other hand, from the definition of the Bregman distance (see (1.2.1)) we obtain

that

Df pTBxn, xnq �Df pxn, TBxnq � x∇f pTBxnq �∇f pxnq , TBxn � xny . (2.1.22)

Note that each sequence tTixnunPN, i � 1, 2, . . . , N , is bounded because so is the sequence

txnunPN and limnÑ8 }Tixn � xn} � 0. Since ∇f and ∇f�
are bounded on bounded subsets

of X and int dom f
�
, respectively, it follows that tTBxnunPN is bounded too. Whence,

combining (2.1.21) and (2.1.22), we deduce that

lim
nÑ8

pDf pTBxn, xnq �Df pxn, TBxnqq � 0.

Therefore

lim
nÑ8

Df pTBxn, xnq � 0.

This means that (1.3.10) implies (1.3.11) for TB and this proves that TB is strictly BSNE,

as required.

When we generate a block operator from properly BSNE operators, we have that its
fixed point set is the intersection of the fixed point sets of the operators generating the
block operator (cf. [74, Proposition 15, page 19]).
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Proposition 2.1.19 (Block operator of properly BSNE operators). Let f : X Ñ R be a

Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on

bounded subsets of X. Assume that ∇f�
is bounded on bounded subsets of int dom f

�
. If

each Ti, i � 1, 2, . . . , N , is a properly BSNE operator from X into itself, and the set

F :�
£
tFix pTiq : 1 ¤ i ¤ Nu

is not empty, then TB is also properly BSNE and F � Fix pTBq.
Proof. On the one hand, since each Ti, i � 1, 2, . . . , N , is properly BSNE, it is also properly

QBNE (see Figure 1.3). Then the fact that F � H makes it possible to apply Proposition

2.1.16 so that F � Fix pTBq and TB is properly QBNE, that is, it satisfies inequality (1.3.9)

for any p P Fix pTBq.
On the other hand, given a bounded sequence txnunPN such that, for any u P Fix pTBq,

we have

lim
nÑ8

pDf pu, xnq �Df pu, TBxnqq � 0,

analogously to the argument used in Proposition 2.1.18, one is able to deduce that

lim
nÑ8

Df pTBxn, xnq � 0.

Thus TB is indeed properly BSNE, as asserted.

2.1.1 Characterization of BFNE Operators

In this section we establish a characterization of BFNE operators. This characterization
emphasizes the strong connection between the nonexpansivity of T and the monotonicity
of ST , where

ST :� ∇f � p∇fq � T. (2.1.23)

Results in this direction have been known for a long time. We cite the one of Rockafellar
[100] from 1976 and the one of Bauschke, Wang and Yao [15] from 2008.

Proposition 2.1.20 (Characterization of firmly nonexpansive operators). Let K be a sub-

set of a Hilbert space H and let T : K Ñ H be an operator. Then T is firmly nonexpansive

if and only if I � T is T -monotone.

Proposition 2.1.21 (Property of BFNE operators). Let K be a subset of X and let T :

K Ñ X be an operator. Fix an admissible function f : X Ñ R and set

AT :� ∇f � T�1 �∇f.

If T is BFNE, then AT is monotone (this operator is not necessarily single-valued).
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Motivated by these results, we offer the following characterization (cf. [25, Theorem 3.3,
page 167]).

Theorem 2.1.22 (Characterization of BFNE operators). Let K � int dom f and suppose

that T : K Ñ int dom f for an admissible function f : X Ñ p�8,�8s. Then T is BFNE

if and only if ST � ∇f � p∇fq � T is T -monotone.

Proof. Suppose that T is BFNE (see Definition 1.3.5(i)). Take x, y in K and denote ξ �
ST pxq and η � ST pyq. Then by the definition of ST (see (2.1.23)) we obtain

∇f pTxq � ∇f pxq � ξ and ∇f pTyq � ∇f pyq � η. (2.1.24)

Since T is BFNE, we have from (1.3.4) that

x∇f pTxq �∇f pTyq , Tx� Tyy ¤ x∇f pxq �∇f pyq , Tx� Tyy . (2.1.25)

Now, substituting (2.1.24) on the left-hand side of (2.1.25), we obtain

xp∇f pxq � ξq � p∇f pyq � ηq , Tx� Tyy ¤ x∇f pxq �∇f pyq , Tx� Tyy ,

which means that

0 ¤ xST pxq � ST pyq , Tx� Tyy .

Thus ST is T -monotone (see Definition 1.4.24). Conversely, if ST is T -monotone, then

0 ¤ xST pxq � ST pyq , Tx� Tyy

for any x, y P K and therefore from (2.1.23) we have

0 ¤ xp∇f pxq �∇f pTxqq � p∇f pyq �∇f pTyqq , Tx� Tyy ,

which means that

x∇f pTxq �∇f pTyq , Tx� Tyy ¤ x∇f pxq �∇f pyq , Tx� Tyy

for any x, y P K. In other words, T is indeed a BFNE operator.

Remark 2.1.23 (Theorem 2.1.22 implies Proposition 2.1.20). It is clear that when X

is a Hilbert space and f � }�}2, BFNE operators are firmly nonexpansive operators (see

Remark 1.3.10) and in this case ST � I�T . Therefore Proposition 2.1.20 is an immediate

consequence of Theorem 2.1.22. 3
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Remark 2.1.24 (Theorem 2.1.22 implies Proposition 2.1.21). If T is a BFNE operator,

then ST is T -monotone by Theorem 2.1.22. Take ξ P AT pxq and η P AT pyq. From the

definition of AT (see (2.1.21)) we get ξ � ∇f pzq � ∇f pxq, where Tz � x, and η �
∇f pwq �∇f pyq, where Tw � y. Hence

xξ � η, x� yy � xp∇f pzq �∇f pTzqq � p∇f pwq �∇f pTwqq , T z � Twy
� xST pzq � ST pwq , T z � Twy
¥ 0

for all x, y P domAT , and so AT is monotone (see Definition 1.4.2(i)). Hence Proposition

2.1.21 follows from Theorem 2.1.22. 3

Motivated by our characterization (see Theorem 2.1.22), we now show that the converse
implication of Proposition 2.1.21 is also true (cf. [25, Proposition 3.6, page 168]).

Proposition 2.1.25 (Another characterization of BFNE operators). Let K � int dom f

and suppose that T : K Ñ int dom f for an admissible function f : X Ñ R. The mapping

AT is monotone if and only if T is BFNE.

Proof. If T is BFNE then from Proposition 2.1.25 we get that AT is monotone (see Defini-

tion 1.4.2(i)). Conversely, suppose that AT is monotone. Then for any x, y P domAT , we

have

0 ¤ xξ � η, x� yy

for any ξ P AT pxq and η P AT pyq. Let w, z P K. Set ξ � ∇f pzq �∇f pxq, where Tz � x,

and η � ∇f pwq � ∇f pyq, where Tw � y. We have from the monotonicity of AT (see

(1.4.1)) that

0 ¤ xp∇f pzq �∇f pxqq � p∇f pwq �∇f pyqq , x� yy ,

which means that

x∇f pxq �∇f pyq , x� yy ¤ x∇f pzq �∇f pwq , x� yy .

Thus

x∇f pTzq �∇f pTwq , T z � Twy ¤ x∇f pzq �∇f pwq , T z � Twy

and so T is a BFNE operator (see Definition 1.3.5(i)), as asserted.

Remark 2.1.26 (Comparison between these two characterizations). Our characterization

of BFNE operators is based on a new type of monotonicity, the T -monotonicity (see Def-

inition 1.4.24), which seems to be harder to check than the classical monotonicity (see
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Definition 1.4.2(i)). On the other hand, our mapping ST is defined without any inverse

operation, and hence is easier to compute. In the case of the mapping AT , similar com-

putations seem to be much harder because of the presence of the inverse operator T�1.

3

2.1.2 Examples of BFNE Operators in Euclidean Spaces

In this section we use Theorem 2.1.22 to present various examples of BFNE operators in
Euclidean spaces. Indeed, we have already seen that BFNE operators can be generated
from T -monotone mappings. Moreover, the notion of T -monotonicity can be simplified in
the case of the real line.

Remark 2.1.27 (The real line case). If X � R and both T and ST are increasing (de-

creasing), then ST is T -monotone. 3

The next remark allows us to explicitly produce BFNE operators.

Remark 2.1.28 (Characterization of BFNE operators on the real line). Let f : R Ñ
p�8,�8s be an admissible function and let K be a nonempty subset of int dom f . From

Theorem 2.1.22 we know that an increasing (decreasing) operator T is BFNE if ST is

also increasing (decreasing). If, in addition, T is differentiable on intK, then S 1T � f2 �
f2 pT qT 1.

We conclude that a differentiable operator T : K Ñ int dom f is BFNE on K with

respect to an admissible twice-differentiable function f as soon as

0 ¤ T 1 pxq ¤ f2 pxq
f2 pT pxqq

for all x P intK. 3

The following result gives sufficient conditions for an operator T to be BFNE with
respect to the Boltzmann-Shannon entropy BS (see (1.2.8)). We use the term BS-BFNE
for operators T : K Ñ p0,�8q which are BFNE with respect to BS (cf. [25, Proposition
4.12, page 174]).

Proposition 2.1.29 (Conditions for BS-BFNE). Let K be a nonempty subset of p0,�8q
and let T : K Ñ p0,�8q be an operator. Assume that one of the following conditions holds.

piq T is increasing and T pxq {x is decreasing for every x P intK.

piiq T is differentiable on intK and its derivative T 1 satisfies

0 ¤ T 1 pxq ¤ T pxq
x

(2.1.26)

for every x P intK.
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piiiq T is decreasing and T pxq {x is increasing for every x P intK.

pivq T is differentiable on intK and its derivative T 1 satisfies

T pxq
x

¤ T 1 pxq ¤ 0

for every x P intK.

Then T is an BS-BFNE operator on K.

Proof. This result follows immediately from Theorem 2.1.22 and Remark 2.1.28.

Remark 2.1.30. The only solution of the differential equation

T 1 pxq � T pxq
x

is T pxq � αx for any α P R, but in our case α P p0,�8q since T pxq P p0,�8q for any

x P K � p0,�8q. 3

Using the conditions provided in Proposition 2.1.29, we give examples of BS-BFNE
operators (cf. [25, Example 4.14, page 174]).

T pxq Domain

αx� β α, β P p0,�8q p0,�8q
xp p P p0, 1s p0,�8q

αx� xp p P r1,�8q , α P p0,�8q
�

0, pα{pq1{pp�1q8
	

α log x α P r0,�8q re,�8q
sinx p0, π{2s

αex α P p0,�8q p0, 1s
Table 2.1: Examples of BS-BFNE operators

The following result gives sufficient conditions for an operator T to be BFNE with respect
to the Fermi-Dirac entropy FD (see (1.2.9)). We use the term FD-BFNE for operators
T : K Ñ p0, 1q which are BFNE with respect to FD (cf. [25, Proposition 4.16, page 176]).

Proposition 2.1.31 (Conditions for FD-BFNE). Let K be a nonempty subset of p0, 1q
and let T : K Ñ p0, 1q be an operator. Assume that one of the following conditions holds.
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piq T is increasing and
T pxq p1� xq
x p1� T pxqq

is decreasing for every x P intK.

piiq T is differentiable and its derivative T 1 satisfies

0 ¤ T 1 pxq ¤ T pxq p1� T pxqq
x p1� xq

for every x P intK.

piiiq T is decreasing and
T pxq p1� xq
x p1� T pxqq

is increasing for every x P intK.

pivq T is differentiable on intK and its derivative T 1 satisfies

T pxq p1� T pxqq
x p1� xq ¤ T 1 pxq ¤ 0

for every x P intK.

Then T is an FD-BFNE operator on K.

Proof. This result follows immediately from Theorem 2.1.22 and Remark 2.1.28.

Remark 2.1.32. The only solution of the differential equation

T 1 pxq � T pxq p1� T pxqq
x p1� xq

is

T pxq � αx

p1� x� αxq
for any α P R, but in our case α P p0,�8q since T pxq P p0, 1q for any x P K � p0, 1q. 3

Using Proposition 2.1.31, we now give examples of FD-BFNE operators (cf. [25, Ex-
ample 4.18, page 177]).

In the following table we summarize sufficient conditions on the operator T to be BFNE
with respect to various choices of functions f .

Remark 2.1.33 (Product constructions). For each i � 1, 2, . . . , n, let fi : R Ñ R be an

admissible function, and define the function F : Rn Ñ R by

F px1, x2, . . . , xnq �
ņ

i�1

fi pxiq .
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T pxq Domain

α α P p0, 1q p0, 1q
αx α P p0, 1q p0, 1q
xp p P p0, 1s p0, 1q

sinx p0, 1s
Table 2.2: Examples of FD-BFNE operators

f pxq Domain Condition

BS pxq p0,�8q 0 ¤ T 1pxq ¤ T pxq
x

FD pxq �p0, 1q 0 ¤ T 1pxq ¤ T pxqp1�T pxqq
xp1�xq

coshx R 0 ¤ T 1pxq ¤ coshpxq
coshpT pxqq

x2{2 R 0 ¤ T 1pxq ¤ 1

x4{4 R 0 ¤ T 1pxq ¤ x2

pT pxqq2

ex R 0 ¤ T 1pxq ¤ ex

eT pxq

� log pxq p0,�8q 0 ¤ T 1pxq ¤ pT pxqq2

x2

Table 2.3: Conditions for T to be a BFNE operator

For each i � 1, 2, . . . , n, let Ki be a nonempty subset of int dom fi. Let T :
�n

i�1Ki Ñ�n
i�1 int dom fi be an operator which is defined by T � pT1, . . . , Tnq, where Ti : Ki Ñ

int dom fi for each 1 ¤ i ¤ n. If each Ti, i � 1, . . . , n, satisfies the hypotheses of Theorem

2.1.22, then the operator T is BFNE with respect to F on
�n

i�1Ki. 3



Chapter 3

Iterative Methods for Approximating

Fixed Points

In this section the function f is always assumed to be admissible (see Definition 1.2.1). Let
K be a nonempty, closed and convex subset of a Banach space X and let T : K Ñ K be
an operator. Iterative methods are often used to solve the fixed point equation Tx � x.
The most well-known method is perhaps the Picard successive iteration method when T is
a strict contraction (see (1.3.1)). Picard’s iterative method generates a sequence txnunPN
successively by the following algorithm.

Picard Iterative Method
Initialization: x0 P K.
General Step (n � 1, 2, . . .):

xn�1 � Txn. (3.0.1)

A sequence generated by the Picard iterative method converges in norm to the unique fixed
point of T . However, if T is not a strict contraction (for instance, if T is nonexpansive
(see (1.3.1)) even with a unique fixed point), then Picard’s successive iteration fails, in
general, to converge. It suffices, for example, to take for T a rotation of the unit disk
in the plane around the origin of coordinates (see, for example, [72]). Krasnoselski [70],
however, has shown that in this example, one can obtain a convergent sequence of successive
approximations if instead of T one takes the auxiliary nonexpansive operator p1{2q pI � T q,
where I denotes the identity operator of X, i.e., a sequence of successive approximations
which is defined by the following algorithm.

Krasnoselski Iterative Method
Initialization: x0 P K.
General Step (n � 1, 2, . . .):

xn�1 � 1

2
pI � T qxn. (3.0.2)

88
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It is easy to see that the operators T and p1{2q pI � T q have the same fixed point set, so
that the limit of a convergent sequence defined by Algorithm (3.0.2) is necessarily a fixed
point of T .

However, a more general iterative scheme is the following (see [72]).

Mann Iterative Method
Input: tαnunPN � p0, 1q.
Initialization: x0 P K.
General Step (n � 1, 2, . . .):

xn�1 � αnxn � p1� αnqTxn. (3.0.3)

In an infinite-dimensional Hilbert space, the Mann iterative method has only weak conver-
gence, in general, even for nonexpansive operators (see [14, 55]). Therefore, many authors
have tried to modify Mann’s iteration process in order to obtain strong convergence for non-
expansive operators (see also [58]). One way to get strong convergence in Hilbert spaces is
to use the method proposed by Haugazeau in [60].

Haugazeau Iterative Method
Initialization: x0 P H.
General Step (n � 1, 2, . . .):$'''&'''%

yn � Txn,

Hn � tz P H : xxn � yn, yn � zy ¥ 0u ,
Qn � tz P H : xxn � z, x0 � xny ¥ 0u ,
xn�1 � PHnXQn px0q .

(3.0.4)

Haugazeau proved that a sequence txnunPN which is generated by Algorithm (3.0.4) con-
verges strongly to a fixed point of T . Later many authors studied and developed this
method (in the context of Hilbert spaces see, for example, [9, 105], and in Banach spaces
see, for example, [10, 48, 54]).

In the next sections we present several methods for finding fixed points of operators
in reflexive Banach space which generalize previously mentioned results. We focus our
study on explicit methods (which we call iterative methods or algorithms) except for one
result about approximation of fixed point for BFNE operators by an implicit method (see
Theorem 3.4.1). Our algorithms allow for computational errors in some cases and find
common fixed points of finitely many operators.

3.1 Picard’s Iteration for Bregman Nonexpansive Operators

The main result in this section is the following one (cf. [74, Theorem 4.1, page 12]).

Theorem 3.1.1 (Picard iteration). Let f : X Ñ p�8,�8s be a Legendre function such

that ∇f�
is bounded on bounded subsets of int dom f

�
. Let K be a nonempty, closed and
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convex subset of int dom f and let T : K Ñ K be a strictly QBNE operator. Then the

following assertions hold.

piq If xFix pT q is nonempty, then tT nxunPN is bounded for each x P K.

piiq If, furthermore, T is asymptotically regular, then, for each x P K, any weak subse-

quential limit of tT nxunPN belongs to xFix pT q.
piiiq If, furthermore, ∇f is weakly sequentially continuous, then tT nxunPN converges weakly

to an element in xFix pT q for each x P K.

Proof. piq This result follows directly from Proposition 2.1.4.

piiq Since tT nxunPN is bounded (by assertion (i)), there is a subsequence tT nkxukPN which

converges weakly to some u. Define xn � T nx for any n P N. Since T is asymptotically

regular, it follows from Definition 1.3.14 that }xn � Txn} Ñ 0 as nÑ 8. Therefore we

have both xnk á u and }xnk � Txnk} Ñ 0 as k Ñ 8, which means that u P xFix pT q.
piiiq From assertion (ii) and since T is strictly QBNE, we already know (part of the proof of

Proposition 2.1.4) that the limit limnÑ8Df pu, T nxq exists for any weak subsequential

limit u of the sequence tT nxunPN. The result now follows immediately from Proposition

1.2.53.

Corollary 3.1.2 (Picard iteration for BSNE operators). Let f : X Ñ p�8,�8s be a

Legendre function which is totally convex on bounded subsets of X. Suppose that ∇f is

weakly sequentially continuous and ∇f�
is bounded on bounded subsets of int dom f

�
. Let

K be a nonempty, closed and convex subset of int dom f . Let T : K Ñ K be a BSNE

operator such that Fix pT q � xFix pT q � H. Then tT nxunPN converges weakly to an element

in Fix pT q for each x P K.

Proof. The result follows immediately from Theorem 3.1.1 and Proposition 2.1.14.

Remark 3.1.3 (The case Fix pT q � xFix pT q). If Fix pT q � xFix pT q, but xFix pT q � H,

then we only know that, for a strictly BSNE operator T , tT nxunPN converges weakly to an

element in xFix pT q for each x P K. This result was previously proved in [88, Lemma 4,

page 315] under somewhat different assumptions. 3

Remark 3.1.4 (Picard iteration for BFNE operators). Let f : X Ñ R be a function which

is uniformly Fréchet differentiable and bounded on bounded subsets of X. From Proposition

2.1.2 and Corollary 3.1.2 we get that Theorem 3.1.1 holds for BFNE operators. It is well

known that in Hilbert spaces, the Picard iteration of firmly nonexpansive operators (see

(1.3.12)) converges weakly to a fixed point of the operator (see, for instance, [56]). 3
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Remark 3.1.5 (Common fixed point - composition case). Let f : X Ñ p�8,�8s be

a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex

on bounded subsets of X. Suppose that ∇f is weakly sequentially continuous and ∇f�
is

bounded on bounded subsets of int dom f
�
. Let K be a nonempty, closed and convex subset

of int dom f .

Let tTi : 1 ¤ i ¤ Nu be N BSNE operators such that xFix pTiq � Fix pTiq � H for each

1 ¤ i ¤ N and let T � TN � TN�1 � � � � � T1. From Proposition 2.1.12 and Remark

2.1.13 we obtain that if
� tFix pTiq : 1 ¤ i ¤ Nu � H, then T is also BSNE such thatxFix pT q � Fix pT q � � tFix pTiq : 1 ¤ i ¤ Nu.

From Theorem 3.1.1 we now get that tT nxunPN converges weakly to a common fixed point

of the family of BSNE operators. Similarly, if we just assume that each Ti is strictly BSNE,

with xFix pTiq � H, 1 ¤ i ¤ N , then we get weak convergence of the sequence tT nxunPN to

a common asymptotic fixed point. 3

As a consequence of the previous result, we now see that the Picard iteration provides a
method for approximating common fixed points of a finite family of BSNE operators. We
can also use the block operator (see Definition 2.1.15) for finding common fixed point.

Remark 3.1.6 (Common fixed point - block operator case). Let f : X Ñ p�8,�8s be

a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex

on bounded subsets of X. Suppose that ∇f is weakly sequentially continuous and ∇f�
is

bounded on bounded subsets of int dom f�.

Let tTi : 1 ¤ i ¤ Nu be N BSNE operators such that xFix pTiq � Fix pTiq � H and let

TB be the block operator defined by (2.1.14). If F :� � tFix pTiq : 1 ¤ i ¤ Nu and Fix pTBq
are nonempty, then from Proposition 2.1.17 we know that TB is BSNE. Furthermore, from

Proposition 2.1.16 we get that

Fix pTBq � xFix pTBq � F � Fix pTBq ,

which implies that xFix pTBq � Fix pTBq � H.

Therefore, Theorem 3.1.1 applies to guarantee that tT nBxunPN converges weakly to an

element in F under appropriate conditions. 3

3.2 Mann’s Iteration for Bregman Nonexpansive Operators

In this section we study a modification of the Mann iterative method (see Algorithm
(3.0.3)), which is defined by using convex combinations with respect to a convex func-
tion f , a concept which was first introduced in the case of Euclidean spaces in [46].
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f-Mann Iterative Method
Input: f : X Ñ R and tαnunPN � p0, 1q.
Initialization: x0 P X.
General Step (n � 1, 2, . . .):

xn�1 � ∇f� pαn∇f pxnq � p1� αnq∇f pTxnqq . (3.2.1)

Remark 3.2.1 (Particular case). When the Banach space X is a Hilbert space and f �
p1{2q }�}2 then ∇f � ∇f� � I and the f -Mann iterative method is exactly the Mann

iterative method (see Algorithm (3.0.3)). 3

In the following result we prove weak convergence of the sequence generated by the f -Mann
iterative method (cf. [74, Theorem 5.1, page 13]).

Theorem 3.2.2 (f -Mann iteration). Let T : X Ñ X be a strictly BSNE operator withxFix pT q � H. Let f : X Ñ R be a Legendre function which is totally convex on bounded

subsets of X. Suppose that ∇f is weakly sequentially continuous and ∇f�
is bounded on

bounded subsets of int dom f
�
. Let txnunPN be a sequence generated by the f -Mann iterative

method (see Algorithm (3.2.1)) where tαnunPN � r0, 1s satisfies lim supnÑ8 αn   1. Then,

for each x0 P X, the sequence txnunPN converges weakly to a point in xFix pT q.

Proof. We divide the proof into 3 steps.

Step 1. The sequence txnunPN is bounded.

Let p P xFix pT q. From Proposition 1.2.42(i) and (ii), and the first part of the definition

of strictly BSNE operator (see (1.3.9)) we have for all n P N,

Df pp, xn�1q � Df

�
p,∇f� pαn∇f pxnq � p1� αnq∇f pTxnqq

	
� W f pαn∇f pxnq � p1� αnq∇f pTxnq , pq
¤ αnW

f p∇f pxnq , pq � p1� αnqW f p∇f pTxnq , pq
� αnDf pp, xnq � p1� αnqDf pp, Txnq
¤ αnDf pp, xnq � p1� αnqDf pp, xnq
� Df pp, xnq . (3.2.2)

This shows that the nonnegative sequence tDf pp, xnqunPN is decreasing, thus bounded, and

limnÑ8Df pp, xnq exists. From Proposition 1.2.48 we obtain that txnunPN is bounded, as

claimed.

Step 2. Every weak subsequential limit of txnunPN belongs to xFix pT q.
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For any p P xFix pT q we see, from the first inequality of (3.2.2), that

Df pp, xn�1q ¤ Df pp, xnq � p1� αnq pDf pp, Txnq �Df pp, xnqq .

Hence

p1� αnq pDf pp, xnq �Df pp, Txnqq ¤ Df pp, xnq �Df pp, xn�1q (3.2.3)

for all n P N. We already know that limnÑ8Df pp, xnq exists. Since lim supnÑ8 αn   1, it

follows that

lim
nÑ8

pDf pp, xnq �Df pp, Txnqq � 0.

Now, since T is strictly BSNE and p P xFix pT q, we obtain

lim
nÑ8

Df pTxn, xnq � 0.

Since txnunPN is bounded (see Step 1), Proposition 1.2.46 implies that

lim
nÑ8

}Txn � xn} � 0.

Therefore, if there is a subsequence txnkukPN of txnunPN which converges weakly to some

v P X as k Ñ 8, then v P xFix pT q.
Step 3. The sequence txnunPN converges weakly to a point in xFix pT q.
Since ∇f is weakly sequentially continuous (see Definition 1.2.52), the result follows im-

mediately from Proposition 1.2.53 since limnÑ8Df pu, xnq exists for any weak subsequential

limit u of the sequence txnunPN by Step 2.

Corollary 3.2.3 (f -Mann iteration for BSNE operators). Let T : X Ñ X be a BSNE

operator such that Fix pT q � xFix pT q � H. Let f : X Ñ R be a Legendre function which is

totally convex on bounded subsets of X. Suppose that ∇f is weakly sequentially continuous

and ∇f�
is bounded on bounded subsets of int dom f

�
. Let txnunPN be the sequence generated

by Algorithm (3.2.1), where tαnunPN � r0, 1s satisfies lim supnÑ8 αn   1. Then, for each

x0 P X, the sequence txnunPN converges weakly to a point in Fix pT q.
Remark 3.2.4 (Particular case of f -Mann iteration). If f � p1{2q }�}2 and X is a Hilbert

space, then both ∇f and ∇f�
are the identity operator, and Algorithm 3.2.1 coincides with

the Mann iteration (see Algorithm (3.0.3)). In this case the weak convergence of which

for nonexpansive operators is well known, even in more general Banach spaces, under the

assumption that
°
nPN αn p1� αnq � 8 (see [84]). 3

Remark 3.2.5 (Common fixed point - composition case). Let f : X Ñ R be a Legendre
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function which is bounded, uniformly Fréchet differentiable and totally convex on bounded

subsets of X. Suppose that ∇f is weakly sequentially continuous and ∇f�
is bounded on

bounded subsets of int dom f
�
.

Let tTi : 1 ¤ i ¤ Nu be N BSNE operators such that xFix pTiq � Fix pTiq � H for each

1 ¤ i ¤ N and let T � TN � TN�1 � � � � � T1. Then from Proposition 2.1.12 and Remark

2.1.13 we obtain that, if
� tFix pTiq : 1 ¤ i ¤ Nu � H, then T is also BSNE such thatxFix pT q � Fix pT q � � tFix pTiq : 1 ¤ i ¤ Nu.

Now from Theorem 3.2.2 we get that a sequence txnunPN generated by Algorithm (3.2.1)

for T � TN � TN�1 � � � � � T1 converges weakly to an element in
� tFix pTiq : 1 ¤ i ¤ Nu for

each x0 P X.

In the case where each Ti, i � 1, . . . , N , is strictly BSNE with xFix pTiq � H, a sequence

txnunPN generated by Algorithm (3.2.1) for T � TN � TN�1 � � � � � T1 weakly converges to a

common asymptotic fixed point of the family tTi : 1 ¤ i ¤ Nu whenever such a point exists.

3

Remark 3.2.6 (Common fixed point - block operator case). Let f : X Ñ p�8,�8s be

a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex

on bounded subsets of X. Suppose that ∇f is weakly sequentially continuous and ∇f�
is

bounded on bounded subsets of int dom f�.

Let tTi : 1 ¤ i ¤ Nu be N BSNE operators such that xFix pTiq � Fix pTiq � H and let TB

be the block operator defined by (2.1.14). If F :� � tFix pTiq : 1 ¤ i ¤ Nu and Fix pTBq are

nonempty, then from Propositions 2.1.17 we know that TB is BSNE. Furthermore, from

Proposition 2.1.16 we get that

Fix pTBq � xFix pTBq � F � Fix pTBq ,

which implies that xFix pTBq � Fix pTBq � H.

Therefore, Theorem 3.2.2 applies to guarantee the weak convergence of a sequence txnunPN
generated by Algorithm (3.2.1) for T � TB to an element in F . 3

3.3 Haugazeau’s Iteration for Bregman Nonexpansive Operators

Let T : X Ñ X be an operator such that Fix pT q � H. A first modification of Algorithm
(3.0.4) to general reflexive Banach spaces has been proposed by Bauschke and Combettes
[10]. More precisely, they have introduced the following algorithm (for a single operator).
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f-Haugazeau Iterative Method
Input: f : X Ñ R.
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''&'''%

yn � Txn,

Hn � tz P X : x∇f pxnq �∇f pynq , z � yny ¤ 0u ,
Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projHnXQn px0q .

(3.3.1)

Remark 3.3.1 (Particular case). Where the Banach space is a Hilbert space and f �
p1{2q }�}2, Algorithms (3.0.4) and (3.3.1) coincide. 3

Now we present our modification of Algorithm (3.3.1) for finding common fixed points
of finitely many QBFNE operators (see (1.3.6)). Our algorithm allows for computational
errors. More precisely, let Ti : X Ñ X, i � 1, 2, . . . , N , be QBFNE operators and denote
F :� �N

i�1 Fix pTiq � H. We study the following algorithm.

Minimal Norm-Like Picard Iterative Method
Input: f : X Ñ p�8,�8s and teinunPN � X, i � 1, 2, . . . , N .
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''''&'''''%

yin � Ti pxn � einq ,
H i
n � tz P X : x∇f pxn � einq �∇f pyinq , z � yiny ¤ 0u ,

Hn :� �N
i�1H

i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projHnXQn px0q .

(3.3.2)

Let T : X Ñ X be an operator such that Fix pT q � H. Another modification of Algorithm
(3.0.4) in Hilbert spaces has been proposed by Bauschke and Combettes [9]. They intro-
duce, for example, the following algorithm (see [9, Theorem 5.3(ii), page 257] for a single
operator and λn � 1{2).

Bauschke-Combettes Iterative Method
Initialization: x0 P H.
General Step (n � 1, 2, . . .):$'''&'''%

yn � Txn,

Cn � tz P H : }yn � z} ¤ }xn � z}u ,
Qn � tz P H : xx0 � xn, z � xny ¤ 0u ,
xn�1 � PCnXQn px0q .

(3.3.3)

We introduce the following modification of the Bauschke-Combettes iterative method.
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f-Bauschke-Combettes Iterative Method
Input: f : X Ñ p�8,�8s.
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''&'''%

yn � Txn,

Cn � tz P X : Df pz, ynq ¤ Df pz, xnqu ,
Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projCnXQn px0q .

(3.3.4)

Remark 3.3.2. When the Banach space is a Hilbert space and f � p1{2q }�}2, Algorithms

(3.3.3) and (3.3.4) coincide. 3

Now we present a modification of Algorithm (3.3.4) for finding common fixed points of
finitely many QBNE operators. Our algorithm allows for computational errors. More
precisely, let Ti : X Ñ X, i � 1, 2, . . . , N , be N QBNE operators such that F :��N
i�1 Fix pTiq � H. We study the following algorithm.

Minimal Norm-Like Bauschke-Combettes Iterative Method
Input: f : X Ñ R and teinunPN � X, i � 1, 2, . . . , N .
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''''&'''''%

yin � Ti pxn � einq ,
Ci
n � tz P X : Df pz, yinq ¤ Df pz, xn � einqu ,

Cn :� �N
i�1C

i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projCnXQn px0q .

(3.3.5)

3.3.1 Convergence Analysis

Since the proofs that these algorithms generate sequences which converge strongly to a
common fixed point are somewhat similar, we first prove several lemmata which are common
to all the proofs and then present the statements and the proofs of our main results.

In order to prove our lemmata, we consider two more general versions of these algorithms.
More precisely, we consider the following two algorithms.
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Input: f : X Ñ R and teinunPN � X, i � 1, 2, . . . , N .
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''''&'''''%

yin � Sin pxn � einq ,
H i
n � tz P X : x∇f pxn � einq �∇f pyinq , z � yiny ¤ 0u ,

Hn :� �N
i�1C

i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projHnXQn px0q .

(3.3.6)

Input: f : X Ñ R and teinunPN � X, i � 1, 2, . . . , N .
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''''&'''''%

yin � Sin pxn � einq ,
Ci
n � tz P X : Df pz, yinq ¤ Df pz, xn � einqu ,

Cn :� �N
i�1C

i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projCnXQn px0q .

(3.3.7)

Here Sin : X Ñ X are given operators for each i � 1, 2, . . . , N . All our lemmata are proved
under several assumptions, which we summarize in the following condition.

Condition 1. Let Sin : X Ñ X, i � 1, . . . , N and n P N, be QBNE operators such that

Ω :� �
nPN

�N
i�1 Fix pSinq � H . Let f : X Ñ R be a Legendre function which is bounded,

uniformly Fréchet differentiable and totally convex on bounded subsets of X. Suppose that

∇f�
is bounded on bounded subsets of int dom f

�
. Assume that, for each i � 1, . . . , N , the

sequence of errors teinunPN � X satisfies limnÑ8 }ein} � 0.

Now we prove a sequence of lemmata. We start by proving that both algorithms are
well defined.

Lemma 3.3.3. Assume, in addition to Condition 1, that each Sin : X Ñ X, i � 1, 2, . . . , N

and n P N, is a QBFNE operator. Then Algorithm (3.3.6) is well defined.

Proof. The point yin is well defined for each i � 1, 2, . . . , N and n P N. Hence we only have

to show that txnunPN is well defined. To this end, we will prove that the Bregman projection

onto Hn

�
Qn is well defined (see (1.2.14)), that is, we need to show that Hn

�
Qn is a

nonempty, closed and convex subset of X for each n P N (see Proposition 1.2.34). Let

n P N. It is not difficult to check that H i
n are closed half-spaces for any i � 1, 2, . . . , N .

Hence their intersection Hn is a closed polyhedral set. It is also obvious that Qn is a closed
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half-space. Let u P Ω. For any i � 1, 2, . . . , N and n P N, we obtain from the definition of

QBFNE operator (see (1.3.6)) that@
∇f

�
xn � ein

��∇f �yin� , u� yin
D ¤ 0,

which implies that u P H i
n. Since this holds for any i � 1, 2, . . . , N , it follows that u P Hn.

Thus Ω � Hn for any n P N. On the other hand, it is obvious that Ω � Q0 � X.

Thus Ω � H0

�
Q0, and therefore x1 � projfH0XQ0

px0q is well defined. Now suppose that

Ω � Hn�1

�
Qn�1 for some n ¥ 1. Then xn � projfHn�1XQn�1

px0q is well defined because

Hn�1

�
Qn�1 is a nonempty, closed and convex subset of X. So from Proposition 1.2.35(ii)

we have

x∇f px0q �∇f pxnq , y � xny ¤ 0

for any y P Hn�1

�
Qn�1. Hence we obtain that Ω � Qn. Therefore Ω � Hn

�
Qn and so

Hn

�
Qn is nonempty. Hence xn�1 � projfHnXQn px0q is well defined. Consequently, we see

that Ω � Hn

�
Qn for any n P N. Thus the sequence we constructed is indeed well defined

and satisfies Algorithm (3.3.6), as claimed.

Lemma 3.3.4. Algorithm (3.3.7) is well defined.

Proof. The point yin is well defined for each i � 1, 2, . . . , N and n P N. Hence we only have to

show that txnunPN is well defined. To this end, we will prove that the Bregman projection

onto Cn
�
Qn is well defined (see (1.2.14)), that is, we need to show that Cn

�
Qn is a

nonempty, closed and convex subset of X for each n P N (see Proposition 1.2.34). Let n P N.

It follows from Proposition 1.2.54 that Ci
n are closed half-spaces for any i � 1, 2, . . . , N .

Hence their intersection Cn is a closed polyhedral set. It is also obvious that Qn is a closed

half-space. Let u P Ω. For any i � 1, 2, . . . , N and n P N, we obtain from the definition of

QBNE operator (see (1.3.8)) that

Df

�
u, yin

� � Df

�
u, Sin

�
xn � ein

�� ¤ Df

�
u, xn � ein

�
,

which implies that u P Ci
n. Since this holds for any i � 1, 2, . . . , N , it follows that u P Cn.

Thus Ω � Cn for any n P N. The rest of the proof is identical to the proof of Lemma 3.3.3

by replacing Hn with Cn.

From now on we fix an arbitrary sequence txnunPN which is generated by Algorithm
(3.3.6) or by Algorithm (3.3.7).

Lemma 3.3.5. The sequences tDf pxn, x0qunPN, txnunPN and tyinunPN, i � 1, 2, . . . , N , are

bounded.
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Proof. Denote by ∆n the intersection Hn X Qn in the case of Algorithm (3.3.6) and the

intersection Cn X Qn in the case of Algorithm (3.3.7). It follows from the definition of

Qn and from Proposition 1.2.35(ii) that projfQn px0q � xn. Furthermore, from Proposition

1.2.35(iii), for each u P Ω, we have

Df pxn, x0q � Df

�
projfQn px0q , x0

	
¤ Df pu, x0q �Df

�
u, projfQn px0q

	
¤ Df pu, x0q .

Hence the sequence tDf pxn, x0qunPN is bounded by Df pu, x0q for any u P Ω. Therefore by

Proposition 1.2.47 the sequence txnunPN is bounded too, as claimed.

Now we will prove that each sequence tyinunPN, i � 1, 2, . . . , N , is bounded. Let u P Ω.

From the three point identity (see (1.2.2)) we get

Df pu, xn � enq � Df pu, xnq �Df pxn � en, xnq � x∇f pxn � enq �∇f pxnq , u� pxn � enqy
¤ Df pu, xnq � x∇f pxn � enq �∇f pxnq , u� pxn � enqy . (3.3.8)

We also have

Df pu, xnq � Df

�
u, projf∆n�1

px0q
	
¤ Df pu, x0q

because of Proposition 1.2.35(iii) and since Ω � ∆n�1. On the other hand, since f is

uniformly Fréchet differentiable and bounded on bounded subsets of X, we obtain from

Proposition 1.1.22(ii) that

lim
nÑ8

}∇f pxn � enq �∇f pxnq}� � 0

because limnÑ8 }en} � 0. This means that if we take into account that txnunPN is bounded,

then we get

lim
nÑ8

x∇f pxnq �∇f pxn � enq , u� pxn � enqy � 0. (3.3.9)

Combining these facts, we obtain from (3.3.8) that tDf pu, xn � enqunPN is bounded. Using

the inequality

Df

�
u, yin

� ¤ Df pu, xn � enq ,

we see that tDf pu, yinqunPN is bounded too. The boundedness of the sequence tyinunPN now

follows from Proposition 1.2.48.

Lemma 3.3.6. For any i � 1, 2, . . . , N , we have the following facts.

piq
lim
nÑ8

��yin � �
xn � ein

��� � 0. (3.3.10)
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piiq
lim
nÑ8

��∇f �yin��∇f �xn � ein
���

�
� 0. (3.3.11)

piiiq
lim
nÑ8

�
f
�
yin
�� f

�
xn � ein

�� � 0. (3.3.12)

Proof. Since xn�1 P Qn and projfQn px0q � xn, it follows from Proposition 1.2.35(iii) that

Df

�
xn�1, projfQn px0q

	
�Df

�
projfQn px0q , x0

	
¤ Df pxn�1, x0q

and hence

Df pxn�1, xnq �Df pxn, x0q ¤ Df pxn�1, x0q . (3.3.13)

Therefore the sequence tDf pxn, x0qunPN is increasing and since it is also bounded (see

Lemma 3.3.5), limnÑ8Df pxn, x0q exists. Thus from (3.3.13) it follows that

lim
nÑ8

Df pxn�1, xnq � 0. (3.3.14)

Proposition 1.2.50 now implies that

lim
nÑ8

Df

�
xn�1, xn � ein

� � 0. (3.3.15)

Now we split our proof into two parts according to the differences between Algorithms

(3.3.6) and (3.3.7). In both cases we will prove that limnÑ8Df pxn�1, y
i
nq � 0.

piq For any i � 1, 2, . . . , N , it follows from the inclusion xn�1 P H i
n that@

∇f
�
xn � ein

��∇f �yin� , xn�1 � yin
D ¤ 0. (3.3.16)

The three point identity (see (1.2.2)) now implies that

Df

�
xn�1, y

i
n

� � Df

�
xn�1, xn � ein

��Df

�
yin, xn � ein

�
� @
∇f

�
xn � ein

��∇f �yin� , xn�1 � yin
D

¤ Df

�
xn�1, xn � ein

�� @
∇f

�
xn � ein

��∇f �yin� , xn�1 � yin
D
.

From (3.3.16) we get that

Df

�
xn�1, y

i
n

� ¤ Df

�
xn�1, xn � ein

�
,

hence (3.3.15) leads to limnÑ8Df pxn�1, y
i
nq � 0.
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piiq For any i � 1, 2, . . . , N , it follows from the inclusion xn�1 P Ci
n that

Df

�
xn�1, y

i
n

� ¤ Df

�
xn�1, xn � ein

�
.

Hence from (3.3.15) it follows that limnÑ8Df pxn�1, y
i
nq � 0.

Since tyinunPN is bounded (see Lemma 3.3.5), Proposition 1.2.46 now implies that

lim
nÑ8

��yin � xn�1

�� � 0.

Since txnunPN is bounded (see Lemma 3.3.5), it follows from Proposition 1.2.46 and (3.3.14)

that

lim
nÑ8

��yin � xn�1

�� � 0.

Therefore, for any i � 1, 2, . . . , N , we have

lim
nÑ8

��yin � xn
�� ¤ lim

nÑ8

���yin � xn�1

��� }xn�1 � xn}
� � 0.

Since limnÑ8 }ein} � 0, it also follows that

lim
nÑ8

��yin � �
xn � ein

��� � 0.

The function f is uniformly Fréchet differentiable and bounded on bounded subsets of X.

Hence from Proposition 1.1.22(ii) we get

lim
nÑ8

��∇f �yin��∇f �xn � ein
���

�
� 0

for any i � 1, 2, . . . , N . Finally, since f is uniformly Fréchet differentiable on bounded

subsets of X, it is also uniformly continuous on bounded subsets of X (see Proposition

1.1.22(i)) and therefore

lim
nÑ8

�
f
�
yin
�� f

�
xn � ein

�� � 0

for any i � 1, 2, . . . , N .

Lemma 3.3.7. If any weak subsequential limit of txnunPN belongs to Ω, then the sequence

txnunPN converges strongly to projfΩ px0q.

Proof. From Proposition 2.1.1 it follows that Fix pSinq is closed and convex for each i �
1, 2, . . . , N and n P N. Therefore Ω is nonempty, closed and convex, and the Bregman

projection projfΩ is well defined. Since xn�1 � projfCnXQn px0q and Ω is contained in K in

both cases (see Lemmas 3.3.3 and 3.3.4), we have Df pxn�1, x0q ¤ Df pũ, x0q. Therefore
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Proposition 1.2.51 implies that txnunPN converges strongly to ũ � projfΩ px0q, as claimed.

Now we prove the convergence of the Minimal Norm-like Picard Iterative Method (see
Algorithm (3.3.2)).

Theorem 3.3.8 (Convergence of Algorithm (3.3.2)). Let Ti : X Ñ X, i � 1, 2, . . . , N , be

N QBFNE operators such that F :� �N
i�1 Fix pTiq � H. Let f : X Ñ R be a Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex on bounded

subsets of X. Suppose that ∇f�
is bounded on bounded subsets of int dom f

�
. Then, for

each x0 P X there are sequences txnunPN which satisfy Algorithm (3.3.2). If, for each

i � 1, 2, . . . , N , the sequence of errors teinunPN � X satisfies limnÑ8 }ein} � 0, then each

such sequence txnunPN converges strongly to projfF px0q as nÑ 8.

Proof. We denote Sin :� Ti for any i � 1, 2, . . . , N and all n P N. Therefore Ω � F . We see

that Condition 1 holds and therefore we can apply our lemmata.

From Lemmata 3.3.3 and 3.3.5, any sequence txnunPN which is generated by Algorithm

(3.3.2) is well defined and bounded. From now on we let txnunPN be an arbitrary sequence

which is generated by Algorithm (3.3.2).

We claim that every weak subsequential limit of txnunPN belongs to F . From Lemma

3.3.6 we have

lim
nÑ8

��yin � �
xn � ein

��� � lim
nÑ8

��Sin �xn � ein
�� �

xn � ein
���

� lim
nÑ8

��Ti �xn � ein
�� �

xn � ein
��� � 0 (3.3.17)

for any i � 1, 2, . . . , N . Now let txnkukPN be a weakly convergent subsequence of txnunPN
and denote its weak limit by v. Let zin � xn � ein. Since xnk á v and eink Ñ 0 as k Ñ 8,

it is obvious that for any i � 1, . . . , N , the sequence
 
zink

(
kPN also converges weakly to v.

We also have limkÑ8

��Tizink � zink
�� � 0 by (3.3.17). This means that v P xFix pTiq for any

i � 1, 2, . . . , N . Since each Ti is a QBFNE operator, it follows that v P Fix pTiq for any

i � 1, 2, . . . , N . Therefore v P F , as claimed.

Now Theorem 3.3.8 is seen to follow from Lemma 3.3.7.

Now we prove the convergence of the Minimal Norm-Like Bauschke-Combettes iterative
method (see Algorithm (3.3.5)). The analysis of this algorithm was first done in [92,
Theorem 1, page 126].

Theorem 3.3.9 (Convergence of Algorithm (3.3.5)). Let Ti : X Ñ X, i � 1, 2, . . . , N ,

be N QBNE operators such that F :� �N
i�1 Fix pTiq � H. Let f : X Ñ R be a Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex on bounded
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subsets of X. Suppose that ∇f�
is bounded on bounded subsets of int dom f

�
. Then, for

each x0 P X there are sequences txnunPN which satisfy Algorithm (3.3.5). If, for each

i � 1, 2, . . . , N , the sequence of errors teinunPN � X satisfies limnÑ8 }ein} � 0, then each

such sequence txnunPN converges strongly to projfF px0q as nÑ 8.

Proof. We denote Sin :� Ti for any i � 1, 2, . . . , N and all n P N. Therefore Ω � F . We see

that Condition 1 holds and therefore we can apply our lemmata.

By Lemmata 3.3.4 and 3.3.5, any sequence txnunPN which is generated by Algorithm

(3.3.5) is well defined and bounded. From now on we let txnunPN be an arbitrary sequence

which is generated by Algorithm (3.3.5).

The rest of the proof is identical to the proof of 3.3.8.

3.4 An Implicit Method for Approximating Fixed Points

In this section we prove a strong convergence theorem of Browder’s type for BFNE operators
(see Definition 1.3.5) with respect to a well chosen function (cf. [91, Theorem 15.13, page
310]).

Theorem 3.4.1 (Implicit method for approximating fixed points). Let f : X Ñ R be a

Legendre, totally convex function which is positively homogeneous of degree α ¡ 1, uniformly

Fréchet differentiable and bounded on bounded subsets of X. Let K be a nonempty, bounded,

closed and convex subset of X with 0 P K, and let T be a BFNE self-operator. Then the

following two assertions hold.

piq For each t P p0, 1q, there exists a unique ut P K satisfying ut � tTut.

piiq The net tututPp0,1q converges strongly to projfFixpT q

�
∇f� p0q� as tÑ 1�.

Proof. piq Fix t P p0, 1q and let St be the operator defined by St � tT . Since 0 P K and

K is convex, St is an operator from K into itself. We next show that St is a BFNE

operator (see (1.3.4)). Indeed, if x, y P K, then, since T is BFNE (see (1.3.4)), it

follows from Proposition 1.1.24 that

x∇f pStxq �∇f pStyq , Stx� Styy � tα x∇f pTxq �∇f pTyq , Tx� Tyy (3.4.1)

¤ tα x∇f pxq �∇f pyq , Tx� Tyy
� tα�1 x∇f pxq �∇f pyq , Stx� Styy
¤ x∇f pxq �∇f pyq , Stx� Styy .

Thus St is also BFNE (see (1.3.4)). Since K is bounded, it follows from Corollary

2.1.8 that St has a fixed point. We next show that Fix pStq consists of exactly one
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point. If u, u1 P Fix pStq, then it follows from (3.4.1) that

x∇f puq �∇f pu1q , u� u1y � x∇f pStuq �∇f pStu1q , Stu� Stu
1y (3.4.2)

¤ tα�1 x∇f puq �∇f pu1q , Stu� Stu
1y

� tα�1 x∇f puq �∇f pu1q , u� u1y .

From (3.4.2) and the monotonicity of ∇f (see Example 1.4.3), we have

x∇f puq �∇f pu1q , u� u1y � 0.

Since f is Legendre (see Definition 1.2.7), then f is strictly convex and hence ∇f is

strictly monotone (see again Example 1.4.3) and therefore u � u1. Thus there exists

a unique ut P K such that ut � Stut.

piiq Let ttnunPN be a sequence in p0, 1q such that tn Ñ 1� as n Ñ 8. Put xn � utn for

all n P N. From Propositions 2.1.1 and 2.1.6, Fix pT q is nonempty, closed and convex.

Thus the Bregman projection projfFixpT q is well defined. In order to show that ut Ñ
projfFixpT q

�
∇f� p0q� as t Ñ 1�, it is sufficient to show that xn Ñ projfFixpT q

�
∇f� p0q�

as nÑ 8. Since K is bounded, there is a subsequence txnkukPN of txnunPN such that

xnk á v as k Ñ 8. By the definition of xn, we have }xn � Txn} � p1� tnq }Txn}
for all n P N. So, we have that }xn � Txn} Ñ 0 as n Ñ 8 and hence v P xFix pT q.
Proposition 2.1.2 now implies that v P Fix pT q. We next show that xnk Ñ v as k Ñ 8.

Let y P Fix pT q be given and fix n P N. Then, since T is BFNE, we have from (1.3.4)

that

x∇f pTxnq �∇f pTyq , Txn � Tyy ¤ x∇f pxnq �∇f pyq , Txn � Tyy .

That is

0 ¤ x∇f pxnq �∇f pTxnq , Txn � yy .

Since

∇f pxnq �∇f pTxnq � ∇f ptnTxnq �∇f pTxnq
� tα�1

n ∇f pTxnq �∇f pTxnq �
�
tα�1
n � 1

�
∇f pTxnq ,

we have

0 ¤ @�
tα�1
n � 1

�
∇f pTxnq , Txn � y

D
.

This yields

0 ¤ x�∇f pTxnq , Txn � yy (3.4.3)
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and

x∇f pyq �∇f pTxnq , y � Txny ¤ x∇f pyq , y � Txny . (3.4.4)

Since xnk á v and xnk � Txnk Ñ 0 as k Ñ 8, it follows that Txnk á v as k Ñ 8.

Hence from (3.4.4) we obtain that

lim sup
kÑ8

x∇f pyq �∇f pTxnkq , y � Txnky ¤ lim sup
kÑ8

x∇f pyq , y � Txnky (3.4.5)

� x∇f pyq , y � vy .

Substituting y � v in (3.4.5), we get

0 ¤ lim sup
kÑ8

x∇f pvq �∇f pTxnkq , v � Txnky ¤ 0.

Thus

lim
kÑ8

x∇f pvq �∇f pTxnkq , v � Txnky � 0.

Since

Df pv, Txnkq �Df pTxnk , vq � x∇f pvq �∇f pTxnkq , v � Txnky ,

it follows that

lim
kÑ8

Df pv, Txnkq � lim
kÑ8

Df pTxnk , vq � 0.

Since f is totally convex (see Definition 1.2.8), Proposition 1.2.45 now implies that

Txnk Ñ v as k Ñ 8. Finally, we claim that v � projfFixpT q

�
∇f� p0q�. Since ∇f is

norm-to-weak
�

continuous on bounded subsets (see Proposition 1.1.21), it follows that

∇f pTxnkq á ∇f pvq as k Ñ 8. Letting k Ñ 8 in (3.4.3), we obtain

0 ¤ x�∇f pvq , v � yy

for any y P Fix pT q. Hence

0 ¤
A
∇f

�
∇f� p0q

	
�∇f pvq , v � y

E
for any y P Fix pT q. Thus Proposition 1.2.35(ii) implies that v � projfFixpT q

�
∇f� p0q�.

Consequently, the whole net tututPp0,1q converges strongly to projfFixpT q

�
∇f� p0q� as

tÑ 1�. This completes the proof.

Remark 3.4.2 (Browder’s type result for nonexpansive operators). Early analogs of The-

orem 3.4.1 for nonexpansive mappings in Hilbert and Banach spaces may be found in

[30, 58, 85].
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We specialize Theorem 3.4.1 to the case where f � }�}2 and X is a uniformly smooth and
uniformly convex Banach space (see Definition 1.1.33). In this case the function f � }�}2
is Legendre (cf. [7, Lemma 6.2, page 639]) is bounded and uniformly Fréchet differentiable
on bounded subsets of X. According to Proposition 1.2.18, since X is uniformly convex, f
is totally convex. Thus we obtain the following corollary. As a matter of fact, this corollary
is known to hold even when X is only a smooth and uniformly convex Banach space (see
[69]).

Corollary 3.4.3 (Particular case). Let X be a uniformly smooth and uniformly convex

Banach space. Let K be a nonempty, bounded, closed and convex subset of X with 0 P K,

and let T be a BFNE self-operator with respect to }�}2. Then the following two assertions

hold.

piq For each t P p0, 1q, there exists a unique ut P K satisfying ut � tTut.

piiq The net tututPp0,1q converges strongly to proj
}�}2

FixpT q p0q as tÑ 1�.



Chapter 4

Iterative Methods for Approximating

Zeroes

A problem of interest in Optimization Theory is that of finding zeroes of mappings A :
X Ñ 2X

�
. Formally, the problem can be written as follows:

Find x P X such that 0
� P Ax. (4.0.1)

This problem occurs in practice in various forms. For instance, minimizing a convex and
lower semicontinuous function f : X Ñ p�8,�8s, a basic problem of optimization,
amounts to finding a zero of the mapping A � Bf , where Bf pxq stands for the subdif-
ferential (see Definition 1.1.12(iii)) of f at the point x P X. Finding solutions of some
classes of differential equations can also be reduced to finding zeroes of certain mappings
A : X Ñ 2X

�
.

One of the most important methods for solving (4.0.1) consists of replacing (4.0.1) in
the case of a Hilbert space, H, with the fixed point problem for the operator RA : HÑ 2H

defined by
RA :� pI � Aq�1 .

When H is a Hilbert space, and provided that A satisfies some monotonicity conditions,
the classical resolvent RA of A is single-valued, nonexpansive and even firmly nonexpansive
(see (1.3.1) and (1.3.12), respectively) which ensure that its iterates xn�1 � RAxn, based on
Picard’s method (see Algorithm (3.0.1) and Remark 3.1.4), converge weakly, and sometimes
even strongly, to fixed points of the resolvent RA which are necessarily zeroes of A (see
[100]) as we will explain later on in this chapter. As in the case of fixed point problems,
when X is not a Hilbert space, or if A fails to be monotone, the convergence of the iterates
of RA to a fixed point of RA and, thus, to a solution of (4.0.1), is more difficult to ensure
(see [41]).

One way to overcome this difficulty is to use, instead of the classical resolvent, a new
type of resolvent which first introduced by Teboulle [108] in 1992 for the subdifferential
mapping case and one year later by Eckstein [51] for a general monotone mapping (see also
[46, 88, 8]). If f : X Ñ p�8,�8s is an admissible function (see Definition 1.2.1), then the
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f -resolvent is the operator ResfA : X Ñ 2X given by

ResfA :� p∇f � Aq�1 �∇f. (4.0.2)

It is well defined when A is monotone and int dom f
�

domA � H. Moreover, similarly to

the classical resolvent, the fixed points of ResfA are solutions of (4.0.1). This leads to the

question whether, and under which conditions concerning A and f , the iterates of ResfA
approximate fixed points of ResfA. Some partial results in this direction are already known
(see [41]).

In this section we present several methods for finding zeroes of maximal monotone
mappings which improve and generalize previous results. The literature contains several
other methods for finding zeroes of monotone mappings. See, for example, [4, 13, 14, 37,
41, 42, 38, 32, 39, 51, 81, 76, 78, 100, 101] and the references therein. Many of them are
fixed point methods which calculate fixed points of the resolvent.

In the next sections we are motivated by the methods proposed in Chapter 3 for approxi-
mating fixed points. We describe various methods for finding zeroes of monotone mappings
and prove convergence theorems for these methods. In the following result we see that any
monotone mapping with bounded effective domain has zeroes (cf. [89, Lemma 4.1, page
480]).

Proposition 4.0.4 (Zeroes of mappings with bounded domains). If A : X Ñ 2X
�

is a

maximal monotone mapping with a bounded effective domain, then A�1
�
0
�� � H.

Proof. Let tεnunPN be a sequence of positive numbers which converges to zero. The mapping

A � εnJX is surjective for any n P N because A is a maximal monotone operator (see

Proposition 1.4.17). Therefore, for any n P N, there exists xn P domA such that 0
� P

pA� εnJXqxn. Consequently, for any n P N, there are ξn P Axn and ηn P JX pxnq such

that ξn � εnηn � 0
�
. Therefore from the definition of the normalized duality mapping (see

(1.1.10)) we have

lim
nÑ8

}ξn}� � lim
nÑ8

εn }ηn}� � lim
nÑ8

εn }xn} Ñ 0

because txnunPN is a bounded sequence. Hence there exists a subsequence txnkukPN of

txnunPN which converges weakly to some x0 P X. Since A is monotone (see (1.4.1)), we

have

xζ � ξnk , v � xnky ¥ 0, @k P N (4.0.3)

for any pv, ζq P graphA. Letting k Ñ 8 in (4.0.3), we obtain xζ, v � x0y ¥ 0 for all

pv, ζq P graphA and from the maximality of A it follows that x0 P A�1
�
0
��

(see Proposition

1.4.13). Hence A�1
�
0
�� � H, as claimed
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4.1 Properties of f-Resolvents

Let A : X Ñ 2X
�

be a mapping such that

int dom f
£

domA � H. (4.1.1)

Remark 4.1.1 (Particular case of f -resolvents). If K is a nonempty, closed and convex

subset of X, then the indicator function ιK of K, that is, the function

ιK pxq :�
#

0 if x P K
�8 if x R K,

is proper, convex and lower semicontinuous, and therefore BιK exists and is a maximal

monotone mapping with domain K (see Proposition 1.4.19). The operator ResfBιK is exactly

the Bregman projection onto K with respect to f which we already defined in (1.2.14). As

we already noted there, this operator is denoted by projfK.

Now, we present several properties of f -resolvents which will be used later (cf. [8,
Proposition 3.8, page 604]).

Proposition 4.1.2 (Properties of f -resolvents). Let f : X Ñ p�8,�8s be an admissible

function and let A : X Ñ 2X
�

be a mapping. The following statements hold.

piq dom ResfA � int dom f .

piiq ran ResfA � int dom f .

piiiq Fix
�

ResfA

	
� int dom f

�
A�1

�
0
��

.

pivq Suppose, in addition, that A is a monotone mapping and f |int dom f is strictly convex

(and, in particular, if f is Legendre). Then the following hold.

paq The operator ResfA is single-valued on its domain.

pbq The operator ResfA is BFNE.

pcq Suppose that

ran∇f � ran p∇f � Aq. (4.1.2)

Then dom ResfA � int dom f and Fix
�

ResfA

	
is convex set.

Proof. piq It is clear from (1.2.5) that

dom ResfA � dom p∇f � Aq�1 �∇f � dom∇f � int dom f.
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piiq Again we have from (1.2.5) that

ran ResfA � ran p∇f � Aq�1 � dom p∇f � Aq
� dom∇f

£
domA � dom∇f � int dom f.

piiiq From assertion (i) we have Fix
�

ResfA

	
� int dom f and we know that 0

� P Ax if and

only if x P ResfAx for any x P int dom f , indeed,

0
� P Axô ∇f pxq P Ax�∇f pxq � p∇f � Aq pxq
ô x P p∇f � Aq�1 p∇f pxqq � ResfAx.

Hence, we have

int dom f
£

A�1
�

0
�
	
� int dom f

£
Fix

�
ResfA

	
� Fix

�
ResfA

	
.

pivq Suppose that A is a monotone mapping and f |int dom f is strictly convex.

paq Fix x P dom ResfA and tu, vu � ResfAx. Then (1.3.4) implies that

x∇f puq �∇f pvq , u� vy ¤ 0.

But the converse inequality is also true since ∇f is monotone (see Example 1.4.3).

The function f is strictly convex on int dom f . Thus ∇f is strictly monotone on

int dom f (see again Example 1.4.3). Since tu, vu P int dom f , we obtain that

u � v.

pbq In view of assertions (i) and (ii), we have to show that (1.3.4) is satisfied for any

x, y P dom ResfA. Then from the definition of the f -resolvent (see (4.0.2)) we have

that ∇f pxq�∇f
�

ResfAx
	
P A

�
ResfAx

	
and ∇f pyq�∇f

�
ResfAy

	
P A

�
ResfAy

	
.

Indeed, if x P dom ResfA then we have that

ResfAx � p∇f � Aq�1 �∇f pxq ô p∇f � Aq
�

ResfAx
	
� ∇f pxq

ô ∇f pxq �∇f
�

ResfAx
	
� A

�
ResfAx

	
,

and the same for y P dom ResfA. Consequently, since A is monotone (see (1.4.1)),

we have xξ � η, x� yy ¥ 0 for any ξ P Ax and for any η P Ay. Therefore, we get

thatA
∇f pxq �∇f

�
ResfAx

	
�
�
∇f pyq �∇f

�
ResfAy

		
,ResfAx� ResfAy

E
¥ 0;
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thus,A
∇f

�
ResfAx

	
�∇f

�
ResfAy

	
,ResfAx� ResfAy

E
¤
A
∇f pxq �∇f pyq ,ResfAx� ResfAy

E
.

Hence the operator ResfA is BFNE.

pcq Suppose that (4.1.2) holds. Then we have that ran∇f � dom p∇f � Aq�1 and

therefore from (1.2.5) we get

dom ResfA � dom∇f � int dom f.

Indeed, from assertion (i) we have that dom ResfA � int dom f . It remains to

show that int dom f � dom ResfA. For any x P int dom f we have from (4.1.2)

that ∇f pxq P dom p∇f � Aq�1 and, therefore, p∇f � Aq�1 � ∇f pxq � H that

is ResfA pxq � H, it means that dom ResfA � dom∇f � int dom f . In view of

assertion (b) of (iv) above and Proposition 2.1.1 (see also Figure 1.3), Fix
�

ResfA

	
is closed and convex.

The following result gives two other conditions which guarantee that an f -resolvent of
a maximal monotone mapping satisfies dom ResfA � int dom f (cf. [8, Corollary 3.14, page
606]).

Proposition 4.1.3 (Sufficient conditions for dom ResfA � int dom f). Let f : X Ñ p�8,�8s
be an admissible function and let λ ¡ 0. Suppose that A : X Ñ 2X

�

is a maximal monotone

mapping such that A�1
�
0
�� � H. If one of the following conditions holds:

piq ran∇f is open and domA � int dom f ;

piiq f is Legendre and domA � int dom f ,

then dom ResfλA � int dom f .

Corollary 4.1.4 (f -resolvent with full domain - case I). Let f : X Ñ R be a Legendre

function and let A : X Ñ 2X
�

be a maximal monotone mapping such that A�1
�
0
�� � H.

Then dom ResfλA � X. If f is also cofinite, then dom ResfλA � X implies that A is maximal

monotone.

The following result presents another property of maximal monotone mappings with
possibly empty zeroes set (cf. [8, Theorem 3.13(iv), page 606]).

Proposition 4.1.5 (f -resolvent with full domain - case II). Let f : X Ñ p�8,�8s be

an admissible function and let λ ¡ 0. Suppose that A : X Ñ 2X
�

is a maximal monotone
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mapping such that domA � int dom f and satisfies (4.1.1). If f is Legendre and cofinite

then dom ResfλA � X.

The next result shows the strong connection between resolvents of monotone mappings
and BFNE operators (cf. [15, Proposition 5.1, page 7]). In this connection see Section
2.1.1 for another characterization.

Proposition 4.1.6 (Characterization of BFNE operators). Let f : X Ñ R be a cofinite

and Legendre function. Let K be a subset of X, T : K Ñ X be an operator and set

AT :� ∇f � T�1 �∇f . Suppose that A : X Ñ 2X
�

is a maximal monotone mapping. The

following assertions hold.

piq The f -resolvent ResfAT is exactly T and A�1
�
0
�� � A�1

T

�
0
��

.

piiq If T is BFNE, then AT is monotone.

piiiq If T is BFNE, then K � X if and only if AT is maximal monotone.

Proof. piq From the definition of AT we get that

AT � ∇f � T�1 �∇f ô AT �∇f � ∇f � T�1 ô pAT �∇fq�1 � �
∇f � T�1

��1

ô pAT �∇fq�1 � T �∇f�1 ô pAT �∇fq�1 �∇f � T �∇f�1 �∇f � T

ô ResfAT � T.

It is easy to check that A�1
�
0
�� � A�1

T

�
0
��

.

piiq Take pu, ξq and pv, ηq in graphAT . Then

ξ P ATu � ∇f � T�1u�∇f puq ô ξ �∇f puq P ∇f � T�1u

ô u P �∇f � T�1
��1 pξ �∇f puqq ô u � T �∇f�1 pξ �∇f puqq ,

and analogously v � T �∇f�1 pη �∇f pvqq. Since T is BFNE, we know from (1.3.4)

that

x∇f puq �∇f pvq , u� vy
� @
∇f

�
T �∇f�1 pξ �∇f puqq��∇f �T �∇f�1 pη �∇f pvqq� , u� v

D
¤ @
∇f

�
∇f�1 pξ �∇f puqq��∇f �∇f�1 pη �∇f pvqq� , u� v

D
� xpξ �∇f puqq � pη �∇f pvqq , u� vy ,

that is, xξ � η, u� vy ¥ 0 which means that T is monotone (see (1.4.1)).
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piiiq Suppose that T is BFNE. By assertion (ii), AT is monotone. Using assertion (i) and

Corollary 4.1.4, we obtain that AT is maximal monotone if and only if dom ResfAT �
domT � K � X.

4.2 Examples of f-Resolvents

As we explained, any BFNE operator is an f -resolvent (see (4.0.2)) of a monotone mapping
(see Proposition 4.1.6(ii)). Since f -resolvents play an important role in the analysis of opti-
mization problems, in the following subsection we provide several examples of f -resolvents
with respect to different choices of admissible functions f , for example, the Boltzmann-
Shannon entropy (see (1.2.8)) and the Fermi-Dirac entropy (see (1.2.9)).

4.2.1 Examples of BS-Resolvents

Let A : p0,�8q Ñ R be a monotone mapping. Then the BS-resolvent of A is

ResBSA :� plog�Aq�1 � log .

Remark 4.2.1 (Another formulation of the BS-resolvent). We can also write the BS-

resolvent as follows:

ResBSA �
��plog�Aq�1 � log

��1
	�1

� �plogq�1 � plog�Aq��1 � �
eplog�Aq

��1
,

where
�
eplog�Aq

� pxq � xeApxq. This naturally leads us to the Lambert W function. 3

Recall [24, 26] that the Lambert W function, W, is defined to be the inverse of x ÞÑ xex

and is implemented in both Maple and Mathematica. Its principal branch on the real axis
is shown in Figure 4.1. Like log, it is concave increasing, and its domain is p�1{e,�8q.

Figure 4.1: The Lambert W function
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We now give several examples of BS-resolvents.

Example 4.2.2 (BS-resolvents in the real line). piq If A pxq � α, α P R, then ResBSA pxq �
e�αx for all x P R��.

In particular, if α � 0 then ResBSA pxq � x, x P R��.

piiq If A pxq � αx� β, α, β P R, then ResBSA pxq � p1{αqW
�
αe�βx

�
for all x P R��.

Hence, if α � 1 and β � 0, then ResBSA pxq � W pxq, x P R��.

piiiq If A pxq � α log pxq, α P R, then ResBSA pxq � x1{p1�αq for all x P R��.

Therefore, if α � 1 then ResBSA pxq � ?
x, x P R��.

pivq If A pxq � xp{p, p ¡ 1, then ResBSA pxq � pW pxpqq1{p for all x P R��.

Thus, if p � 2 then ResBSA pxq �a
W px2q, x P R��.

pvq If A pxq � W pαxpq, α P R and p ¥ 1, then

ResBSA pxq �
�

x

αpp� 1q

 1

p�1

pW pαpp� 1qxpqq 1
p�1

for all x P R��.

Therefore, if α � 2 and p � 1, then ResBSA pxq �a
x
4

a
W p4xq, x P R��. 3

We now present an example of a BS-resolvent in R2.

Example 4.2.3 (BS-resolvent in R2). Let BS2 px, yq :� x log pxq � y log pyq � x� y. Thus

∇BS2 px, yq � plog pxq , log pyqq. Let θ P r0, π{2s and consider the rotation mapping Aθ :

R2 Ñ R2 defined by

Aθpx, yq :�
�

cospθq � sinpθq
sinpθq cospθq

��
x

y

�
.

In particular, the BS-resolvent of the rotation mapping Aπ{2 is the operator

ResBS2
Aπ{2

:� �
∇BS2 � Aπ{2

��1 � p∇BS2q .

We claim that the inverse of ∇BS2 � Aπ{2 uniquely exists. To see this, note that for any

x, y P p0,�8q, we have

�
∇BS2 � Aπ{2

��x
y

�
�
�

log pxq � y

log pyq � x

�
.
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Thus we have to show that for any pz, wq P R2, there exist unique x, y P p0,�8q such that

z � log pxq � y and w � log pyq � x. These two equations can be written as

x � ey�z and y � ew�x.

Therefore, x � ee
w�x�z. This equation has indeed a unique solution in p0,�8q. To check

this, define a function f : r0,�8q Ñ R by f pxq � x� ee
w�x�z. Then it is easy to see that

f p0q � �eew�z   0 and limxÑ�8 f pxq � �8. Since the function f is continuous, it has at

least one root. On the other hand,

f 1 pxq � 1� ee
w�x�z

��ew�x� � 1� ee
w�x�w�x�z ¡ 0.

This means that f has exactly one root, which is the unique solution of the equation x �
ee
w�x�z. The general case is similar but less explicit.

4.2.2 Examples of FD-Resolvents

Let A : p0, 1q Ñ R be a monotone mapping. Then the FD-resolvent of A is

ResFD
A :� pFD1 � Aq�1 � FD1,

where in this case FD1 pxq � log px{ p1� xqq and therefore pFD1q�1 pxq � ex{ p1� exq.
Remark 4.2.4 (Another formulation of the FD-resolvent). We can also write the resolvent

in the following way:

ResFD
A �

��
pFD1 � Aq�1 � FD1

	�1

�1

�
�
pFD1q�1 � pFD1 � Aq

	�1

�
�

epFD1�Aq

1� epFD1�Aq


�1

,

where �
epFD1�Aq

1� epFD1�Aq



pxq � xeApxq

1� x� xeApxq
.

3
Several examples of FD-resolvents follow.

Example 4.2.5 (FD-resolvents in the real line). piq If A pxq � α, α P p0,�8q, then

ResFD
A pxq � x

x� eα p1� xq , x P p0, 1q.

If α � 0, then ResFD
A pxq � x, x P p0, 1q.
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piiq If A pxq � log pxq, then

ResFD
A pxq � x�?4x� 3x2

2 px� 1q
for all x P p0, 1q.

piiiq If A pxq � log p1� xq, then

ResFD
A pxq � x

1� x

for all x P p0, 1q.

(vi) If A pxq � 2 log p1� xq, then

ResFD
A pxq � 1� x�?5x2 � 6x� 1

2 px� 1q

for all x P p0, 1{5s.
Finally, the next table lists f -resolvents with respect to various choices of functions f .

Here, for simplicity, we denote ResfA � g�1.

fpxq Domain gpxq
BSpxq p0,�8q xeApxq

FDpxq p0, 1q xeApxq

1�x�xeApxq

x2{2 R x� Apxq
x4{4 R px3 � Apxqq1{3

ex R logpex � Apxqq
� logpxq p0,�8q x

1�xApxq

Table 4.1: Examples of f -Resolvents

4.2.3 Examples of f-Resolvents in Hilbert Spaces

Following [15, Example 9.6, page 71], we consider the function fp : H Ñ R defined by
fp pxq � 1

p
}x}p, where H is a Hilbert space and p P p1,�8q. So the conjugate of fp is the

function f
�

p pyq � 1
q
}y}q, where q is the conjugate exponent of p, that is, 1{p � 1{q � 1.

Then, for any y � 0, we have that ∇f�

p pyq � }y}q�2 y. Consider A � I, the identity
mapping, and denote the f -resolvent of A by

Tp � Res
fp
A :� p∇fp � Iq�1 �∇fp.
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Then

Tp �
"

0 if x � 0
kp pxqx if x � 0,

where kp pxq P p0, 1q is the unique solution to the equation

kp�1 � k }x}2�p � 1.

4.3 Iterative Methods Based on Haugazeau’s Algorithm

A well-known method for finding zeroes of monotone mappings in Hilbert space is the
celebrated Proximal Point Algorithm.

Proximal Point Algorithm
Input: tλnunPN � p0,�8q.
Initialization: x0 P H.
General Step (n � 1, 2, . . .):

xn�1 � RλnA pxnq � pI � λnAq�1 xn. (4.3.1)

This algorithm was first introduced by Martinet [75] and further developed by Rockafellar
[100], who proves that the sequence generated by Algorithm (4.3.1) converges weakly to
an element of A�1 p0q when A�1 p0q is nonempty and lim infnÑ8 λn ¡ 0. Furthermore,
Rockafellar [100] asks if the sequence generated by Algorithm (4.3.1) converges strongly.
For general monotone mappings a negative answer to this question follows from [55]; see also
[14]. In the case of the subdifferential this question was answered in the negative by Güler
[57], who presented an example of a subdifferential for which the sequence generated by
Algorithm (4.3.1) converges weakly but not strongly; see [14] for a more recent and simpler
example. There are several ways to generalize the classical proximal point algorithm (see
Algorithm (4.3.1)) so that strong convergence is guaranteed.

In Chapter 3 we have studied several algorithms for approximating fixed points of Breg-
man nonexpansive operators. In the following sections we modify these methods in order
to find zeroes of monotone mappings.

4.3.1 The Solodov-Svaiter Iterative Method

Solodov and Svaiter [105] modified the classical proximal point algorithm (see Algorithm
(4.3.1)) in order to generate a strongly convergent sequence (in this sense see also Algorithm
(3.0.4)). They introduced the following algorithm.
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Solodov-Svaiter Proximal Point Algorithm
Input: tλnunPN � p0,�8q.
Initialization: x0 P H.
General Step (n � 1, 2, . . .):$'''&'''%

0 � vn � 1
λn
pyn � xnq , vn P Ayn,

Hn � tz P H : xvn, z � yny ¤ 0u ,
Qn � tz P H : xx0 � xn, z � xny ¤ 0u ,
xn�1 � PHnXQn px0q .

(4.3.2)

They prove that if A�1 p0q is nonempty and lim infnÑ8 λn ¡ 0, then the sequence generated
by Algorithm (4.3.2) converges strongly to PA�1p0q. Kamimura and Takahashi [64] general-
ized this result to those Banach space X which are both uniformly convex and uniformly
smooth (see Definition 1.1.33(iii) and (iv)). They introduced the following algorithm.

Kamimura-Takahashi Proximal Point Algorithm
Input: tλnunPN � p0,�8q.
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$''''&''''%

0
� � ξn � 1

λn
pJX pynq � JX pxnqq , ξn P Ayn,

Hn � tz P X : xvn, z � yny ¤ 0u ,
Qn � tz P X : xJX px0q � JX pxnq , z � xny ¤ 0u ,
xn�1 � proj

}�}2

HnXQn
px0q .

(4.3.3)

They prove that if A�1
�
0
��

is nonempty and lim infnÑ8 λn ¡ 0, then the sequence gener-

ated by Algorithm (4.3.3) converges strongly to proj
}�}2

A�1p0�q px0q.
We study an extension of Algorithms (4.3.2) and (4.3.3) in all reflexive Banach spaces

using a well-chosen convex function f . More precisely, we consider the following algorithm
introduced by Bauschke and Combettes [10] (see also Gárciga Otero and Svaiter [54]).

Bauschke-Combettes Proximal Point Algorithm I
Input: f : X Ñ R and tλnunPN � p0,�8q.
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''&'''%

0
� � ξn � 1

λn
p∇f pynq �∇f pxnqq , ξn P Ayn,

Hn � tz P X : xξn, z � yny ¤ 0u ,
Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projfQnXWn

px0q .

(4.3.4)

Algorithm (4.3.4) is more flexible than Algorithm (4.3.3) because it leaves us the freedom
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of fitting the function f to the nature of the mapping A (especially when A is the sub-
differential of some function) and of the space X in ways which make the application of
Algorithm (4.3.4) simpler than that of Algorithm (4.3.3). It should be observed that if
X is a Hilbert space H, then using in Algorithm (4.3.4) the function f � p1{2q }�}2, one
obtains exactly the classical proximal point algorithm (see Algorithm (4.3.2)). If X is not
a Hilbert space, but still a uniformly convex and uniformly smooth Banach space X (see
Definition 1.1.33(iii) and (iv)), then setting f � p1{2q }�}2 in Algorithm (4.3.4), one obtains
exactly Algorithm (4.3.3). We also note that the choice f � p1{2q }�}2 in some Banach
spaces may make the computations in Algorithm (4.3.3) quite difficult. These computa-
tions can be simplified by an appropriate choice of f . For instance, if X � `p or X � Lp

with p P p1,�8q, and fp � p1{pq }�}p in Algorithm (4.3.4), then the computations become

simpler than those required in Algorithm (4.3.3), which corresponds to f � p1{2q }�}2.

We study the following algorithm when Z :� �N
i�1A

�1
i

�
0
�� � H.

Minimal Norm-Like Proximal Point Algorithm I
Input: f : X Ñ R, tλinunPN � p0,�8q and tηinunPN, i � 1, 2, . . . , N .
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$''''''&''''''%

ηin � ξin � 1
λin
p∇f pyinq �∇f pxnqq , ξin P Aiyin,

Hn � tz P X : xξin, z � yiny ¤ 0u ,
Hn :� �N

i�1H
i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projfHnXQn px0q .

(4.3.5)

Note that if ηin � 0
�
, then

yin � Resf
λinAi

pxnq .
Now we will prove a convergence result for Algorithm (4.3.5) (cf. [89, Theorem 3.1, page
477]).

Theorem 4.3.1 (Convergence result for Algorithm (4.3.5)). Let Ai : X Ñ 2X
�

, i �
1, 2, . . . , N , be N maximal monotone operators such that Z :� �N

i�1A
�1
i

�
0
�� � H. Let

f : X Ñ R be a Legendre function which is bounded, uniformly Fréchet differentiable and

totally convex on bounded subsets of X. Then, for each x0 P X, there are sequences txnunPN
which satisfy Algorithm (4.3.5). If, for each i � 1, 2, . . . , N , lim infnÑ8 λ

i
n ¡ 0, and the

sequence of errors tηinunPN � X
�

satisfies limnÑ8 λ
i
n }ηin}� � 0 and lim supnÑ8 xηin, yiny ¤ 0,

then each such sequence txnunPN converges strongly to projfZ px0q as nÑ 8.

Proof. Note that dom∇f � X because dom f � X and f is Legendre (see Definition

1.2.7). Hence it follows from Proposition 4.1.4 that dom ResfλA � X. Denote Sin :� Resf
λinAi

.

Therefore from Proposition 4.1.2(iv)(b) and Figure 1.3 we have that each Sin is BFNE and

thus QBFNE. We also have that Ω � Z and that Condition 1 holds.
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We split our proof into three steps.

Claim 1: There are sequences txnunPN which satisfy Algorithm (4.3.5).

Proof. As a matter of fact, we will prove that, for each x0 P X, there exists a sequence

txnunPN which is generated by Algorithm (4.3.5) with ηin � 0
�

for all i � 1, 2, . . . , N and

n P N. In this case yin � Sin pxnq. Therefore our claim follows directly from Lemma 3.3.3.

From now on we fix an arbitrary sequence txnunPN satisfying Algorithm (4.3.5). It is

clear from the proof of Claim 1 that Z � Hn

�
Qn for each n P N.

Claim 2: The sequences tDf pxn, x0qunPN and txnunPN are bounded.

Proof. It is easy to check that the proof of the facts that tDf pxn, x0qunPN and txnunPN
are bounded proceeds exactly as in the proof of Lemma 3.3.5.

Claim 3: Every weak subsequential limit of txnunPN belongs to Z.

Proof. It follows from the definition of Qn and Proposition 1.2.35(ii) that projfQn px0q �
xn. Since xn�1 P Qn, it follows from Proposition 1.2.35(iii) that

Df

�
xn�1, projfQn px0q

	
�Df

�
projfQn px0q , x0

	
¤ Df pxn�1, x0q

and hence

Df pxn�1, xnq �Df pxn, x0q ¤ Df pxn�1, x0q . (4.3.6)

Therefore the sequence tDf pxn, x0qunPN is increasing and since it is also bounded (see Claim

2), limnÑ8Df pxn, x0q exists. Thus from (4.3.6) it follows that

lim
nÑ8

Df pxn�1, xnq � 0. (4.3.7)

Since txnunPN is bounded (see Claim 2), Proposition 1.2.46 now implies that

lim
nÑ8

}xn�1 � xn} � 0.

For any i � 1, 2, . . . , N , it follows from the three point identity (see (1.2.2)) that

Df pxn�1, xnq �Df

�
yin, xn

�
� Df

�
xn�1, y

i
n

�� @
∇f pxnq �∇f

�
yin
�
, yin � xn�1

D
¥ @
∇f pxnq �∇f

�
yin
�
, yin � xn�1

D � @
λin

�
ξin � ηin

�
, yin � xn�1

D
� λin

@
ξin, y

i
n � xn�1

D� λin
@
ηin, y

i
n � xn�1

D ¥ �λin
@
ηin, y

i
n � xn�1

D
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because xn�1 P H i
n. We now have

Df

�
yin, xn

� ¤ Df pxn�1, xnq �
@
λinη

i
n, y

i
n � xn�1

D
� Df pxn�1, xnq � λin

@
ηin, y

i
n

D� @
λinη

i
n, xn�1

D
¤ Df pxn�1, xnq � λin

@
ηin, y

i
n

D� ��λinηin��� }xn�1} .

Hence

lim sup
nÑ8

Df

�
yin, xn

� ¤ lim sup
nÑ8

Df pxn�1, xnq

� lim sup
nÑ8

λin
@
ηin, y

i
n

D� lim sup
nÑ8

��λinηin��� }xn�1} .

Since limnÑ8 λ
i
n }ηin}� � 0, lim supnÑ8 xηin, yiny ¤ 0 and (4.3.7), we see that

lim sup
nÑ8

Df

�
yin, xn

� ¤ 0.

Hence limnÑ8Df pyin, xnq � 0. Since txnunPN is bounded (see Claim 2), Proposition 1.2.46

again implies that limnÑ8 }yin � xn} � 0. Since the function f is bounded and uniformly

Fréchet differentiable on bounded subsets of X we get from Proposition 1.1.22(ii) that

lim
nÑ8

��∇f pxnq �∇f �yin���� � 0.

Since lim infnÑ8 λ
i
n ¡ 0 and limnÑ8 }ηin}� � 0, it follows that

lim
nÑ8

��ξin��� � lim
nÑ8

1

λin

��∇f pxnq �∇f �yin�� ηin
��
�

¤ lim
nÑ8

1

λin

���∇f pxnq �∇f �yin���� � ��ηin���	 � 0
�

, (4.3.8)

for any i � 1, 2, . . . , N .

Now let txnkukPN be a weakly convergent subsequence of txnunPN and denote its weak

limit by v. Then
 
yink

(
kPN also converges weakly to v for any i � 1, 2, . . . , N . Since ξin P Ayin

and Ai is monotone (see (1.4.1)), it follows that@
η � ξin, z � yin

D ¥ 0

for all pz, ηq P graphAi. This, in turn, implies that xη, z � vy ¥ 0 for all pz, ηq P graphAi.

Therefore, using the maximal monotonicity of Ai (see Proposition 1.4.13), we now obtain

that v P A�1
i

�
0
��

for each i � 1, 2, . . . , N . Thus v P Z and this proves Claim 3.

Now Theorem 4.3.1 is seen to follow from Lemma 3.3.7.
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Suppose now that the mappings Ai, i � 1, 2, . . . , N , have no common zero. If txnunPN
is a sequence satisfying Algorithm (4.3.5), then limnÑ8 }xn} � �8. This is because if
txnunPN were to have a bounded subsequence, then it would follow from Claim 3 in the
proof of Theorem 4.3.1 that the mappings Ai, i � 1, 2, . . . , N , did share a common zero. In
the case of a single zero free mapping A, we can prove that such a sequence always exists
(cf. [89, Theorem 4.2, page 481]).

Theorem 4.3.2 (Algorithm (4.3.5) is well-defined - zero free case). Let A : X Ñ 2X
�

be

a maximal monotone mapping. Let f : X Ñ R be a Legendre function which is bounded,

uniformly Fréchet differentiable and totally convex on bounded subsets of X. Then, for

each x0 P X, there are sequences txnunPN which satisfy Algorithm (4.3.5) with N � 1. If

lim infnÑ8 λn ¡ 0, and the sequence of errors tηnunPN � X� satisfies limnÑ8 λn }ηn}� � 0

and lim supnÑ8 xηn, yny ¤ 0, then either A�1
�
0
�� � H and each such sequence txnunPN

converges strongly to projf
A�1p0�q px0q as nÑ 8, or A�1

�
0
�� � H and each such sequence

txnunPN satisfies limnÑ8 }xn} � �8.

Proof. In view of Theorem 4.3.1, we only need to consider the case where A�1
�
0
�� � H.

First of all we prove that in this case, for each x0 P X, there is a sequence txnunPN which

satisfies Algorithm (4.3.5) with ηn � 0
�

for all n P N.

We prove this by induction. We first check that the initial step (n � 0) is well defined.

The proximal subproblem

0
� P Ax� 1

λ0

p∇f pxq �∇f px0qq

always has a solution py0, ξ0q because it is equivalent to the problem x � Resfλ0A px0q and

this problem does have a solution since dom ResfλA � X (see Propositions 1.2.13 and 4.1.5).

Now note that Q0 � X. Since H0 cannot be empty, the next iterate x1 can be generated;

it is the Bregman projection of x0 onto H0 � Q0

�
H0.

Note that whenever xn is generated, yn and ξn can further be obtained because the

proximal subproblems always have solutions. Suppose now that xn and pyn, ξnq have already

been defined for n � 0, 1, . . . , n̂. We have to prove that xn̂�1 is also well defined. To this

end, take any z0 P domA and define

ρ :� max t}yn � z0} : n � 0, 1, . . . , n̂u

and

h pxq :�
#

0, }x� z0} ¤ ρ� 1

�8, otherwise.

Then h : X Ñ p�8,�8s is a proper, convex and lower semicontinuous function, its
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subdifferential Bh is maximal monotone (see Proposition 1.4.19). Define A1 � A � Bh,

which is also maximal monotone (see Proposition 1.4.22). Furthermore,

A1 pzq � A pzq for all }z � z0}   ρ� 1.

Therefore ξn P A1yn for n � 0, 1, . . . , n̂. We conclude that xn and pyn, ξnq also satisfy the

conditions of Theorem 4.3.1 applied to the problem 0� P A1 pxq. Since A1 has a bounded

effective domain, this problem has a solution by Proposition 4.0.4. Thus it follows from

Claim 1 in the proof of Theorem 4.3.1 that xn̂�1 is well defined. Hence the whole sequence

txnunPN is well defined, as asserted.

If txnunPN were to have a bounded subsequence, then it would follow from Claim 3 in the

proof of Theorem 4.3.1 that A had a zero. Therefore if A�1
�
0
�� � H, then limnÑ8 }xn} �

�8, as asserted.

Algorithm (4.3.4) is a special case of Algorithm (4.3.5) when N � 1 and ηn � 0
�

for all
n P N. Hence as a direct consequence of Theorem 4.3.1 we obtain the following result (cf.
[54] and [89, Theorem 5.1, page 482]).

Corollary 4.3.3 (Convergence result for Algorithm (4.3.4)). Let A : X Ñ 2X
�

be a

maximal monotone mapping. Let f : X Ñ R be a Legendre function which is bounded,

uniformly Fréchet differentiable and totally convex on bounded subsets of X, and suppose

that lim infnÑ8 λn ¡ 0. Then for each x0 P X, the sequence txnunPN generated by Algo-

rithm (4.3.4) is well defined, and either A�1
�
0
�� � H and txnunPN converges strongly to

projf
A�1p0�q px0q as nÑ 8, or A�1

�
0
�� � H and limnÑ8 }xn} � �8.

Notable corollaries of Theorems 4.3.1 and 4.3.2 occur when the space X is both uniformly
smooth and uniformly convex (see Definition 1.1.33(ii) and (iv)). In this case the function
f � }�}2 is Legendre (cf. [7, Lemma 6.2, page 24]) and both bounded and uniformly Fréchet
differentiable on bounded subsets of X. According to Proposition 1.2.21, f is sequentially
consistent since X is uniformly convex and hence f is totally convex on bounded subsets
of X. Therefore Theorems 4.3.1 and 4.3.2 hold in this context and lead us to the following
two results (cf. [89, Theorem 5.2, page 482] and [89, Theorem 5.3, page 483]) which, in
some sense, complement in [64, Theorem 8] (see also [105, Theorem 1, page 199]).

Corollary 4.3.4 (Convergence result for Algorithm (4.3.3)). Let X be a uniformly smooth

and uniformly convex Banach space and let A : X Ñ 2X
�

be a maximal monotone map-

ping. Then, for each x0 P X, the sequence txnunPN generated by Algorithm (4.3.3) is well

defined. If lim infnÑ8 λn ¡ 0, then either A�1
�
0
�� � H and txnunPN converges strongly to

proj
}�}2

A�1p0�q px0q as nÑ 8, or A�1
�
0
�� � H and limnÑ8 }xn} � �8.

Corollary 4.3.5 (Convergence result for Algorithm (4.3.2)). Let H be a Hilbert space and

let A : X Ñ 2X be a maximal monotone mapping. Then, for each x0 P H, the sequence
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txnunPN generated by Algorithm (4.3.2) is well defined. If lim infnÑ8 λn ¡ 0, then either

A�1 p0q � H and txnunPN converges strongly to PA�1p0q px0q as nÑ 8, or A�1 p0q � H and

limnÑ8 }xn} � �8.

These corollaries also hold, of course, in the presence of computational errors as in
Theorems 4.3.1 and 4.3.2.

Let g : X Ñ p�8,�8s be a proper, convex and lower semicontinuous function. Using
Theorems 4.3.1 and 4.3.2 for the subdifferential of g, we obtain an algorithm for finding a
minimizer of g (cf. [89, Proposition 6.1, page 483]).

Corollary 4.3.6 (Application of Algorithm (4.3.5) - finding minimizers). Let g : X Ñ
p�8,�8s be a proper, convex and lower semicontinuous function which attains its mini-

mum over X. If f : X Ñ R is a Legendre function which is bounded, uniformly Fréchet

differentiable, and totally convex on bounded subsets of X, and tλnunPN is a positive se-

quence with lim infnÑ8 λn ¡ 0, then, for each x0 P X, the sequence txnunPN generated by

Algorithm (4.3.5) with A � Bg converges strongly to a minimizer of g as nÑ 8.

If g does not attain its minimum over X, then limnÑ8 }xn} � �8.

Proof. The subdifferential Bg of g is a maximal monotone mapping because g is a proper,

convex and lower semicontinuous function (see Proposition 1.4.19). Since the zero set of

Bg coincides with the set of minimizers of g, the result follows immediately from Theorems

4.3.1 and 4.3.2.

Next we prove a result similar to Theorem 4.3.1, but with a different type of errors than
those in Algorithm (4.3.5).

Minimal Norm-Like Proximal Point Algorithm II
Input: f : X Ñ R and teinunPN � X, i � 1, 2, . . . , N .
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$''''''&''''''%

yin � Resf
λinAi

pxn � einq ,
Hn � tz P X : x∇f pxn � einq �∇f pyinq , z � yiny ¤ 0u ,
Hn :� �N

i�1H
i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projfHnXQn px0q .

(4.3.9)

Theorem 4.3.7 (Convergence result for Algorithm (4.3.9)). Let Ai : X Ñ 2X
�

, i �
1, 2, . . . , N , be N maximal monotone mappings such that Z :� �N

i�1A
�1
i

�
0
�� � H. Let

f : X Ñ R be a Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Suppose that ∇f�
is bounded on bounded

subsets of int dom f
�
. Then, for each x0 P X, there are sequences txnunPN which satisfy
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Algorithm (4.3.9). If, for each i � 1, 2, . . . , N , lim infnÑ8 λ
i
n ¡ 0, and the sequence of

errors teinunPN � X satisfies limnÑ8 }ein} � 0, then each such sequence txnunPN converges

strongly to projfZ px0q as nÑ 8.

Proof. Note that dom∇f � X because dom f � X and f is Legendre (see Definition

1.2.7). Hence it follows from Proposition 4.1.4 that dom ResfλA � X. Denote Sin :� Resf
λinAi

.

Therefore from Proposition 4.1.2(iv)(b) and Figure 1.3 we have that each Sin is BFNE and

hence QBFNE. We also have Ω � Z and we see that Condition 1 holds so that we can

apply our lemmata.

From Lemmata 3.3.3 and 3.3.5, any sequence txnunPN which is generated by Algorithm

(4.3.9) is well defined and bounded. From now on we let txnunPN be an arbitrary sequence

which is generated by Algorithm (4.3.9).

We claim that every weak subsequential limit of txnunPN belongs to Z. From Lemma

3.3.6 we have

lim
nÑ8

��∇f �yin��∇f �xn � ein
���

�
� 0,

for any i � 1, 2, . . . , N . The rest of the proof follows as the proof of Theorem 4.3.7.

Following the same arguments as in the proof of Theorem 4.3.2, we can prove the following
result.

Theorem 4.3.8 (Algorithm (4.3.9) is well-defined - zero free case). Let A : X Ñ 2X
�

be

a maximal monotone mapping. Let f : X Ñ R be a Legendre function which is bounded,

uniformly Fréchet differentiable and totally convex on bounded subsets of X. Suppose that

∇f�
is bounded on bounded subsets of int dom f

�
. Then, for each x0 P X, there are

sequences txnunPN which satisfy Algorithm (4.3.9) with N � 1. If lim infnÑ8 λn ¡ 0, and the

sequence of errors tenunPN � X satisfies limnÑ8 en � 0, then either A�1
�
0
�� � H and each

such sequence txnunPN converges strongly to projf
A�1p0�q px0q as n Ñ 8, or A�1

�
0
�� � H

and each such sequence txnunPN satisfies limnÑ8 }xn} � �8.

The following algorithm allows for computational errors of the kind of Algorithm (4.3.9)
but in a different way and with a weaker condition. The following algorithm combines the
proximal point algorithm and the Mann methods (see Algorithm (3.0.3)). More precisely,

we study the following algorithm when Z :� �N
i�1A

�1
i

�
0
�� � H.
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Minimal Norm-Like Proximal Point Algorithm III
Input: f : X Ñ R, tλinun P N � p0,�8q and tαinun P N � r0, 1s, i � 1, 2, . . . , N
and tenunPN � X.
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''''''''&'''''''''%

zn � ∇f� pαn∇f pxnq � p1� αnq∇f penqq ,
0
� � ξin � 1

λin
p∇f pyinq �∇f pxnqq , ξin P Aiyin,

Hn � tz P X : xξin, z � yiny ¤ 0u ,
Hn :� �N

i�1H
i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projfHnXQn px0q .

(4.3.10)

Theorem 4.3.9 (Convergence result for Algorithm (4.3.10)). Let Ai : X Ñ 2X
�

, i �
1, 2, . . . , N , be N maximal monotone mappings such that Z :� �N

i�1A
�1
i

�
0
�� � H. Let

f : X Ñ R be a Legendre function which is bounded, uniformly Fréchet differentiable and

totally convex on bounded subsets of X. Suppose that ∇f�
is bounded on bounded subsets

of int dom f
�
. Assume that tαnunPN � r0, 1s satisfies limnÑ8 αn � 1 and tenunPN is the

sequence of errors which satisfies }en} ¤M (M is a positive constant) and lim infnÑ8 λ
i
n ¡

0, i � 1, 2, . . . , N , then, for each x0 P X, each such sequence txnunPN generated by Algorithm

(4.3.10) converges strongly to projfZ px0q as nÑ 8.

Proof. Note that dom∇f � X because dom f � X and f is Legendre (see Definition

1.2.7). Hence it follows from Proposition 4.1.4 that dom ResfλA � X. It is easy to check

that yin � Resf
λinAi

pznq. Following the arguments in the proof of Theorem 4.3.1 we get that

there are sequences txnunPN which satisfy Algorithm (4.3.10) and txnunPN is bounded.

Now we will prove that every weak subsequential limit of txnunPN belongs to Z. Again

following the same arguments as in the proof of Theorem 4.3.1 we get that

lim
nÑ8

Df pxn�1, xnq � 0.
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For any i � 1, 2, . . . , N , it follows from the three point identity (see (1.2.2)) that

Df

�
projf

Hi
n
pxnq , xn

	
�Df

�
yin, xn

�
� Df

�
projf

Hi
n
pxnq , yin

	
�
A
∇f pxnq �∇f

�
yin
�
, yin � projf

Hi
n
pxnq

E
¥
A
∇f pxnq �∇f

�
yin
�
, yin � projf

Hi
n
pxnq

E
�
A
λinξ

i
n, y

i
n � projf

Hi
n
pxnq

E
¥ 0

because projf
Hi
n
pxnq P H i

n. Since, in addition, xn�1 P H i
n, we also have

Df pxn�1, xnq ¥ Df

�
projf

Hi
n
pxnq , xn

	
¥ Df

�
yin, xn

�
.

Hence limnÑ8Df pyin, xnq � 0. Since txnunPN is bounded, Proposition 1.2.46 now implies

that limnÑ8 }yin � xn} � 0. In addition, we have from the definition of W f (see (1.2.24))

and Proposition 1.2.42(ii) that

Df pxn�1, znq � Df

�
xn�1,∇f

� pαn∇f pxnq � p1� αnq∇f penqq
	

(4.3.11)

� W f pαn∇f pxnq � p1� αnq∇f penq , xn�1q
¤ αnW

f p∇f pxnq , xn�1q � p1� αnqW f p∇f penq , xn�1q
� αnDf pxn�1, xnq � p1� αnqDf pxn�1, enq .

The sequences txnunPN and tenunPN are bounded and since f and consequently ∇f are

bounded on bounded subsets ofX (see Proposition 1.1.15), it follows that tDf pxn�1, enqunPN
is also bounded. Since limnÑ8 αn � 1, it follows that

lim
nÑ8

Df pxn�1, znq � 0.

As we have already noted, the sequences t∇f pxnqunPN and t∇f penqunPN are bounded and

since ∇f�
is bounded on bounded subsets of int dom f

�
, it follows that tznunPN is also

bounded. Proposition 1.2.46 now implies that limnÑ8 }xn�1 � zn} � 0. Then it follows

that

lim
nÑ8

}xn � zn} � 0

because

}xn � zn} ¤ }xn � xn�1} � }xn�1 � zn} .

Therefore for any i � 1, 2, . . . , N , it follows that limnÑ8 }yin � zn} � 0.

Since f is uniformly Fréchet differentiable and bounded on bounded subsets of X, it
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follows from Proposition 1.1.22(ii) that

lim
nÑ8

��∇f �yin��∇f �xn � ein
���

�
� 0 (4.3.12)

for any i � 1, 2, . . . , N . The rest of the proof follows as the proof of Theorem 4.3.7.

Remark 4.3.10 (Convergence under different assumptions). In Theorems 4.3.1, 4.3.7 and

4.3.9 we can replace the assumptions that lim infnÑ8 λn ¡ 0 and f is bounded and uniformly

Fréchet differentiable on bounded subsets of X with the assumption that limnÑ8 λn � �8.

3

In the case of Algorithm (4.3.10) we can also prove the following result, based on The-
orem 4.3.9.

Theorem 4.3.11 (Algorithm (4.3.10) is well-defined - zero free case). Let A : X Ñ 2X
�

be maximal monotone mappings such that Z :� �N
i�1A

�1
i

�
0
�� � H. Let f : X Ñ R be

a Legendre function which is bounded, uniformly Fréchet differentiable and totally convex

on bounded subsets of X. Suppose that ∇f�
is bounded on bounded subsets of int dom f

�
.

Let tαnunPN � r0, 1s and tenunPN be a sequence of errors. Then, for each x0 P X, there are

sequences txnunPN which satisfy Algorithm (4.3.10) with N � 1.

If limnÑ8 αn � 1, }en} ¤ M (M is a positive constant) and lim infnÑ8 λn ¡ 0, then

either A�1
�
0
�� � H and each such sequence txnunPN converges strongly to projf

A�1p0�q px0q
as nÑ 8, or A�1

�
0
�� � H and each such sequence txnunPN satisfies limnÑ8 }xn} � �8.

4.4 Iterative Methods Based on the Bauschke-Combettes Algo-

rithm

Another modification of the classical proximal point algorithm (see Algorithm (4.3.1))
has been proposed by Bauschke and Combettes [9], who also have modified the proximal
point algorithm in order to generate a strongly convergent sequence. They introduced, for
example, the following algorithm (see [9, Corollary 6.1(ii), page 258] for a single operator
and λn � 1{2).
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Bauschke-Combettes Proximal Point Algorithm II
Input: tλnunPN � p0,�8q
Initialization: x0 P H.
General Step (n � 1, 2, . . .):$'''&'''%

yn � RλnA pxnq ,
Cn � tz P H : }yn � z} ¤ }xn � z}u ,
Qn � tz P H : xx0 � xn, z � xny ¤ 0u ,
xn�1 � PCnXQn px0q .

(4.4.1)

They prove that if A�1 p0q is nonempty and lim infnÑ8 λn ¡ 0, then the sequence generated
by Algorithm (4.4.1) converges strongly to PA�1p0q. Wei and Thou [111] generalized this
result to those Banach spaces X which are both uniformly convex and uniformly smooth
(see Definition 1.1.33(iii) and (iv)). They introduced the following algorithm.

Wei-Zhou Proximal Point Algorithm
Input: tλnunPN � p0,�8q
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''''&'''''%

yn � Res
p1{2q}�}2

λnA
pxnq ,

Cn �
!
z P X : Dp1{2q}�}2 pz, ynq ¤ Dp1{2q}�}2 pz, xnq

)
,

Qn � tz P X : xJXx0 � JXxn, z � xny ¤ 0u ,
xn�1 � proj

p1{2q}�}2

CnXQn
px0q .

(4.4.2)

They prove that if A�1
�
0
��

is nonempty and lim infnÑ8 λn ¡ 0, then the sequence gener-

ated by Algorithm (4.4.2) converges strongly to proj
p1{2q}�}2

A�1p0�q.
We extend Algorithms (4.4.1) and (4.4.2) to general reflexive Banach spaces using a well

chosen convex function f . More precisely, we introduce the following algorithm.

f-Bauschke-Combettes Proximal Point Algorithm I
Input: f : X Ñ R and tλnunPN � p0,�8q
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'''&'''%

yn � ResfλnA pxnq ,
Cn � tz P X : Df pz, ynq ¤ Df pz, xnqu ,
Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projfCnXQn px0q .

(4.4.3)

As we have already noted in Section 4.3, Algorithm (4.4.3) is more flexible than Algorithm
(4.4.2) because it leaves us the freedom of fitting the function f to the nature of the mapping
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A (especially when A is the subdifferential of some function) and of the space X in ways
which make the application of Algorithm (4.4.3) simpler than that of Algorithm (4.4.2).
It should be observed that if X is a Hilbert space H, then using in Algorithm (4.4.3)
the function f � p1{2q }�}2, one obtains exactly Algorithm (4.4.1). If X is not a Hilbert
space, but still a uniformly convex and uniformly smooth Banach space X (see Definition
1.1.33(iii) and (iv)), then setting f � p1{2q }�}2 in Algorithm (4.4.3), one obtains exactly
Algorithm (4.4.2).

We study the following algorithm when Z :� �N
i�1A

�1
i

�
0
�� � H.

f-Bauschke-Combettes Proximal Point Algorithm II
Input: f : X Ñ R and tλinun P N � p0,�8q, i � 1, 2, . . . , N .
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$''''''&''''''%

yin � Resf
λinAi

pxn � einq ,
Ci
n � tz P X : Df pz, yinq ¤ Df pz, xn � einqu ,

Cn :� �N
i�1C

i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projfCnXQn px0q .

(4.4.4)

In the following result we prove that Algorithm (4.4.4) generates a sequence which converges
strongly to a common zero of the finite family of maximal monotone mappings Ai : X Ñ
2X

�

, i � 1, 2, . . . , N (cf. [90, Theorem 4.2, page 35]).

Theorem 4.4.1 (Convergence result for Algorithm (4.4.4)). Let Ai : X Ñ 2X
�

, i �
1, 2, . . . , N , be N maximal monotone mappings such that Z :� �N

i�1A
�1
i

�
0
�� � H. Let

f : X Ñ R be a Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Suppose that ∇f�
is bounded on bounded

subsets of int dom f
�
. Then, for each x0 P X, there are sequences txnunPN which satisfy

Algorithm (4.4.4). If for each i � 1, 2, . . . , N , lim infnÑ8 λ
i
n ¡ 0, and the sequence of errors

teinunPN � X satisfies limnÑ8 }ein} � 0, then each such converges strongly to projfZ px0q as

nÑ 8.

Proof. Note that dom∇f � X because dom f � X and f is Legendre (see Definition

1.2.7). Hence it follows from Proposition 4.1.4 that dom ResfλA � X. Denote Sin :� Resf
λinAi

.

Therefore from Proposition 4.1.2(iv)(b) and Figure 1.3 we have that each Sin is BFNE and

therefore QBNE. We also have Ω � Z and we see that Condition 1 holds and we can apply

our lemmata.

By Lemmata 3.3.3 and 3.3.5, any sequence txnunPN which is generated by Algorithm

(4.4.4) is well defined and bounded. From now on we let txnunPN be an arbitrary sequence

which is generated by Algorithm (4.4.4).
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We claim that every weak subsequential limit of txnunPN belongs to Z. From Lemma

3.3.6 we have

lim
nÑ8

��∇f �yin��∇f �xn � ein
���

�
� 0, (4.4.5)

for any i � 1, 2, . . . , N . The rest of the proof follows as the proof of Theorem 4.3.7.

Now we propose two algorithms for finding common zeroes of finitely many maximal
monotone mappings. Both algorithms are based on products of f -resolvents. For earlier
results based on this method see, for example, [13, 32, 88, 95].

Algorithm (4.4.4) finds common zeroes of finitely many maximal monotone mappings.
In this algorithm we build, at each step, N copies of the half-space Cn with respect to each
mapping. Then the next iteration is the Bregman projection onto the intersection of N �1
half-spaces (N copies of Cn and Qn). Now we propose a new variant of Algorithm (4.4.4)
which also finds common zeroes of finitely many maximal monotone mappings. In the new
algorithm we use the concept of products of resolvents and therefore we build, at each step,
only one copy of the half-space Cn. Then the next iteration is the Bregman projection onto
the intersection of two half-spaces (Cn and Qn).

Sabach Proximal Point Algorithm I
Input: f : X Ñ R and tλinun P N � p0,�8q, i � 1, 2, . . . , N .
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$''''&''''%

yn � Resf
λNn AN

� � � � � Resfλ1nA1
pxn � enq ,

Cn � tz P X : Df pz, ynq ¤ Df pz, xn � enqu ,
Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projfCnXQn px0q .

(4.4.6)

The following algorithm is a modification of Algorithm (4.4.6), where at any step we calcu-
late the Bregman projection onto only one set which is not necessarily a half-space. Even
if we only project onto one set, the computation of the projection is harder since this set
is a general convex set. We present and analyze this algorithm. Its proof is very similar to
the one of Algorithm (4.4.6). More precisely, we introduce the following. algorithm

Sabach Proximal Point Algorithm II
Input: f : X Ñ R and tλinun P N � p0,�8q, i � 1, 2, . . . , N .
Initialization: x0 P X.
General Step (n � 1, 2, . . .):$'&'%

yn � Resf
λNn AN

� � � � � Resfλ1nA1
pxn � enq ,

Cn�1 � tz P Cn : Df pz, yinq ¤ Df pz, xn � enqu ,
xn�1 � projfCn�1

px0q .
(4.4.7)

We have the following theorem (cf. [103, Theorem 3.1, page 1297]).
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Theorem 4.4.2 (Convergence results for Algorithms (4.4.6) and (4.4.7)). Let Ai : X Ñ
2X

�

, i � 1, 2, . . . , N , be N maximal monotone mappings with Z :� �N
i�1A

�1
i

�
0
�� � H.

Let f : X Ñ R be a Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Suppose that ∇f�
is bounded on bounded

subsets of int dom f
�
. Then, for each x0 P X, the sequence txnunPN which is generated

either by Algorithm (4.4.6) or by Algorithm (4.4.7) is well defined. If the sequence of errors

tenunPN � X satisfies limnÑ8 }en} � 0 and for each i � 1, 2, . . . , N , lim infnÑ8 λ
i
n ¡ 0,

then the sequence txnunPN converges strongly to projfZ px0q as nÑ 8.

Proof. Note that dom∇f � X because dom f � X and f is Legendre (see Definition

1.2.7). Hence it follows from Proposition 4.1.4 that dom ResfλA � X. We denote by T in the

f -resolvent Resf
λinAi

and by Sin the composition T in � � � � � T 1
n for any i � 1, 2, . . . , N and for

each n P N. Therefore yn � TNn � � � � � T 1
n pxn � enq � SNn pxn � enq. We also assume that

S0
n � I, where I is the identity operator.

From Proposition 4.1.2(iv)(b), Proposition 2.1.2 and Figure 1.3 we have that each T in,

i � 1, 2, . . . , N , is BSNE. Therefore Proposition 2.1.12 now implies that also Sin is BSNE

and therefore QBNE. From Remark 2.1.13 we have that Fix pSinq �
�n
i�1 Fix pT inq.

Each f -resolvent Resf
λinAi

is a QBNE operator and therefore SNn , a composition of QBNE

operators, is also QBNE. Hence we get from (1.3.8) that

Df pu, ynq � Df

�
u,Resf

λNn AN
� � � � � Resfλ1nA1

pxn � enq
	
� Df

�
u, SNn pxn � enq

�
¤ Df

�
u, Sin pxn � enq

� ¤ Df pu, xn � enq (4.4.8)

for any i � 1, 2, . . . , N � 1.

We have Ω � Z and therefore Condition 1 holds. Hence we can apply our lemmata.

From Lemmata 3.3.3 and 3.3.5, any sequence txnunPN which is generated by either

Algorithm (4.4.6) or by Algorithm (4.4.7) is well defined and bounded. From now on we let

txnunPN be an arbitrary sequence which is generated by Algorithm (4.4.6) or by Algorithm

(4.4.7).

We claim that every weak subsequential limit of txnunPN belongs to Z. From Lemma

3.3.6 we have

lim
nÑ8

}yn � pxn � enq} � 0, lim
nÑ8

pf pynq � f pxn � enqq � 0

and

lim
nÑ8

}∇f pxn � enq �∇f pynq}� � 0. (4.4.9)
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Hence, from the definition of the Bregman distance (see (1.2.1)), we get that

lim
nÑ8

Df pyn, xn � enq � lim
nÑ8

rf pynq � f pxn � enq � x∇f pxn � enq , yn � pxn � enqys � 0.

(4.4.10)

Let u P Z. From the three point identity (see (1.2.2)) we obtain that

Df pu, xn � enq �Df pu, ynq � Df pyn, xn � enq � x∇f pxn � enq �∇f pynq , yn � uy .

Since the sequence tynunPN is bounded (see Lemma 3.3.5) we obtain from (4.4.9) and (4.4.10)

that

lim
nÑ8

pDf pu, xn � enq �Df pu, ynqq � 0. (4.4.11)

Thence from (4.4.11) we get that

lim
nÑ8

�
Df pu, xn � enq �Df

�
u, SNn pxn � enq

�� � 0

for any u P Z. From (1.3.6), (1.3.8), (4.4.8) we get that

Df

�
Sin pxn � enq , Si�1

n pxn � enq
� � Df

�
T in

�
Si�1
n pxn � enq

�
, Si�1

n pxn � enq
�

¤ Df

�
u, Si�1

n pxn � enq
��Df

�
u, Sin pxn � enq

�
¤ Df pu, xn � enq �Df pu, ynq .

Hence from (4.4.11) we get that

lim
nÑ8

Df

�
Sin pxn � enq , Si�1

n pxn � enq
� � 0 (4.4.12)

for any i � 1, 2, . . . , N . Therefore from Proposition 1.2.46 and the fact that tSin pxn � enqunPN
is bounded (using similar arguments to those in the proof of Lemma 3.3.5), we obtain that

lim
nÑ8

�
Sin pxn � enq � Si�1

n pxn � enq
� � 0 (4.4.13)

for any i � 1, 2, . . . , N . From the three point identity (see (1.2.2)) we get that

Df

�
Sin pxn � enq , xn � en

��Df

�
Si�1
n pxn � enq , xn � en

�
� Df

�
Sin pxn � enq , Si�1

n pxn � enq
�

� @
∇f pxn � enq �∇f

�
Si�1
n pxn � enq

�
, Si�1

n pxn � enq � Sin pxn � enq
D
.

The sequences txnunPN and tSin pxn � enqunPN are bounded (see Lemma 3.3.5). Hence, from
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(4.4.12) and (4.4.13) we get that

lim
nÑ8

�
Df

�
Sin pxn � enq , xn � en

��Df

�
Si�1
n pxn � enq , xn � en

�� � 0. (4.4.14)

Since

lim
nÑ8

Df pyn, xn � enq � lim
nÑ8

Df

�
SNn pxn � enq , xn � en

� � 0,

we obtain from (4.4.14) that

lim
nÑ8

Df

�
Sin pxn � enq , xn � en

� � 0

for any i � 1, 2, . . . , N . Proposition 1.2.46 and the fact that txn � enunPN is bounded (see

Lemma 3.3.5), now imply that

lim
nÑ8

��Sin pxn � enq � pxn � enq
�� � 0 (4.4.15)

for any i � 1, 2, . . . , N , that is,

lim
nÑ8

���Resf
λinAi

�
Si�1
n pxn � enq

�� pxn � enq
��� � 0

for any i � 1, 2, . . . , N . From the definition of the f -resolvent (see (4.0.2)), it follows that

∇f
�
Si�1
n pxn � enqq

� P �∇f � λinAi
� �
Sin pxn � enq

�
.

Hence

ξin :� 1

λin

�
∇f

�
Si�1
n pxn � enq

��∇f �Sin pxn � enq
�� P Ai �Sin pxn � enq

�
(4.4.16)

for any i � 1, 2, . . . , N . Applying Proposition 1.1.22(ii) to (4.4.13) we get that

lim
nÑ8

��∇f �Si�1
n pxn � enq

��∇f �Sin pxn � enq
���

�
� 0.

Now let txnkukPN be a weakly convergent subsequence of txnunPN and denote its weak limit

by v. Then from (4.4.15) it follows that
 
Sink pxnk � enkq

(
kPN, i � 1, 2, . . . , N , also converges

weakly to v. Since lim infnÑ8 λ
i
n ¡ 0, it follows from (4.4.16) that

lim
nÑ8

��ξin��� � 0�

for any i � 1, 2, . . . , N . From the monotonicity of Ai it follows that@
η � ξin, z � Sink pxnk � enkq

D ¥ 0
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for all pz, ηq P graphAi and for all i � 1, 2, . . . , N . This, in turn, implies that xη, z � vy ¥ 0

for all pz, ηq P graphAi for any i � 1, 2, . . . , N . Therefore, using the maximal monotonicity

of Ai (see Proposition 1.4.13), we now obtain that v P A�1
i p0�q for each i � 1, 2, . . . , N .

Thus v P Z and this proves the result.

Now Theorem 4.4.2 is seen to follow from Lemma 3.3.7.



Chapter 5

Applications - Equilibrium,

Variational and Convex Feasibility

Problems

In this chapter we modify the iterative methods proposed in Chapters 3 and 4 in order to

solve diverse optimization problems. We focus our study on the following three problems.

piq Equilibrium Problem (EP). Given a subset K of a Banach space X, and a bifunction

g : K�K Ñ R, the equilibrium problem corresponding to g is to find x̄ P K such that

g px̄, yq ¥ 0 @y P K. (5.0.1)

piiq Variational Inequality Problem (VIP). Given a subset K of a Banach space X, and

a single-valued mapping A : X Ñ 2X
�

, the corresponding variational inequality is to

find x̄ P K such that there exists ξ P Ax̄ with

xξ, y � x̄y ¥ 0 @y P K. (5.0.2)

piiiq Convex Feasibility Problem (CFP). Given N nonempty, closed and convex subsets

Ki, i � 1, 2, . . . , N , of a Banach space X, the convex feasibility problem is to find an

element in the assumed nonempty intersection
�N
i�1Ki.

Thence this chapter is divided into three sections concerning each problem.

136
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5.1 Equilibrium Problems

The equilibrium problem contains as special cases many optimization, fixed point and

variational inequality problems (see [21, 49] for more details).

It is well known that many interesting and complicated problems in nonlinear analysis,

such as complementarity, fixed point, Nash equilibrium, optimization, saddle point and

variational inequality problems, can all be formulated as equilibrium problems as in (5.0.1)

(see, e.g., [21]). There are several papers available in the literature which are devoted to

this problem. Most of the work on this issue deals with conditions for the existence of

solutions (see, for example, [61, 63]). However, there are only a few papers that deal with

iterative procedures for solving equilibrium problems in finite as well as infinite-dimensional

spaces (see, for instance, [49, 62, 92, 93, 94, 106, 107]).

As in the case of finding zeroes of monotone mappings (see Chapter 4), the key tool

for solving equilibrium problems is to define a resolvent (see [49] for the case of Hilbert

spaces), this time with respect to a bifunction g instead of with respect to a mapping A

(see (4.0.2)).

Definition 5.1.1 (Resolvent of bifunctions). The resolvent of a bifunction g : K�K Ñ R
is the operator Resfg : X Ñ 2K, defined by

Resfg pxq � tz P K : g pz, yq � x∇f pzq �∇f pxq , y � zy ¥ 0 @y P Ku . (5.1.1)

Actually there is a strong connection between the resolvent Resfg and the f -resolvent

ResfA. We will show this in the next section.

5.1.1 Properties of Resolvents of Bifunctions

It is well known that for studying equilibrium problems, it is assumed that the correspond-

ing bifunction g satisfies the following four assumptions (see, for example, [21]).

Assumption 1 (Basic assumptions on bifunctions). Given a subset K of a Banach space

X and a bifunction g : K �K Ñ R, we make the following assumptions.

pC1q g px, xq � 0 for all x P K.

pC2q g is monotone, i.e., g px, yq � g py, xq ¤ 0 for all x, y P K.
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pC3q For all x, y, z P K, we have

lim sup
tÓ0

g ptz � p1� tqx, yq ¤ g px, yq .

pC4q For each x P K, g px, �q is convex and lower semicontinuous.

In the following two lemmata we obtain several properties of these resolvents. We

first show that dom Resfg is the whole space X when f is a super-coercive (see Definition

1.2.33(ii)) and Gâteaux differentiable function (cf. [92, Lemma 1, page 130]).

Proposition 5.1.2 (Sufficient condition for dom Resfg � X). Let f : X Ñ p�8,�8s be a

super-coercive and Gâteaux differentiable function. Let K be a closed and convex subset of

X. If the bifunction g : K �K Ñ R satisfies Conditions (C1)–(C4), then dom Resfg � X.

Proof. First we show that for any ξ P X�
, there exists x̄ P K such that

g px̄, yq � f pyq � f px̄q � xξ, y � x̄y ¥ 0 (5.1.2)

for any y P K. Since f is a super-coercive function, a function h : X � X Ñ p�8,�8s,
defined by

h px, yq :� f pyq � f pxq � xξ, y � xy ,

satisfies

lim
}x�y}Ñ8

h px, yq
}x� y} � �8

for each fixed y P K. Therefore it follows from [21, Theorem 1, page 127] that (5.1.2) holds.

Now we prove that (5.1.2) implies that

g px̄, yq � x∇f px̄q , y � x̄y � xξ, y � x̄y ¥ 0

for any y P K. We know that (5.1.2) holds for y � tx̄�p1� tq ȳ, where ȳ P K and t P p0, 1q.
Hence

g px̄, tx̄� p1� tq ȳq � f ptx̄� p1� tq ȳq � f px̄q � xξ, tx̄� p1� tq ȳ � x̄y ¥ 0 (5.1.3)

for all ȳ P K. Since

f ptx̄� p1� tq ȳq � f px̄q ¤ x∇f ptx̄� p1� tq ȳq , tx̄� p1� tq ȳ � x̄y ,
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we get from (5.1.3) and Condition (C4) that

tg px̄, x̄q � p1� tq g px̄, ȳq � x∇f ptx̄� p1� tq ȳq , tx̄� p1� tq ȳ � x̄y
� xξ, tx̄� p1� tq ȳ � x̄y ¥ 0

for all ȳ P K. From Condition (C1) we know that g px̄, x̄q � 0. So, we have

p1� tq g px̄, ȳq � x∇f ptx̄� p1� tq ȳq , p1� tq pȳ � x̄qy � xξ, p1� tq pȳ � x̄qy ¥ 0

and

p1� tq rg px̄, ȳq � x∇f ptx̄� p1� tq ȳq , ȳ � x̄y � xξ, ȳ � x̄ys ¥ 0

for all ȳ P K. Therefore

g px̄, ȳq � x∇f ptx̄� p1� tq ȳq , ȳ � x̄y � xξ, ȳ � x̄y ¥ 0

for all ȳ P K. Since f is a Gâteaux differentiable function, it follows that ∇f is norm-

to-weak
�

continuous (see Proposition 1.1.21). Therefore, letting here t Ñ 1�, we obtain

that

g px̄, ȳq � x∇f px̄q , ȳ � x̄y � xξ, ȳ � x̄y ¥ 0

for all ȳ P K. Hence, for any x P X, taking ξ � ∇f pxq, we obtain x̄ P K such that

g px̄, ȳq � x∇f px̄q �∇f pxq , ȳ � x̄y ¥ 0

for all ȳ P K, that is, x̄ P Resfg pxq. Hence dom Resfg � X.

In the next lemma we list more properties of resolvents of bifunctions (cf. [92, Lemma

2, page 131]).

Proposition 5.1.3 (Properties of resolvents of bifunctions). Let f : X Ñ p�8,�8s be a

Legendre function. Let K be a closed and convex subset of X. If a bifunction g : K�K Ñ R
satisfies Conditions (C1)–(C4), then the following assertions hold.

piq The resolvent Resfg is single-valued.

piiq The resolvent Resfg is an BFNE operator.

piiiq The fixed point set of Resfg is the solutions set of the corresponding equilibrium problem,

i.e., Fix
�
Resfg

� � EP pgq.

pivq The set EP pgq is closed and convex.
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Proof. piq Let z1, z2 P Resfg pxq. From the definition of the resolvent Resfg (see (5.1.1)) we

obtain

g pz1, z2q � x∇f pz1q �∇f pxq , z2 � z1y ¥ 0

and

g pz2, z1q � x∇f pz2q �∇f pxq , z1 � z2y ¥ 0.

Summing up these two inequalities, we get

g pz1, z2q � g pz2, z1q � x∇f pz2q �∇f pz1q , z1 � z2y ¥ 0.

From Condition (C2) it follows that

x∇f pz2q �∇f pz1q , z1 � z2y ¥ 0.

The function f is Legendre (see Definition 1.2.7) and therefore it is strictly convex.

Hence ∇f is strictly monotone (see Example 1.4.3) and therefore z1 � z2.

piiq For any x, y P K, we have

g
�
Resfg pxq ,Resfg pyq

�� @
∇f

�
Resfg pxq

��∇f pxq ,Resfg pyq � Resfg pxq
D ¥ 0

and

g
�
Resfg pyq ,Resfg pxq

�� @
∇f

�
Resfg pyq

��∇f pyq ,Resfg pxq � Resfg pyq
D ¥ 0.

Summing up these two inequalities, we obtain that

g
�
Resfg pxq ,Resfg pyq

�� g
�
Resfg pyq ,Resfg pxq

�
� @
∇f

�
Resfg pxq

��∇f pxq �∇f pyq �∇f �Resfg pyq
�
,Resfg pyq � Resfg pxq

D ¥ 0.

From Condition (C2) it follows that@
∇f

�
Resfg pxq

��∇f pxq �∇f pyq �∇f �Resfg pyq
�
,Resfg pyq � Resfg pxq

D ¥ 0.

Hence @
∇f

�
Resfg pxq

��∇f �Resfg pyq
�
,Resfg pxq � Resfg pyq

D
¤ @
∇f pxq �∇f pyq ,Resfg pxq � Resfg pyq

D
.

This means that Resfg is an BFNE operator (see (1.3.4)), as claimed.
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piiiq Indeed,

x P Fix
�
Resfg

�ðñ x � Resfg pxq ðñ 0 ¤ g px, yq � x∇f pxq �∇f pxq , y � xy @y P K,

therefore

x P Fix
�
Resfg

�ðñ 0 ¤ g px, yq @y P K ðñ x P EP pgq .

Therefore Fix
�
Resfg

� � EP pgq.

pivq Since Resfg is a BFNE operator, the result follows immediately from Proposition 2.1.1

because of point (iii).

As we have already noted, there is a strong connection between zeroes of maximal

monotone mappings and solutions of equilibrium problems of bifunctions. Let g : K�K Ñ
R be a bifunction and define the mapping Ag : X Ñ 2X

�

in the following way:

Ag pxq :�
#  

ξ P X�
: g px, yq ¥ xξ, y � xy @y P K(

, x P K
H , x R K. (5.1.4)

In the following result we show that under suitable assumptions on the function f , the

mapping Ag generated from a bifunction g is maximal monotone (see Definition 1.4.9).

Proposition 5.1.4 (Properties of Ag). Let f : X Ñ p�8,�8s be a super-coercive, Legen-

dre, Fréchet differentiable and totally convex function. Let K be a closed and convex subset

of X and assume that a bifunction g : K � K Ñ R satisfies Conditions (C1)–(C4), then

the following assertions hold.

piq EP pgq � A�1
g

�
0
��

.

piiq The mapping Ag : X Ñ 2X
�

is maximal monotone.

piiiq Resfg � ResfAg .

Proof. piq If x P K then from the definition of the mapping Ag (see (5.1.4)) we get that

x P A�1
g

�
0
�
	
ô g px, yq ¥ 0 @y P K ô x P EP pgq .

piiq We first prove that Ag is monotone mapping (see Definition 1.4.2(i)). Let px, ξq and

py, ηq belong to the graph of Ag. From the definition of the mapping Ag (see (5.1.4))

we get that

g px, zq ¥ xξ, z � xy and g py, zq ¥ xη, z � yy
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for any z P K. In particular we have that

g px, yq ¥ xξ, y � xy and g py, xq ¥ xη, x� yy .

From Condition (C2) we obtain that

0 ¥ g px, yq � g py, xq ¥ xξ � η, y � xy

that is xξ � η, x� yy ¥ 0 which means that Ag is monotone mapping (see (1.4.1)).

In order to show that Ag is maximal monotone mapping it is enough to show that

ran pAg �∇fq � X� (see Proposition 1.4.18). Let ξ P X�
, from Proposition 1.2.13 we

get that under the assumption here, f is cofinite, that is, dom f
� � X

�
and therefore

ran∇f � int dom f
� � X

�
(see (1.2.4)) which means that ∇f is surjective. Then

there exists x P X such that ∇f pxq � ξ. From Proposition 5.1.2 we know that the

resolvent Resfg of g has full domain and therefore from the definition of Resfg (see

(5.1.1)) we get that

g
�
Resfg pxq , y

�� @
∇f

�
Resfg pxq

��∇f pxq , y � Resfg pxq
D ¥ 0

for any y P K, that is,

g
�
Resfg pxq , y

� ¥ @
∇f pxq �∇f �Resfg pxq

�
, y � Resfg pxq

D
for any y P K. This shows that ∇f pxq �∇f �Resfg pxq

� P Ag �Resfg pxq
�

(see (5.1.4)).

Therefore

ξ � ∇f pxq P p∇f � Agq
�
Resfg pxq

�
(5.1.5)

which means that ξ P ran pAg �∇fq. This completes the proof.

piiiq From Proposition 4.1.2(iv)(a) and assertion (ii) we have that the resolvent, ResfAg ,

of a maximal monotone mapping Ag is single-valued. From Proposition 5.1.3(ii) the

resolvent Resfg is single-valued too. Now we obtain from (5.1.5) that

ResfAg � pAg �∇fq�1 �∇f � Resfg

as asserted.

As we have seen in Propositions 5.1.2 and 5.1.3(ii), the operator A � Resfg is BFNE and

with full domain. Therefore, from Proposition 4.1.6(iii) the mapping B � ∇f � A�1 �∇f
is maximal monotone. This fact also follows from Proposition 5.1.4(ii) where we proved

that Ag is a maximal monotone mapping. Therefore B � Ag. Indeed, from Proposition
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5.1.4(iii)

B � ∇f � �Resfg
��1 �∇f � ∇f �

�
ResfAg

	�1

�∇f � Ag.

Now we will show the converse connection holds. Let A : X Ñ 2X
�

be a maximal monotone

mapping and define the bifunction gA in the following way:

gA px, yq :� sup txξ, y � xy : ξ P Axu . (5.1.6)

In the following result we show that under appropriate assumptions on the function f , the

bifunction gA satisfies Conditions (C1)–(C4).

Proposition 5.1.5 (Properties of gA). Let f : X Ñ p�8,�8s be a super-coercive, Leg-

endre, Fréchet differentiable and totally convex function. Let A : X Ñ 2X
�

be a maximal

monotone mapping with nonempty, closed and convex domain K � domA. Then the

following assertions hold.

piq The bifunction gA satisfies Conditions (C1)–(C4).

piiq AgA � A.

piiiq EP pgAq � A�1
�
0
��

pivq ResfgA � ResfA.

Proof. piq We first prove that Condition (C1) holds. Let x P K. It is clear that

gA px, xq � sup txξ, x� xy : ξ P Axu � 0.

Now we prove that Condition (C2) holds. Let px, ξq and py, ηq belong to the graph

of A. Since A is monotone mapping (see (1.4.1)), we have �xη, x� yy ¥ xξ, y � xy,
which implies that

inf t� xη, x� yy : η P Ayu ¥ sup txξ, y � xy : ξ P Axu � gA px, yq .

On the other hand, we have

inf t� xη, x� yy : η P Ayu � � sup txη, x� yy : η P Ayu � �gA py, xq

and therefore gA px, yq�gA py, xq ¤ 0 for any x, y P K. In order to prove that Condition
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(C3) holds, we use the following fact:

gA ptz � p1� tqx, yq � sup txξ, y � tz � p1� tqxy : ξ P Axu
� sup txξ, y � xy : ξ P Axu � t sup txξ, z � xy : ξ P Axu
� gA px, yq � tgA px, zq .

Therefore

lim sup
tÓ0

g ptz � p1� tqx, yq � lim sup
tÓ0

pgA px, yq � tgA px, zqq � gA px, yq .

From the definition of gA (see (5.1.6)), it is easy to check that Condition (C4) holds.

piiq Let x P X. If AgA pxq is empty then it is contained in Ax. Otherwise AgA pxq is

nonempty and there exists ξ P AgA pxq. The monotonicity of gA which is Condition

(C2) (proved in assertion (i)) implies that

xξ, y � xy ¤ gA px, yq ¤ �gA py, xq ¤ � xη, x� yy � xη, y � xy

for any η P Ay. Therefore xξ � η, x� yy ¥ 0 for any η P Ay. Since A is a maximal

monotone mapping, we get from Proposition 1.4.13 that ξ P Ax. Hence AgA pxq � Ax

for any x P X. From Proposition 5.1.4(ii) and item (i) we have that AgA is a maximal

monotone mapping. But A is also a maximal monotone mapping and therefore AgA �
A.

piiiq From Proposition 5.1.4(i) we have

A�1
�

0
�
	
� A�1

gA

�
0
�
	
� EP pgAq ,

as asserted.

pivq Again from Proposition 5.1.4(iii) we have

ResfA � ResfAgA
� ResfgA .

5.1.2 Iterative Methods for Solving Equilibrium Problems

Using the properties of resolvents of bifunctions and the connection between their fixed

points and the solutions of the corresponding equilibrium problems, we can implement the

iterative methods proposed in Chapter 3. There also are connections between solutions
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of equilibrium problems and zeroes of the corresponding monotone mappings. Therefore

we can modify the iterative methods proposed in Chapter 4 in order to solve equilibrium

problems. We present two of the possible modifications.

We begin by providing the modification of the Picard iterative method.

Picard Iterative Method for Solving Equilibrium Problems

Initialization: x0 P K.

General Step (n � 1, 2, . . .):

xn�1 � Resfg pxnq . (5.1.7)

The convergence result for the Picard iterative method for solving equilibrium problems is

formulated as follows.

Proposition 5.1.6 (Picard iteration for solving equilibrium problems). Let f : X Ñ
p�8,�8s be a super-coercive and Legendre function which is totally convex on bounded

subsets of X. Suppose that ∇f is weakly sequentially continuous and ∇f�
is bounded on

bounded subsets of int dom f
�
. Let K be a nonempty, closed and convex subset of int dom f

and assume that a bifunction g : K � K Ñ R satisfies Conditions (C1)–(C4) such that

EP pgq � H. Then
 �

Resfg
�n
x
(
nPN converges weakly to an element in EP pgq for each

x P K.

Proof. From Proposition 5.1.3(ii) we have that Resfg is BFNE and therefore BSNE (see

Figure 1.3). In addition, from Propositions 2.1.2 and 5.1.3(iii) we have that xFix
�
Resfg

� �
Fix

�
Resfg

� � EP pgq � H. Now the result follows immediately from Corollary 3.1.2.

Now we present a modification of Algorithm (4.4.7) which is based on the concept of

products of resolvents.

Sabach Iterative Method for Solving Equilibrium Problems

Input: f : X Ñ R, tλinun P N � p0,�8q, i � 1, 2, . . . , N , and tenunPN � X

Initialization: x0 P X.

General Step (n � 1, 2, . . .):$''''''''&''''''''%

yn � Resf
λNn gN

� � � � � Resfλ1ng1 pxn � enq ,
Cn�1 � tz P Cn : Df pz, yinq ¤ Df pz, xn � enqu ,
Cn :� �N

i�1C
i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projfCnXQn px0q .

(5.1.8)
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In this case we have the following result.

Proposition 5.1.7 (Convergence results for Algorithm (5.1.8)). Let Ki, i � 1, 2, . . . , N ,

be a nonempty, closed and convex subset of X. Let gi : Ki �Ki Ñ R, i � 1, 2, . . . , N , be

N bifunctions which satisfy Conditions (C1)–(C4) such that E :� �N
i�1 EP pgiq � H. Let

f : X Ñ R be a Legendre function which is bounded, uniformly Fréchet differentiable and

totally convex on bounded subsets of X. Suppose that ∇f�
is bounded on bounded subsets

of int dom f
�
. Then, for each x0 P X, the sequence txnunPN which is generated by (5.1.8)

is well defined. If the sequence of errors tenunPN � X satisfies limnÑ8 }en} � 0 and for

each i � 1, 2, . . . , N , lim infnÑ8 λ
i
n ¡ 0, then the sequence txnunPN converges strongly to

projfE px0q as nÑ 8.

Proof. The result follows immediately from Theorem 4.4.2 and Proposition 5.1.4.

5.2 Variational Inequalities

Variational inequalities have turned out to be very useful in studying optimization problems,

differential equations, minimax theorems and in certain applications to mechanics and

economic theory. Important practical situations motivate the study of systems of variational

inequalities (see [66] and the references therein). For instance, the flow of fluid through

a fissured porous medium and certain models of plasticity lead to such problems (see, for

instance, [104]). The variational inequality problem (VIP), was first introduced (with a

single-valued mapping) by Hartman and Stampacchia in 1966 (see [59]).

Because of their importance, variational inequalities have been extensively analyzed in

the literature (see, for example, [52, 67, 113] and the references therein). Usually, either

the monotonicity or a generalized monotonicity property of the mapping A play a crucial

role in these investigations.

The importance of VIPs stems from the fact that several fundamental problems in

Optimization Theory can be formulated as VIPs, as the following few examples show.

Example 5.2.1 (Constrained minimization). Let K � X be a nonempty, closed and convex

subset and let g : X Ñ p�8,�8s be a Gâteaux differentiable function which is convex on

K. Then x
�

is a minimizer of g over K if and only if x
�

solves the following VIP:A
∇g

�
x
�
	
, x� x

�
E
¥ 0 for all x P K.
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When g is not differentiable, we get the VIPA
u
�

, x� x
�
E
¥ 0 for all x P K,

where u
� P Bg �x��

.

Example 5.2.2 (Nonlinear complementarity problem). When X � Rn and K � Rn
�, then

the VIP is exactly the nonlinear complementarity problem, that is, find a point x
� P Rn

�

and a point u
� P Ax�

such that u
� P Rn

� and
@
u
�
, x

�D � 0.

Indeed, if x
�

solves (5.0.2) and A : Rn Ñ 2Rn, then there exists x
� P Rn

� such that

u
� P Ax�

which satisfies A
u
�

, x� x
�
E
¥ 0 for all x P Rn

�.

So, in particular, if we take x � 0 we obtain
@
u
�
, x

�D ¤ 0 and if we take x � 2x
�

we

obtain
@
u
�
, x

�D ¥ 0. Combining the above two inequalities, we see that
@
u
�
, x

�D � 0. As a

consequence, this yields A
u
�

, x
E
¥ 0 for all x P Rn

�

and hence u
� P Rn

�. Conversely, if x
�

solves the nonlinear complementarity problem, then@
u
�
, x� x

�D � @
u
�
, x
D ¥ 0 for all x P Rn

� (since u
� P Rn

�), which means that x
�

solves

(5.0.2) with N � 1.

Example 5.2.3 (Finding zeroes). When the set K is the whole space X, then the VIP

obtained from (5.0.2) is equivalent to the problem of finding zeroes of a mapping A : X Ñ
2X

�

, i.e., to find an element x
� P X such that 0 P A �

x
��

.

Example 5.2.4 (Saddle-point problem). Let H1 and H2 be two Hilbert spaces, and let K1

and K2 be two convex subsets of X1 and X2, respectively. Given a bifunction g : H1�H2 Ñ
R, the saddle-point problem is to find a point

�
u
�

1 , u
�

2

� P K1 �K2 such that

g
�
u
�

1 , u2

	
¤ g

�
u
�

1 , u
�

2

	
¤ g

�
u1, u

�

2

	
for all pu1, u2q P K1 �K2.

This problem can be written as the VIP of finding
�
u
�

1 , u
�

2

� P K1 �K2 such thatC�
∇gu1

�
u
�

1 , u
�

2

�
�∇gu2

�
u
�

1 , u
�

2

�
,�u1

u2



�
�
u
�

1

u
�

2


G
¥ 0 for all pu1, u2q P K1 �K2. (5.2.1)

As in the case of finding zeroes of monotone mappings (see Chapter 4), the key tool for

solving variational inequalities is to define a resolvent with respect to a mapping A as in
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the case of the f -resolvents (see (4.0.2)). In the case of variational inequalities we discuss

two kinds of resolvents: the anti-resolvent and the generalized resolvent.

Definition 5.2.5 (Anti-resolvent). The anti-resolvent Af : X Ñ 2X of a mapping A :

X Ñ 2X
�

is defined by

Af :� ∇f� � p∇f � Aq . (5.2.2)

Definition 5.2.6 (Generalized resolvent). The generalized resolvent GResfA : X Ñ 2X of

a mapping A : X Ñ 2X
�

is defined by

GResfA pxq :� tz P K : xAz, y � zy � x∇f pzq �∇f pxq , y � zy ¥ 0 @y P Ku . (5.2.3)

5.2.1 Properties of Anti-Resolvents

We begin by providing several basic properties of anti-resolvents (see Definition 5.2.5) which

were proved in [38, Lemma 3.5, page 2109] (see also [66, Proposition 11, page 1326]).

Proposition 5.2.7 (Properties of anti-resolvents). Let f : X Ñ p�8,�8s be a Legendre

function which satisfies the range condition (1.4.6). Let A : X Ñ 2X
�

be a mapping. The

following statements are true.

piq domAf � domA
�

int dom f .

piiq ranAf � int dom f .

piiiq The mapping A is BISM on its domain if and only if its anti-resolvent Af is BFNE

operator.

pivq A�1
�
0
�� � Fix

�
Af

�
.

Proof. piq Clear from Definition 5.2.5.

piiq Clear from Definition 5.2.5.

piiiq Let x, y P domAf and take ξ P Ax, η P Ay, u P Afx and v P Afy. From the definition

of BFNE operators (see (1.3.4)) the anti-resolvent Af (see Definition 5.2.5) is BFNE

if and only if

x∇f puq �∇f pvq , u� vy ¤ x∇f pxq �∇f pyq , u� vy , (5.2.4)

which is equivalent to

xp∇f pxq � ξq � p∇f pyq � ηq , u� vy ¤ x∇f pxq �∇f pyq , u� vy ,
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that is, xξ � η, u� vy ¥ 0. Since u P Afx and ξ P Ax, we get that u � ∇f� p∇f pxq � ξq.
The same holds for v, that is, v � ∇f� p∇f pyq � ηq. Therefore (5.2.4) is equivalent

to A
ξ � η,∇f� p∇f pxq � ξq �∇f� p∇f pyq � ηq

E
¥ 0,

which means that A is a BISM mapping (see Definition 1.4.29).

pivq From the definition of the anti-resolvent (see (5.2.5)) we get that

0
� P Axô ∇f pxq P ∇f pxq � Ax � p∇f � Aq pxq ô x P ∇f� � p∇f � Aq pxq � Afx.

Let K be a nonempty, closed and convex subset of X and let A : X Ñ X
�

be a mapping.

The variational inequality corresponding to such a mapping A is to find x̄ P K such that

xAx̄, y � x̄y ¥ 0 @y P K. (5.2.5)

The solution set of (5.2.5) is denoted by VI pK,Aq.
In the following result we bring out the connections between the fixed point set of

projfK � Af and the solution set of the variational inequality corresponding to a single-

valued mapping A : X Ñ X
�

(cf. [66, Proposition 12, page 1327]).

Proposition 5.2.8 (Characterization of VI pK,Aq as a fixed point set). Let A : X Ñ X�

be a mapping. Let f : X Ñ p�8,�8s be a Legendre and totally convex function which

satisfies the range condition (1.4.6). If K is a nonempty, closed and convex subset of X,

then VI pK,Aq � Fix
�

projfK � Af
	

.

Proof. From Proposition 1.2.35(ii) we obtain that x � projfK
�
Afx

�
if and only if@

∇f
�
Afx

��∇f pxq , x� y
D ¥ 0

for all y P K. This is equivalent to xp∇f � Aqx�∇f pxq , x� yy ¥ 0 for any y P K, that

is, x�Ax, x� yy ¥ 0 for each y P K, which is obviously equivalent to x P VI pK,Aq, as

claimed.

It is obvious that any zero of a mapping A which belongs to K is a solution of the

variational inequality corresponding to A on the set K, that is, A�1 p0�q XK � VI pK,Aq.
In the following result we show that the converse implication holds for single-valued BISM

mappings (cf. [66, Proposition 13, page 1327]).

Proposition 5.2.9 (A�1 p0�q X K � VI pK,Aq for BISM mappings). Let f : X Ñ
p�8,�8s be a Legendre and totally convex function which satisfies the range condition
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(1.4.6). Let K be a nonempty, closed and convex subset of domA
�

int dom f . If a BISM

mapping A : X Ñ X
�

satisfies Z :� A�1 p0�q XK � H, then VI pK,Aq � Z.

Proof. Let x P VI pK,Aq. From Proposition 5.2.8 we know that x � projfK
�
Afx

�
. From

Proposition 1.2.35(iii) we now obtain that

Df

�
u, projfK

�
Afx

�	�Df

�
projfK

�
Afx

�
, Afx

	
¤ Df

�
u,Afx

�
for any u P K. From Proposition 5.2.7(iii) we have that Af is BFNE and therefore QBNE

(see Figure 1.3). Hence

Df pu, xq �Df

�
x,Afx

� � Df

�
u, projfK

�
Afx

�	�Df

�
projfK

�
Afx

�
, Afx

	
¤ Df

�
u,Afx

� ¤ Df pu, xq

for any u P Z. This implies thatDf

�
x,Afx

� � 0. It now follows from Proposition 1.2.4 that

x � Afx, that is, x P Fix
�
Af

�
, and from Proposition 5.2.7(iv) we get that x P A�1

�
0
��

.

Since x � projfK
�
Afx

�
, it is clear that x P K and therefore x P Z. Conversely, let x P Z.

Then x P K and Ax � 0
�
, so it is obvious that (5.2.5) is satisfied. In other words,

x P VI pK,Aq.

The following example shows that the assumption Z � H in Proposition 5.2.9 is essential

(cf. [66, Example 2, page 1328]).

Example 5.2.10 (Assumption Z � H is essential). Let X � R, f � p1{2q }�}2, K �
r1,�8q and let A : R Ñ R be given by Ax � x (the identity mapping). This is obviously

a BISM mapping (which in our case means that it is firmly nonexpansive (see Remark

1.4.30), and all the assumptions of Proposition 5.2.9 hold, except Z � H. Indeed, we have

A�1 p0q � t0u and 0 R K. However, V � t1u since the only solution of the variational

inequality x py � xq ¥ 0 for all y ¥ 1 is x � 1 and therefore Z � H is a proper subset of

V .

To sum up, the anti-resolvent Af of a mapping A seems to be a more “complicated” op-

erator than the other resolvents we mentioned since its nonexpansivity property holds only

if the mapping A is assumed to be BISM. On the other hand, as we proved in Proposition

5.2.9, for BISM mappings, finding zeroes in K is exactly equivalent to solving a variational

inequality over K. Therefore, solving variational inequalities for BISM mappings using

anti-resolvents leads to a particular case of finding zeroes. We refer the interested reader

to the paper [66] for a careful study of iterative methods for solving variational inequalities

for BISM mappings.
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Because of these drawbacks of the anti-resolvents we will study more carefully the gen-

eralized resolvent (see Definition 5.2.6).

5.2.2 Properties of Generalized Resolvents

We begin this section by proving that the bifunction g px, yq defined by xAx, y � xy satisfies

the basic conditions mentioned in Assumption 1 (cf. [66, Proposition 16, page 1338]).

Proposition 5.2.11 (Monotone mappings and bifunctions). Let A : X Ñ X
�

be a mono-

tone mapping such that K :� domA is closed and convex. Assume that A is bounded

on bounded subsets and semicontinuous on K. Then the bifunction g px, yq � xAx, y � xy
satisfies Conditions (C1)–(C4).

Proof. It is clear that g px, xq � xAx, x� xy � 0 for any x P K. From the monotonicity of

the mapping A (see (1.4.1)) we obtain that

g px, yq � g py, xq � xAx, y � xy � xAy, x� yy � xAx� Ay, y � xy ¤ 0

for any x, y P K. To prove Condition (C3), fix y P X and choose a sequence ttnunPN,

converging to zero, such that

lim sup
tÓ0

g ptz � p1� tqx, yq � lim
nÑ8

g ptnz � p1� tnqx, yq .

Such a sequence exists by the definition of the limsup. Denote un � tnz � p1� tnqx.

Then limnÑ8 un � x and tAununPN is bounded. Let tAunkukPN be a weakly convergent

subsequence. Then its limit is Ax because A is hemicontinuous (see Definition 1.4.8) and

we get

lim sup
tÓ0

g ptz � p1� tqx, yq � lim
kÑ8

g ptnkz � p1� tnkqx, yq �

� lim
kÑ8

xA ptnkz � p1� tnkqxq , y � tnkz � p1� tnkqxy
� lim

kÑ8
xA punkq , y � unky � xAx, y � xy � g px, yq

for all x, y, z P K, as required. Condition (C4) also holds because

g px, ty1 � p1� tq y2q � xAx, x� pty1 � p1� tq y2qy � t xAx, x� y1y � p1� tq xAx, x� y2y
� tg px, y1q � p1� tq g px, y2q ;

thus the function g px, �q is clearly convex and lower semicontinuous as it is (in particular)
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affine and continuous for any x P K.

Therefore g indeed satisfies Conditions (C1)–(C4).

Now we summarize several properties of generalized resolvents (see Definition 5.2.6).

Proposition 5.2.12 (Properties of generalized resolvents). Let f : X Ñ p�8,�8s be a

super-coercive and Legendre function. Let A : X Ñ X
�

be a monotone mapping such that

K :� domA is a closed and convex subset of X. Assume that A is bounded on bounded

subsets and hemicontinuous on K. Then the generalized resolvent of A has the following

properties.

piq dom GResfA � X.

piiq GResfA is single-valued.

piiiq GResfA is an BFNE operator.

pivq Fix
�

GResfA

	
� VI pK,Aq.

pvq VI pK,Aq is a closed and convex subset of K.

Proof. The result follows by combining Propositions 5.1.2, 5.1.3 and 5.2.11.

A connection between f -resolvents, ResfA, and generalized resolvents, GResfA, is brought

out by the following remark.

Remark 5.2.13 (Connection between f -resolvents and generalized resolvents). If the do-

main of a mapping A : X Ñ X
�

is the whole space, then VI pX,Aq is exactly the zero set of

A. Therefore we obtain, for any z P GResfA pxq, that xAz, y � zy�x∇f pzq �∇f pxq , y � zy ¥
0 for any y P X. This is equivalent to xAz �∇f pzq �∇f pxq , y � zy ¥ 0 for any y P X,

and this, in turn, is the same as xAz �∇f pzq �∇f pxq , wy ¥ 0 for any w P X. But

then we obtain that xAz �∇f pzq �∇f pxq , wy � 0 for any w P X. This happens only if

Az �∇f pzq �∇f pxq � 0
�
, which means that z � p∇f � Aq�1 �∇f pxq. This proves that

the generalized resolvent GResfA is a generalization of the resolvent ResfA. 3

5.2.3 Iterative Methods for Solving Variational Inequalities

Using the properties of generalized resolvents and the connection between their fixed points

and the solutions of variational inequalities, we can implement the iterative methods pro-

posed in Chapter 3.
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We begin with a modification of the Mann iterative method (see Algorithm (3.0.3)),

which is defined by using convex combinations with respect to a convex function f , for

solving variational inequalities.

f-Mann Iterative Method for Solving Variational Inequalities

Input: f : X Ñ R and tαnunPN � p0, 1q.
Initialization: x0 P X.

General Step (n � 1, 2, . . .):

xn�1 � ∇f�
�
αn∇f pxnq � p1� αnq∇f

�
GResfA pxnq

		
. (5.2.6)

In the following result we prove weak convergence of the sequence generated by Algorithm

(5.2.6).

Proposition 5.2.14 (Convergence result for Algorithm (5.2.6)). Let A : X Ñ X
�

be a

monotone mapping such that K :� domA is a closed and convex subset of X. Assume that

A is bounded on bounded subsets and hemicontinuous on K such that VI pK,Aq � H. Let

f : X Ñ R be a super-coercive and Legendre function which is totally convex on bounded

subsets of X. Suppose that ∇f is weakly sequentially continuous and ∇f�
is bounded on

bounded subsets of int dom f
�
. Let txnunPN be a sequence generated by Algorithm (5.2.6)

where tαnunPN � r0, 1s satisfies lim supnÑ8 αn   1. Then, for each x0 P X, the sequence

txnunPN converges weakly to a point in VI pK,Aq.

Proof. From Proposition 5.2.12(iii) we have that GResfA is BFNE and therefore BSNE (see

Figure 1.3). In addition, from Propositions 2.1.2 and 5.2.12(iv) we have that xFix
�

GResfA

	
�

Fix
�

ResfA

	
� VI pK,Aq � H. Now the result follows immediately from Corollary 3.2.3.

Now we present another algorithm for finding solutions of a system of a finite number

of variational inequalities.
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Minimal Norm-Like Iterative Method for Solving Variational Inequalities I

Input: f : X Ñ R and teinunPN � X, i � 1, 2, . . . , N .

Initialization: x0 P X.

General Step (n � 1, 2, . . .):$''''''''&''''''''%

yin � GResfAi pxn � einq ,
Ci
n � tz P X : Df pz, yinq ¤ Df pz, xn � einqu ,

Cn :� �N
i�1C

i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projCnXQn px0q .

(5.2.7)

In this case Algorithm (5.2.7) generates a sequence which converges strongly to a solution

of the system.

Proposition 5.2.15 (Convergence of Algorithm (5.2.7)). Let Ai : X Ñ X
�
, i � 1, 2, . . . , N ,

be a monotone mapping such that Ki :� domAi is a closed and convex subset of X. As-

sume that each Ai, i � 1, 2, . . . , N , is bounded on bounded subsets and hemicontinuous on

Ki such that V :� �N
i�1 VI pKi, Aiq � H. Let f : X Ñ R be a Legendre function which

is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of X.

Suppose that ∇f�
is bounded on bounded subsets of int dom f

�
. Then, for each x0 P X,

there are sequences txnunPN which satisfy Algorithm (5.2.7). If, for each i � 1, 2, . . . , N , the

sequence of errors teinunPN � X satisfies limnÑ8 }ein} � 0, then each such sequence txnunPN
converges strongly to projfV px0q as nÑ 8.

Proof. From Proposition 5.2.12(iii) we have that each GResfAi , i � 1, 2, . . . , N , is BFNE and

therefore QBNE (see Figure 1.3). In addition, from Propositions 2.1.2 and 5.2.12(iv) we

have that
�N
i�1 Fix

�
ResfAi

	
� �N

i�1 VI pKi, Aiq � H. Now the result follows immediately

from Theorem 3.3.9.

Now we present another approach for solving systems of variational inequalities corre-

sponding to hemicontinuous mappings (see Definition 1.4.8). We use the following notation.

Definition 5.2.16 (Normal cone). Consider the normal cone NK corresponding to K � X,

which is defined by

NK pxq :�
!
ξ P X�

: xξ, x� yy ¥ 0, @y P K
)
, x P K.
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Now we have the following connection between the problems of solving variational in-

equalities and finding zeroes of maximal monotone mappings (cf. [99, Theorem 3, page

77]).

Proposition 5.2.17 (A maximal monotone mapping for solving VIP). Let K be a nonempty,

closed and convex subset of X, and let A : K Ñ X
�

be a monotone and hemicontinuous

mapping. Let B : X Ñ 2X
�

be the mapping which is defined by

Bx :�
#
pA�NKqx, x P K

H, x R K. (5.2.8)

Then B is maximal monotone and B�1
�
0
�� � VI pK,Aq.

For each i � 1, 2, . . . , N , let the mapping Bi, defined as in (5.2.8), correspond to the

mapping Ai and the set Ki, and let tλinunPN, i � 1, 2, . . . , N , be N sequences of positive

real numbers. Using Proposition 5.2.17 we can modify the iterative methods proposed in

Chapter 4 in order to solve variational inequalities. We present one of these modifications.

Minimal Norm-Like Iterative Method for Solving Variational Inequalities II

Input: f : X Ñ R and teinunPN � X, i � 1, 2, . . . , N .

Initialization: x0 P X.

General Step (n � 1, 2, . . .):$''''''''&''''''''%

yin � GResf
λinBi

pxn � einq ,
Hn � tz P X : x∇f pxn � einq �∇f pyinq , z � yiny ¤ 0u ,
Hn :� �N

i�1H
i
n,

Qn � tz P X : x∇f px0q �∇f pxnq , z � xny ¤ 0u ,
xn�1 � projfHnXQn px0q .

(5.2.9)

Theorem 4.3.7 yields a method for solving systems of variational inequalities corresponding

to hemicontinuous mappings.

Proposition 5.2.18 (Convergence result for Algorithm (5.2.9)). Let Ki, i � 1, 2, . . . , N ,

be N nonempty, closed and convex subsets of X such that K :� �N
i�1Ki. Let Ai :

Ki Ñ X
�
, i � 1, 2, . . . , N , be N monotone and hemicontinuous mappings with V :��N

i�1 V I pKi, Aiq � H. Let tλinunPN, i � 1, 2, . . . , N , be N sequences of positive real num-

bers that satisfy lim infnÑ8 λ
i
n ¡ 0. Let f : X Ñ R be a Legendre function which is bounded,

uniformly Fréchet differentiable and totally convex on bounded subsets of X. Suppose that
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∇f�
is bounded on bounded subsets of int dom f

�
. If, for each i � 1, 2, . . . , N , the sequence

of errors teinunPN � X satisfies limnÑ8 }ein} � 0, then for each x0 P K, there are sequences

txnunPN which satisfy Algorithm (5.2.9), where each Bi is defined as in (5.2.8). Each such

sequence txnunPN converges strongly as nÑ 8 to projfV px0q.

Proof. For each i � 1, 2, . . . , N , we define the mapping Bi as in (5.2.8). Proposition 5.2.17

now implies that each Bi, i � 1, 2, . . . , N , is a maximal monotone mapping and V ��N
i�1 V I pKi, Aiq �

�N
i�1B

�1
i p0�q � H.

Our result now follows immediately from Theorem 4.3.7 with Z � V .

5.3 Convex Feasibility Problems

Let Ki, i � 1, 2, . . . , N , be N nonempty, closed and convex subsets of X. The convex

feasibility problem (CFP) is to find an element in the assumed nonempty intersection�N
i�1Ki (see [5]). It is clear that Fix

�
projfKi

	
� Ki for any i � 1, 2, . . . , N . If the

Legendre function f is uniformly Fréchet differentiable and bounded on bounded subsets

of X, then if follows from Proposition 4.1.2(iv)(b) that the Bregman projection projfKi is

BFNE. In addition, from Propositions 2.1.2 and 4.1.2(iii) we have that xFix
�

projfKi

	
�

Fix
�

projfKi

	
� Ki. Hence we can implement the iterative methods proposed in Chapter

3. We present the following modification of the Picard iterative method (see Algorithm

(3.0.1)) for solving convex feasibility problems in reflexive Banach spaces. Define the block

operator (see (2.1.14)) in the following way

TB :� ∇f�

�
Ņ

i�1

wi∇f
�

projfKi

	�
.

It follows from Propositions 2.1.17 and 2.1.18 that TB is a BSNE operator such that

Fix pTBq �
�N
i�1 Fix

�
projfKi

	
� �N

i�1Ki. Now, if f : X Ñ p�8,�8s is a Legendre

function which is totally convex on bounded subsets of X such that ∇f is weakly sequen-

tially continuous and ∇f�
is bounded on bounded subsets of int dom f

�
, then it follows

that the Picard iterative method of TB generates a sequence which converges weakly to an

element in
�N
i�1Ki, that is, a solution of the convex feasibility problem.

5.3.1 A Numerical Example

In this subsection we present a simple low-dimensional example (cf. [44, Subsection 4.6]).
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We consider a two-disk convex feasibility problem in R2 and provide an explicit formulation

of Algorithm (3.3.5) as well as some numerical results. More explicitly, let

K1 �
 px, yq P R2 : px� a1q2 � py � b1q2 ¤ r2

1

(
and

K2 �
 px, yq P R2 : px� a2q2 � py � b2q2 ¤ r2

2

(
with K1 XK2 � H.

Consider the problem of finding a point
�
x
�
, y

�� P R2 such that
�
x
�
, y

�� P K1 X K2.

Observe that in this case T1 � PK1 and T2 � PK2 . For simplicity we take f � p1{2q }�}2.

Given the current iterate xn � pu, vq, the explicit formulation of the iterative step of our

algorithm becomes (see Remark 1.2.40(i)):$''''''''''''&''''''''''''%

y1
n � PK1 pxnq �

�
a1 � r1pu�a1q

}pu�a1,v�b1q}
, b1 � r1pv�b1q

}pu�a1,v�b1q}

	
,

y2
n � PK1 pxnq �

�
a2 � r2pu�a2q

}pu�a2,v�b2q}
, b2 � r2pv�b2q

}pu�a2,v�b2q}

	
,

C1
n � tz P R2 : }z � y1

n} ¤ }z � xn}u ,
C2
n � tz P R2 : }z � y2

n} ¤ }z � xn}u ,
Qn � tz P R2 : xx0 � xn, z � xny ¤ 0u ,
xn�1 � PC1

nXC
2
nXQn px0q .

(5.3.1)

In order to evaluate xn�1, we solve the following constrained minimization problem:#
min }x0 � z}2
s.t. z P Cn

1 X Cn
2 XQn.

(5.3.2)

Following the same technique as in Example 1.2.41, it is possible to obtain a solution to

the problem (5.3.2) even for more than three half-spaces, but there are many subcases in

the explicit formula (two to the power of the number of half-spaces).

Now we present some numerical results for the particular case where

K1 �
 px, yq P R2 : x2 � y2 ¤ 1

(
and

K2 �
 px, yq P R2 : px� 1q2 � y2 ¤ 1

(
.

We choose two starting points p�1{2, 3q and p3, 3q, and for each starting point we present a

table with the px, yq coordinates for the first 10 iterations of Algorithm (5.3.1). In addition,
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Figures 5.1 and 5.3 illustrate the geometry in each iterative step, i.e., the disks and the

three half-spaces Cn
1 , Cn

2 and Qn.

Iteration Number x-value y-value

1 �0.500000000 3.0000000000
2 0.0263507717 1.9471923798
3 0.2898391508 1.4209450920
4 0.4211545167 1.1576070220
5 0.4687763141 1.0169184232
6 0.4862238741 0.9429308114
7 0.4935428246 0.9048859275
8 0.4968764116 0.8855650270
9 0.4984644573 0.8758239778
10 0.4992386397 0.8709324060

Table 5.1: The first 10 iterations of Algorithm (5.3.1) with x0 � p�1{2, 3q

Figure 5.1: Geometric illustration of Algorithm (5.3.1) with x0 � p�1{2, 3q
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Figure 5.2: Plot of the first 10 iterations of Algorithm (5.3.1) with x0 � p�1{2, 3q

Figure 5.3: Geometric illustration of Algorithm (5.3.1) with x0 � p3, 3q
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Iteration Number x-value y-value

1 3.0000000000 3.0000000000
2 1.8536075595 1.8534992168
3 1.2802790276 1.2803811470
4 0.9937807510 0.9936561265
5 0.8503033752 0.8505218683
6 0.7789970157 0.7785224690
7 0.7423971596 0.7434698006
8 0.7264747366 0.7235683325
9 0.7115677773 0.7205826742
10 0.7260458319 0.6973591138

Table 5.2: The first 10 iterations of Algorithm (5.3.1) with x0 � p3, 3q



Chapter 6

Minimal Norm-Like Solutions of

Convex Optimizations Problems

Motivated by the algorithms proposed in Chapters 3, 4 and 5 for solving diverse problems

such as fixed point problems, finding zeroes of monotone mappings, equilibrium, variational

inequalities and convex feasibility problems in the setting of infinite-dimensional Banach

spaces, we present on this paper a full analysis of a modification of Algorithm (3.3.2) in the

setting of Euclidean spaces for solving the well-known problem of finding minimal norm

solutions of convex optimization problems. This problem has very practical aspects and

therefore we prove a rate of convergence result and show implementation to real-world

problems. This chapter is based on a joint work with Professor Amir Beck.

More precisely, in this chapter we consider a general class of convex optimization prob-

lems in which one seeks to minimize a strongly convex function over a closed and convex set

which is by itself an optimal set of another convex problem. We introduce a gradient-based

method, called the minimal norm gradient method, for solving this class of problems, and

establish the convergence of the sequence generated by the algorithm as well as a rate of

convergence of the sequence of function values. A portfolio optimization example is given

in order to illustrate our results.

161
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6.1 Problem Formulation

Consider a general convex constrained optimization problem given by

(P):
min f pxq
s.t. x P S,

where the following assumptions are made throughout the chapter.

piq S is a nonempty, closed and convex subset of Rn.

piiq The objective function f is convex and continuously differentiable over Rn, and its

gradient is Lipschitz with constant L:

}∇f pxq �∇f pyq} ¤ L }x� y} for all x,y P Rn. (6.1.1)

piiiq The optimal set of (P), denoted by S�, is nonempty. The optimal value is denoted by

f�.

Problem (P) might have multiple optimal solutions, and in this case it is natural to consider

the minimal norm solution problem in which one seeks to find the optimal solution of (P)

with a minimal Euclidean norm1:

(Q): min

"
1

2
}x}2 : x P S�

*
.

We will denote the optimal solution of (Q) by x�Q. A well-known approach to tackling

problem (Q) is via the celebrated Tikhonov regularization. More precisely, for a given

ε ¡ 0, consider the convex problem defined by

(Qεq : min
!
f pxq � ε

2
}x}2 : x P S

)
.

The above problem is the so-called Tikhonov regularized problem [109]. Let us denote the

unique optimal solution of pQεq by xε. In [109], Tikhonov showed in the linear case – that is,

when f is a linear function and S is an intersection of half-spaces – that xε Ñ x�Q as εÑ 0�.

Therefore, for a small enough ε ¡ 0, the vector xε can be considered as an approximation

of the minimal norm solution x�Q. A stronger result in the linear case showing that for a

small enough ε, xε is in fact exactly the same as x�Q was established in [71] and was later

on generalized to the more general convex case in [53].

1We use here the obvious property that the problems of minimizing the norm and of minimizing half of the squared norm
are equivalent in the sense that they have the same unique optimal solution.
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From a practical point of view, the connection just alluded to between the minimal

norm solution and the solutions of the Tikhonov regularized problems, does not yield an

explicit algorithm for solving (Q). It is not clear how to choose an appropriate sequence of

regularization parameters εk Ñ 0�, and how to solve the emerging subproblems. A different

approach for solving (Q) in the linear case was developed in [65] where it was suggested

to invoke a Newton-type method for solving a reformulation of (Q) as an unconstrained

smooth minimization problem.

The main contribution in this work is the construction and analysis of a new first-order

method for solving a generalization of problem (Q), which we call the minimum norm-

like solution problem (MNP). Problem (MNP) consists of finding the optimal solution of

problem (P) which minimizes a given strongly convex function ω. More precisely,

(MNP): min tω pxq : x P S�u .

The function ω is assumed to satisfy the following conditions.

piq ω is a strongly convex function over Rn with parameter σ ¡ 0.

piiq ω is a continuously differentiable function.

From the strong convexity of ω, problem (MNP) has a unique solution which will be denoted

by x�mn.

For simplicity, problem (P) will be called the core problem, problem (MNP) will be called

the outer problem and correspondingly, ω will be called the outer objective function. It is

obvious that problem (Q) is a special case of problem (MNP) with the choice ω pxq � 1
2
}x}2.

The so-called prox center of ω is given by

a :� argminxPRn ω pxq .

We assume without loss of generality that ω paq � 0. Under this setting we also have

ωpxq ¥ σ

2
}x� a}2 for allx P Rn. (6.1.2)

6.1.1 Stage by Stage Solution

It is important to note that the minimal norm-like solution optimization problem (MNP)
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can also be formally cast as the following convex optimization problem.

min ω pxq
s.t. f pxq ¤ f�,

x P S.
(6.1.3)

Of course, the optimal value of the core problem f� is not known in advance, which sug-

gests a solution method that consists of two stages: first find the optimal value of the

core problem, and then solve problem (6.1.3). This two-stage solution technique has two

main drawbacks. First, the optimal value f� is often not found exactly but rather up to

some tolerance, which causes the feasible set of the outer problem to be incorrect or even

infeasible. Second, even if it had been possible to compute f� exactly, problem (6.1.3) in-

herently does not satisfy Slater’s condition, which means that this two-stage approach will

usually run into numerical problems. We also note that the lack of regularity condition for

Problem (6.1.3) implies that known optimality conditions such as Karush-Kuhn-Tucker are

not valid; see for example the work [18] where different optimality conditions are derived.

6.2 Mathematical Toolbox

Two basic properties of the Bregman distances (see (1.2.1)) of strictly convex functions

hRn Ñ R are:

piq Dh px,yq ¥ 0 for any x,y P Rn.

piiq Dh px,yq � 0 if and only if x � y.

If, in addition h, is strongly convex with parameter σ ¡ 0, then

Dh px,yq ¥ σ

2
}x� y}2 .

In particular, the strongly convex function ω defined in Section 6.1 whose prox center is a

satisfies:

ω pxq � Dω px, aq ¥ σ

2
}x� a}2 for any x P Rn

and

Dω px,yq ¥ σ

2
}x� a}2 for any x P Rn. (6.2.1)
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6.2.1 The Gradient Mapping

We define the following two mappings which are essential in our analysis of the proposed

algorithm for solving (MNP).

Definition 6.2.1 (Gradient mapping). Let f : Rn Ñ R be a continuously differentiable

function. For every M ¡ 0 we define the following two mappings.

piq The proj-grad mapping is defined by

TM pxq :� PS

�
x� 1

M
∇f pxq



for all x P Rn.

piiq The gradient mapping (see also [80]) is defined by

GM pxq :�M px� TM pxqq �M

�
x� PS

�
x� 1

M
∇f pxq


�
.

Remark 6.2.2 (Unconstrained case). In the unconstrained setting, that is, when S � Rn,

the orthogonal projection is the identity operator.

piq The proj-grad mapping TM is equal to I � 1
M
∇f .

piiq The gradient mapping GM is equal to ∇f . 3

It is well known that GM pxq � 0 if and only if x P S�. Another important and known

property of the gradient mapping is the monotonicity of its norm L (cf. [20, Lemma 2.3.1,

page 236]).

Lemma 6.2.3 (Monotonicity of the gradient mapping). For any x P Rn, the function

g pMq :� }GM pxq} M ¡ 0

is monotonically increasing over p0,8q.

6.2.2 Cutting Planes

The notion of a cutting plane is a fundamental concept in optimization algorithms such as

the ellipsoid and the analytic cutting plane methods. As an illustration, let us first consider

the unconstrained setting in which S � Rn. Given a point x P Rn, the idea is to find a

hyperplane which separates x from S�. For example, it is well known that for any x P S,

the following inclusion holds

S� � tz P Rn : x∇f pxq ,x� zy ¥ 0u .
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The importance of the above result is that it “eliminates” the open half-space

tz P Rn : x∇f pxq ,x� zy   0u .

The same cut is also used in the ellipsoid method where in the nonsmooth case the gradient

is replaced with a subgradient (see, e.g., [19, 79]). Note that x belongs to the cut, that is,

to the hyperplane given by

H :� tz P Rn : x∇f pxq ,x� zy � 0u ,

which means that H is a so-called neutral cut. In a deep cut, the point x does not belong

to the corresponding hyperplane. Deep cuts are at the core of the minimal norm-like

gradient method that will be described in the sequel, and in this subsection we describe

how to construct them in several scenarios (specifically, known/unknown Lipschitz constant,

constrained/unconstrained versions). The half-spaces corresponding to the deep cuts are

always of the form

QM,α,x :�
"

z P Rn : xGM pxq ,x� zy ¥ 1

αM
}GM pxq}2

*
, (6.2.2)

where the values of α and M depend on the specific scenario. Of course, in the uncon-

strained case, GM pxq � ∇f pxq (see Remark 6.2.2), and (6.2.2) reads as

QM,α,x :�
"

z P Rn : x∇f pxq ,x� zy ¥ 1

αM
}∇f pxq}2

*
.

We will now split the analysis into two scenarios. In the first one, the Lipschitz constant

L is known, while in the second, it is not.

Known Lipschitz Constant

In the unconstrained case pS � Rnq, and when the Lipschitz constant L is known, we can

use the following known inequality (see, e.g., [80, Theorem 2.1.5, page 56]):

x∇f pxq �∇f pyq ,x� yy ¥ 1

L
}∇f pxq �∇f pyq}2 for every x,y P Rn. (6.2.3)

By plugging y � x� for some x� P S� in (6.2.3) and recalling that ∇f px�q � 0, we obtain

that

x∇f pxq ,x� x�y ¥ 1

L
}∇f pxq}2 (6.2.4)
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for every x P Rn and x� P S�. Thus, S� � QL,1,x for any x P Rn.

When S is not the entire space Rn, the generalization of (6.2.4) is a bit intricate and

in fact the result we can prove is the slightly weaker inclusion S� � QL, 4
3
,x. The result is

based on the following property of the gradient mapping GL which was proven in the thesis

[16] and is given here for the sake of completeness.

Lemma 6.2.4 (Property of the gradient mapping). Let f : Rn Ñ R be a continuously

differentiable function whose gradient is Lipschitz with constant L. The gradient mapping

GL satisfies the following relation:

xGL pxq �GL pyq ,x� yy ¥ 3

4L
}GL pxq �GL pyq}2 (6.2.5)

for any x,y P Rn.

Proof. From Corollary 1.2.39(i) it follows thatB
TL pxq � TL pyq ,

�
x� 1

L
∇f pxq



�
�

y � 1

L
∇f pyq


F
¥ }TL pxq � TL pyq}2 .

Since TL � I � 1
L
GL, we obtain thatB�

x� 1

L
GL pxq



�
�

y � 1

L
GL pyq



,

�
x� 1

L
∇f pxq



�
�

y � 1

L
∇f pyq


F
¥
�����x� 1

L
GL pxq



�
�

y � 1

L
GL pyq


����2

,

which is equivalent toB�
x� 1

L
GL pxq



�
�

y � 1

L
GL pyq



, pGL pxq �∇f pxqq � pGL pyq �∇f pyqq

F
¥ 0.

Thence

xGL pxq �GL pyq ,x� yy ¥ 1

L
}GL pxq �GL pyq}2 � x∇f pxq �∇f pyq ,x� yy

� 1

L
xGL pxq �GL pyq ,∇f pxq �∇f pyqy .

Now it follows from (6.2.3) that

L xGL pxq �GL pyq ,x� yy ¥ }GL pxq �GL pyq}2 � }∇f pxq �∇f pyq}2

xGL pxq �GL pyq ,∇f pxq �∇f pyqy .
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From the Cauchy-Schwarz inequality we get

L xGL pxq �GL pyq ,x� yy ¥ }GL pxq �GL pyq}2 � }∇f pxq �∇f pyq}2

� }GL pxq �GL pyq} � }∇f pxq �∇f pyq} . (6.2.6)

By denoting α � }GL pxq �GL pyq} and β � }∇f pxq �∇f pyq}, the right-hand side of

(6.2.6) reads as α2 � β2 � αβ and satisfies

α2 � β2 � αβ � 3

4
α2 �

�α
2
� β

	2

¥ 3

4
α2,

which combined with (6.2.6) yields the inequality

L xGL pxq �GL pyq ,x� yy ¥ 3

4
}GL pxq �GL pyq}2 .

Thus, (6.2.5) holds.

By plugging y � x� for some x� P S� in (6.2.5), we obtain that indeed

S� � QL, 4
3
,x.

We summarize the above discussion in the following lemma which describes the deep cuts

in the case when the Lipschitz constant is known.

Lemma 6.2.5 (Deep cuts - Lipschitz constant is known). Let f : Rn Ñ R be a continuously

differentiable function whose gradient is Lipschitz with constant L. For any x P Rn and

x� P S�, we have

xGL pxq ,x� x�y ¥ 3

4L
}GL pxq}2 , (6.2.7)

that is,

S� � QL, 4
3
,x.

If, in addition, S � Rn then

x∇f pxq ,x� x�y ¥ 1

L
}∇f pxq}2 , (6.2.8)

that is,

S� � QL,1,x.

Unknown Lipschitz Constant

When the Lipschitz constant is not known, the following result is most useful.
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Lemma 6.2.6 (Deep cuts - Lipschitz constant is not known). Let f : Rn Ñ R be a

continuously differentiable function. Let x P Rn be a vector satisfying the inequality

f pTM pxqq ¤ f pxq � x∇f pxq , TM pxq � xy � M

2
}TM pxq � x}2 . (6.2.9)

Then, for any x� P S�, the inequality

xGM pxq ,x� x�y ¥ 1

2M
}GM pxq}2 (6.2.10)

holds true, that is,

S� � QM,2,x.

Proof. Let x� P S�. From (6.2.9) it follows that

0 ¤ f pTM pxqq � f px�q ¤ f pxq � f px�q � x∇f pxq , TM pxq � xy � M

2
}TM pxq � x}2 .

(6.2.11)

Since f is convex, it follows from the subdifferential inequality (see (1.1.5)) that f pxq �
f px�q ¤ x∇f pxq ,x� x�y, which combined with (6.2.11) yields

0 ¤ x∇f pxq , TM pxq � x�y � M

2
}TM pxq � x}2 . (6.2.12)

In addition, from the definition of TM (see Definition 6.2.1(i)) and Corollary 1.2.39(ii) we

have the following inequalityB
x� 1

M
∇f pxq � TM pxq , TM pxq � x�

F
¥ 0.

Summing up the latter inequality multiplied by M with (6.2.12) yields the inequality

M xx� TM pxq , TM pxq � x�y � M

2
}TM pxq � x}2 ¥ 0,

which after some simple algebraic manipulation, can be shown to be equivalent to the

desired result (6.2.10).

When M ¥ L, the inequality (6.2.9) is satisfied due to the so-called descent lemma,

which is now recalled as it will also be essential in our analysis (see [20]).

Lemma 6.2.7 (Descent lemma). Let f : Rn Ñ R be a continuously differentiable function

whose gradient is Lipschitz with constant L. Then for any x,y P Rn,

f pxq ¤ f pyq � x∇f pyq ,x� yy � L

2
}x� y}2 . (6.2.13)
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Remark 6.2.8. The inequality (6.2.9) for M ¥ L is well known, see for example [80]. 3

6.3 The Minimal Norm Gradient Algorithm

Before describing the algorithm, we require the following notation for the optimal solution

of the problem consisting of the minimization ω over a given closed and convex set K.

Ω pKq :� argminxPK ω pxq . (6.3.1)

From the optimality conditions (in this connection, see also Proposition 1.2.35) in problem

(6.3.1), it follows that

x̃ � Ω pKq ô x∇ω px̃q ,x� x̃y ¥ 0 for all x P K. (6.3.2)

If ω pxq � 1
2
}x� a}2, then Ω pKq � PK paq. We are now ready to describe the algorithm

in the case when the Lipschitz constant L is known.

The Minimal Norm Gradient Method (Known Lipschitz Constant)

Input: L - a Lipschitz constant of ∇f .

Initialization: x0 � a.

General Step (k � 1, 2, . . .):

xk � Ω pQk XWkq ,

where

Qk � QL,β,xk�1
,

Wk � tz P Rn : x∇ω pxk�1q , z� xk�1y ¥ 0u ,

and β is equal to 4
3

if S � Rn and to 1 if S � Rn.
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When the Lipschitz constant is unknown, then a backtracking procedure should be

incorporated into the method.

The Minimal Norm Gradient Method (Unknown Lipschitz Constant)

Input: L0 ¡ 0 and η ¡ 1.

Initialization: x0 � a.

General Step (k � 1, 2, . . .):

piq Find the smallest nonnegative integer number ik such that with L̄ � ηikLk�1

the inequality

pTL̄ pxqq ¤ f pxq � x∇f pxq , TL̄ pxq � xy � L̄

2
}TL̄ pxq � x}2

is satisfied and set Lk � L̄.

piiq Set

xk � Ω pQk XWkq ,

where

Qk � QLk,2,xk�1
,

Wk � tz P Rn : x∇ω pxk�1q , z� xk�1y ¥ 0u .

To unify the analysis, in the constant step-size setting we will artificially define Lk � L for

any k and η � 1. In this notation the definition of the half-space Qk in both the constant

and backtracking step-size rules can be described as

Qk � QLk,β,xk�1
, (6.3.3)

where β is given by

β :�

$'&'%
4
3

S � Rn, known Lipschitz const.

1 S � Rn, known Lipschitz const.

2 unknown Lipschitz const.

(6.3.4)

Remark 6.3.1. From the definition of the backtracking rule it follows that

L0 ¤ Lk ¤ ηL, k � 0, 1, . . . . (6.3.5)
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Therefore, it follows from Lemma 6.2.3 that for any x P Rn,

}GL0 pxq} ¤ }GLn pxq} ¤ }GηL pxq} . (6.3.6)

3

The following example shows that in the Euclidean setting, the main step has a simple

and explicit formula.

Example 6.3.2. In the Euclidean setting when ω � 1
2
}�}2, we have Ω pKq � PK and the

computation of the main step

xk � Ω pQk XWkq

boils down to finding the orthogonal projection onto an intersection of two half-spaces. This

is a simple task, since the orthogonal projection onto the intersection of two half-spaces is

given by an exact formula (see Example 1.2.41).

Note that the algorithm is well defined as long as the set Qk XWk is nonempty. The

latter property does hold true and we will now show a stronger result stating that in fact

S� � Qk XWk for all k.

Lemma 6.3.3 (The intersection QkXWk is nonempty). Let txkukPN be the sequence gener-

ated by the minimal norm gradient method with either a constant or a backtracking step-size

rule. Then

S� � Qk XWk (6.3.7)

for any k P N.

Proof. From Lemmata 6.2.5 and 6.2.6 it follows that S� � Qk for every k P N and we

will now prove by induction on k that S� � Wk. Since W1 � Rn, the claim is trivial for

k � 1. Suppose that the claim holds for k � n, that is, we assume that S� � Wn. To prove

that S� � Qn�1 XWn�1, let us take u P S�. Note that S� � Qn XWn, and thus, since

xn � Ω pQn XWnq, it follows from (6.3.2) that

x∇ω pxnq ,xn � uy ¥ 0.

This implies that u P Wn�1 and the claim that S� � Qk XWk for all k P N is proven.

6.4 Convergence Analysis

Our first claim is that the minimal norm gradient method generates a sequence txkukPN
which converges to x�mn � Ω pS�q.
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Theorem 6.4.1 (Convergence result). Let txkukPN be the sequence generated by the minimal

norm gradient method with either a constant or a backtracking step-size rule. Then the

following assertions are true.

piq The sequence txkukPN is bounded.

piiq The following inequality holds for any k P N:

Dω pxk,xk�1q �Dω pxk�1, aq ¤ Dω pxk, aq . (6.4.1)

piiiq xk Ñ x�mn as k Ñ 8.

Proof. piq Since xk � Ω pQk XWkq, it follows that for any u P QkXWk, and in particular

for any u P S� we have

ω pxkq ¤ ω puq , (6.4.2)

which combined with (6.1.2) establishes the boundedness of txkukPN.

piiq From the three point identity (see (1.2.2)) we have

Dω pxk,xk�1q �Dω pxk�1, aq �Dω pxk, aq � x�∇ω pxk�1q ,xk � xk�1y .

From the definition of Wk we have xk�1 � Ω pWkq. In addition, xk P Wk, and hence

from (6.3.2) it follows that

x∇ω pxk�1q ,xk � xk�1y ¥ 0

and therefore (6.4.1) follows.

piiiq Recall that for any x P Rn, we have Dω px, aq � ω pxq. From (6.4.1) it follows that

the sequence tω pxkqukPN � tDω pxk, aqukPN is nondecreasing and bounded, and hence

limkÑ8 ω pxkq exists. This, together with (6.4.1) implies that

lim
kÑ8

Dω pxk,xk�1q � 0,

and hence, since Dω pxk,xk�1q ¥ σ
2
}xk � xk�1}2, it follows that

lim
kÑ8

}xk � xk�1} � 0. (6.4.3)

Since xk P Qk we have

xGLk pxk�1q ,xk�1 � xky ¥ 1

βLk
}GLk pxk�1q}2 ,
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which by the Cauchy-Schwarz inequality, implies that

1

βLk
}GLk pxk�1q} ¤ }xk�1 � xk} .

Now, from (6.3.5) and (6.3.6) it follows that

1

ηL
}GL0 pxk�1q} ¤ }xk�1 � xk} . (6.4.4)

To show that txkukPN converges to x�mn, it is enough to show that any convergent

subsequence converges to x�mn. Let then txknunPN be a convergent subsequence whose

limit is w. From (6.4.3) and (6.4.4) along with the continuity of GL0 , it follows that

GL0 pwq � 0, so that w P S�. Finally, we will prove that w � Ω pS�q � x�mn. Since

xkn � Ω pQkn XWknq, it follows from (6.3.2) that

x∇ω pxknq , z� xkny ¥ 0 for all z P Qkn XWkn .

Since S� � Qkn XWkn (see Lemma 6.3.3), we obtain that

x∇ω pxknq , z� xkny ¥ 0 for all z P S�.

Taking the limit as nÑ 8, and using the continuity of ∇ω, we get

x∇ω pwq , z�wy ¥ 0 for all z P S�.

Therefore, it follows from (6.3.2) that w � Ω pS�q � x�mn, and the result is proven.

The next result shows that in the unconstrained case pS � Rnq, the function values of

the sequence generated by the minimal norm gradient method, tf pxkqukPN, converges in a

rate of O
�
1{?k� (k being the iteration index) to the optimal value of the core problem. In

the constrained case, the value f pxkq is by no means a measure of the quality of the iterate

xk as it is not necessarily feasible. Instead, we will show that the rate of convergence of

the function values of the feasible sequence TLk pxkq (which in any case is computed by the

algorithm), is also O
�
1{?k�. We also note that since the minimal norm gradient method

is non-monotone, the convergence results are with respect to the minimal function value

obtained until iteration k.

Theorem 6.4.2 (Rate of convergence). Let txkukPN be the sequence generated by the min-

imal norm gradient method with either a constant or backtracking step-size rules. Then for
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every k ¥ 1, one has

min
1¤n¤k

f pTLn pxnqq � f� ¤ βηL }a� x�mn}2?
k

, (6.4.5)

where β is given in (6.3.4). If X � Rn, then in addition

min
1¤n¤k

f pxnq � f� ¤ βηL }a� x�mn}2?
k

. (6.4.6)

Proof. Let n be a nonnegative integer. Since xn�1 P Qn�1, we have by the Cauchy-Schwarz

inequality��GLn�1 pxnq
��2 ¤ βLn�1

@
GLn�1 pxnq ,xn � xn�1

D ¤ βLn�1

��GLn�1 pxnq
�� }xn � xn�1} .

Therefore, ��GLn�1 pxnq
�� ¤ βLn�1 }xn � xn�1} . (6.4.7)

Squaring (6.4.7) and summing up over n � 1, 2, . . . , k, one obtains

ķ

n�1

��GLn�1 pxnq
��2 ¤ β2L2

n�1

Ņ

n�1

}xn�1 � xn}2 ¤ β2η2L2
Ņ

n�1

}xn�1 � xn}2 . (6.4.8)

Taking into account (6.2.1) and (6.4.1), then from (6.4.8) we get

ķ

n�1

��GLn�1 pxnq
��2 ¤ β2η2L2

ķ

n�1

}xn�1 � xn}2

¤ 2β2η2L2

σ

ķ

n�1

Dω pxn�1,xnq

¤ 2β2η2L2

σ

ķ

n�1

pDω pxn�1, aq �Dω pxn, aqq

� 2β2η2L2

σ
Dω pxk�1, aq � 2β2η2L2

σ
ω pxk�1q

¤ 2β2η2L2

σ
ω px�mnq . (6.4.9)

From the definition of Ln, we obtain

f pTLn pxnqq�f� ¤ f pxnq�f��x∇f pxnq , TLn pxnq � xny�Ln
2
}TLn pxnq � xn}2 . (6.4.10)

Since the function f is convex it follows from the subdifferential inequality (see (1.1.5))
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that f pxnq � f� ¤ x∇f pxnq ,xn � x�mny, which combined with (6.4.10) yields

f pTLn pxnqq � f� ¤ x∇f pxnq , TLn pxnq � x�mny �
Ln
2
}TLn pxnq � xn}2 . (6.4.11)

By the characterization of the projection operator given in Proposition 1.2.38 with x �
xn � 1

Ln
∇f pxnq and y � x�mn, we have thatB

xn � 1

Ln
∇f pxnq � TLn pxnq ,x�mn � TLn pxnq

F
¤ 0,

which combined with (6.4.11) gives

f pTLn pxnqq � f� ¤ Ln xxn � TLn pxnq , TLn pxnq � xmn�y � Ln
2
TLn pxnq � xn

2

� xGLn pxnq , TLn pxnq � x�mny �
1

2Ln
}GLn pxnq}2

� xGLn pxnq , TLn pxnq � xny � xGLn pxnq ,xn � x�mny �
1

2Ln
}GLn pxnq}2

� xGLn pxnq ,xn � x�mny �
1

2Ln
}GLn pxnq}2

¤ xGLn pxnq ,xn � x�mny
¤ }GLn pxnq} }xn � x�mn} .

Squaring the above inequality and summing over n � 1, 2, . . . , k, we get

ķ

n�1

pf pTLn pxnqq � f�q2 ¤
ķ

n�1

}GLn pxnq}2 }xn � x�mn}2 . (6.4.12)

Now, from the three point identity (see (1.2.2)), we obtain that

Dω px�mn,xnq �Dω pxn, aq �Dω px�mn, aq � � x∇ω pxnq ,xmn� � xny ¤ 0

and hence

Dω px�mn,xnq ¤ Dω px�mn, aq � ω px�mnq ,

so that

}xn � x�mn}2 ¤
2ω px�mnq

σ
. (6.4.13)

Combining (6.4.9) and (6.4.12) along with (6.4.13) we get that

ķ

n�1

pf pTLn pxnqq � f�q2 ¤ 2ω px�mnq
σ

ķ

n�1

}GLn pxnq}2 ¤
4β2η2L2

σ2
ω px�mnq2
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from which we obtain that

k min
n�1,2,...,k

pf pTLn pxnqq � f�q2 ¤ 4β2η2L2

σ2
ω px�mnq2 ,

proving the result (6.4.5). The result (6.4.6) in the case when S � Rn is established by

following the same line of proof along with the observation that due to the convexity of f

f pxnq � f� ¤ }∇f pxnq} }xn � x�mn} � }GLn pxnq} }xn � x�mn} .

6.5 A Numerical Example - A Portfolio Optimization Problem

Consider the Markowitz portfolio optimization problem [73]. Suppose that we are given

N assets numbered 1, 2, . . . , N for which a vector of expected returns µ P RN and a

positive semidefinite covariance matrix Σ P RN�N are known. In the Markowitz portfolio

optimization problem we seek to find a minimum variance portfolio subject to the constraint

that the expected return is greater or equal to a certain predefined minimal value r0.

min wTΣw

s.t.
°N
i�1wi � 1,

wTµ ¥ r0,

w ¥ 0.

(6.5.1)

The decision variables vector w describes the allocation of the given resource to the different

assets.

When the covariance matrix is rank deficient (that is, positive semidefinite but not pos-

itive definite), the optimal solution is not unique, and a natural issue in this scenario is to

find one portfolio among all the optimal portfolios that is “best” with respect to an objec-

tive function different than the portfolio variance. This is, of course, a minimal norm-like

solution optimization problem. We note that the situation in which the covariance matrix

is rank deficient is quite common since the covariance matrix is usually estimated from the

past trading price data and when the number of sampled periods is smaller than the number

of assets, the covariance matrix is surely rank deficient. As a specific example, consider the

portfolio optimization problem given by (6.5.1), where the expected returns vector µ and

covariance matrix Σ are both estimated from real data on 8 types of assets (N � 8): US

3 month treasury bills, US government long bonds, SP 500, Wilshire 500, NASDAQ com-

posite, corporate bond index, EAFE and Gold. The yearly returns are from 1973 to 1994.
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The data can be found at http://www.princeton.edu/�rvdb/ampl/nlmodels/markowitz/ and

we have used the data between the years 1974 and 1977 in order to estimate µ and Σ which

are given below

µ � p1.0630, 1.0633, 1.0670, 1.0853, 1.0882, 1.0778, 1.0820, 1.1605qT

Σ �

����������������

0.0002 �0.0005 �0.0028 �0.0032 �0.0039 �0.0007 �0.0024 0.0048

�0.0005 0.0061 0.0132 0.0136 0.0126 0.0049 �0.0003 �0.0154

�0.0028 0.0132 0.0837 0.0866 0.0810 0.0196 0.0544 �0.1159

�0.0032 0.0136 0.0866 0.0904 0.0868 0.0203 0.0587 �0.1227

�0.0039 0.0126 0.0810 0.0868 0.0904 0.0192 0.0620 �0.1232

�0.0007 0.0049 0.0196 0.0203 0.0192 0.0054 0.0090 �0.0261

�0.0024 �0.0003 0.0544 0.0587 0.0620 0.0090 0.0619 �0.0900

0.0048 �0.0154 �0.1159 �0.1227 �0.1232 �0.0261 �0.0900 0.1725

���������������

.

The sampled covariance matrix was computed via the following known formula for an

unbiased estimator of the covariance matrix

Σ :� 1

T � 1
R

�
IT � 1

T
11T



RT .

Here T � 4 (number of periods) and R is the 8 � 4 matrix containing the assets’ returns

for each of the 4 years. The rank of the matrix Σ is at most 4, thus it is rank deficient. We

have chosen the minimal return as r0 � 1.05. In this case the portfolio problem (6.5.1) has

multiple optimal solution, and we therefore consider problem (6.5.1) as the core problem

and introduce a second objective function for the outer problem. Here we choose

ω pxq � 1

2
}x� a}2 .

Suppose that we wish to invest as much as possible in gold. Then we choose

a � p0, 0, 0, 0, 0, 0, 0, 1qT

and in this case the minimal norm gradient method gives the solution

p0.0000, 0.0000, 0.0995, 0.1421, 0.2323, 0.0000, 0.1261, 0.3999qT .

If we wish a portfolio which is as dispersed as possible, then we choose

a � p1{8, 1{8, 1{8, 1{8, 1{8, 1{8, 1{8, 1{8qT ,
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and in this case the algorithm produces the following optimal solution:

p0.1531, 0.1214, 0.0457, 0.0545, 0.1004, 0.1227, 0.1558, 0.2466qT ,

which is very much different from the first optimal solution. Note that in the second optimal
solution the investment in gold is much smaller and that the allocation of the resources is
indeed much more scattered.
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Admissible function, 24

Asymptotic fixed point, 56

Banach’s fixed point theorem, 54

Biconjugate function, 20

Block operator, 76

Boundary, 12

Bregman distance, 24

Bregman projection, 37

Closure, 12

Deep cut, 166

Directional derivative, 15

Duality mapping, 22

Fenchel conjugate, 19

Fixed point set, 54

Four point identity, 24

Function

coercive, 39

cofinite, 27

convex, 13

domain, 13

epigraph, 13

Fréchet differentiable, 17

Gâteaux differentiable, 17

lower semicontinuous, 14

p-norm, 25

positively homogeneous, 19

proper, 13

sequentially consistent, 29

strictly convex, 13

subdifferentiable, 16

super-coercive, 39

uniformly convex, 28

uniformly Fréchet differentiable, 18

upper semicontinuous, 14

weakly lower semicontinuous, 14

Gauge function, 22

Gradient, 17

Gradient mapping, 165

Indicator function, 109

Interior, 12

Kadec-Klee property, 29

Lambert W function, 113

Legendre (function), 25

Mapping

Bregman inverse strongly monotone, 64

d-accretive, 64

demi-closed, 61

domain, 59

duality mapping of p-norm, 23

graph, 60

inverse, 21, 61

maximal monotone, 61

maximal monotone extension, 61

monotone, 60

range, 59
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set-valued, 12

single-valued, 12

strictly monotone, 60

Sum of two mappings, 62

surjective, 62

T-monotone, 63

weakly sequentially continuous, 51

Metric projection, 42

Modulus

locally uniform convexity of spaces, 29

total convexity, 26

uniform convexity (function), 28

uniform convexity (space), 22

Neutral cut, 166

Normal cone, 154

Normalized duality mapping, 22

Operator

asymptotically regular, 59

Bregman firmly nonexpansive, 56

Bregman strongly nonexpansive, 57

firmly nonexpansive, 8, 55, 58

Inverse strongly monotone, 65

non-spreading, 71

nonexpansive, 4, 8, 54

properly Bregman strongly nonexpansive,

57

properly quasi-Bregman firmly nonexpan-

sive, 56

properly quasi-Bregman nonexpansive, 56

quasi-Bregman firmly nonexpansive, 56

quasi-Bregman nonexpansive, 56

quasi-firmly nonexpansive, 58

quasi-nonexpansive, 54, 58

strict contraction, 4, 54

strictly Bregman strongly nonexpansive,

57

strictly quasi-Bregman firmly nonexpan-

sive, 56

strictly quasi-Bregman nonexpansive, 56

strongly nonexpansive, 58

Proj-grad mapping, 165

Resolvent

anti-resolvent, 148

classical, 8, 107

f-resolvent, 9, 108

generalized resolvent, 148

resolvent of bifunction, 137

Set-valued indicator, 63

Space

locally uniformly convex, 29

smooth, 21

uniformaly convex, 22

uniformaly smooth, 21

with a Gâteaux differentiable norm, 21

with a uniformly Gâteaux differentiable

norm, 21

Sub-level set, 37

Subdifferential mapping, 16

Subgradient, 16

Three point identity, 24

Total convexity at a point, 26

Totally convex, 26

Totally convex on bounded subsets, 26

Unit sphere, 12

Young-Fenchel inequality, 20
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ובהתאמת האלגוריתם למצב  משותף למספר סופי של ההעתקות מונוטוניות
  .שגיאות חישוביות שבו ישנן

רטיביות שפותחו בפרקים בפרק החמישי מובאים יישומיים של השיטות האיט
בעיות שיווי : לפתרון בעיות אופטימיזציה נוספות כגון השלישי והרביעי

הקמורה במרחבי בנך  ים ובעיית הבציעותאי שיוויונים וריאציוני, משקל
אחת מהבעיות כיצד לבנות אופרטורים  כלאני מראה לגבי . םירפלקסיבי

ובעלי התכונה שנקודת  )הרזולונטה בבעיית השורשים כדוגמת(תאימים מ
  .שבת שלהם היא פתרון לבעיה הנתונה ולהפך

ללו באלגוריתמים שפותחו בפרק השלישי אופרטורים הב לצורך השימוש
אני . ובאות במשפטי ההתכנסותמשיקימו את ההנחות  נדרש שהאופרטורים

אכן מקימים את התכונות ם הנבנים אחד מן המקרים האופרטורי כלשב מוכיח
באלגוריתמים מוביל לשיטות איטרטיביות למציאת פתרון  ולכן השימוש בהם

  .לבעיות אלו
האלגוריתמים . הפרק השישי והאחרון הוא הפרק היישומי של העבודה

ת להתגבר לוכהנותן לנו י ,בעלי מבנה מיוחדהם שהוצגו בפרקים הקודמים 
את פתרונות לבעיות אופטימיזציה קמורה על הבעיה המפורסמת של מצי

בעיה זאת העסיקה חוקרים רבים בעשרות השנים . בעלי נורמה מינימאלית
מבוססות  השיטות האלה כל. האחרונות ונמצאו מספר שיטות לפתרון הבעיה

בגלל קושי הבעיה השיטות הקיימות . על שיטת הרגולריזציה של טיחונוב
בפרק זה אני מציג לראשונה אלגוריתם . םבעלות חסרונות גדוליהן לפתרונה 

אחד החסרונות של . מסדר ראשון הפותר את הבעיה הזו בצורה ישירה
כלומר , בעיה-שלב בשיטה נדרש פתרון תת כלהשיטות הקיימות הוא שב

ובאלגוריתם המוצג בעבודה זו , אלגוריתם נוסף שלב נדרשת הרצה של כלב
  . אין צורך בכך כלל

וכמו כן מוכח קצב ההתכנסות של  עבור האלגוריתם מוכח משפט התכנסות
לבסוף מובאות תוצאות נומריות בהקשר של בעיית תיק . האלגוריתם
  .ההשקעות

. מאוד מסובכתוהיא  בעיית תיק ההשקעות היא בעיה מרכזית בכלכלה
בהינתן סכום כסף להשקעה הבעיה היא לבנות תיק השקעות כך שהרווח 

אבל הסיכון בו יהיה מינימאלי בהשוואה  ,ממנו יהיה כבקשתו של הלקוח
בפועל בגלל ריבוי הנתונים נלקחים בחשבון נתוני העבר של . ליתר התיקים

עובדה זאת משפיעה על פתרון הבעיה . המניות לאורך מספר מועט של שנים
ולמעשה יתכנו הרבה תיקי השקעות המקימים את מינימאליות הסיכון והרווח 

 מדומים על הבעיה כדיץ ההשקעות מוסיף אילוצים בפועל יוע. מהם הוא זהה
האלגוריתם שלנו בא לפתור את הבעיה הזאת . לקבל תיק השקעות יחיד

מקימים את בקשות הכלומר ( תיקי ההשקעות הטובים כלבאופן שמבין 
כלומר . של הלקוח ביחס להעדפה נוספת טוב ביותרהוא ימצא את ה) הלקוח

נוספת  ם הלקוח לצורך קבלת העדפהבשלב זה יועץ ההשקעות מתייעץ ע
התיק הספציפי  ומציאת )למשל מעדיף להשקיע בזהב יותר מאשר בדולר(

ם התיקי כלמבין  הטוב ביותרבקשותיו של הלקוח והוא  כלשמקיים את 
  .ביחס להעדפתו האישית הטובים



היא , ובודאי השיטה הידועה ביותר לקרוב נקודות שבת, השיטה הראשונה
במקור שיטה זאת מיועדת לקרוב נקודות שבת של אופרטורים  .שיטת פיקרד

ידוע כי עבור אופרטורים מכווצים מסוימים השיטה ואף  במובן הצר מכווצים
ל התכנסות נדרשת הנחה נוספת על לקב כדי. אינה מתכנסת לנקודת שבת

  .או הנחה נוספת על המרחב/ו) מכווץ עובדה שהואלפרט (האופרטור 
בגלל בעיתיות זו פותחה שיטה נוספת המכלילה את שיטת פיקרד ונקראת 

ך א קודות שבת של אופרטורים מכווציםשיטה זאת מקרבת נ. שיטת מאן
 .ולא התכנסות חזקהלנקודת שבת  באופן כללי מובטחת רק התכנסות חלשה

ן לקבל התכנסות אני מראה כיצד ניתשל הפרק השלישי בחלק השלישי 
מים הבונים סדרת נקודות המתכנסת בחלק זה ישנם שני אלגורית. חזקה

נקודת  ולנקודת שבת של האופרטור הנתון ובנוסף ידוע לנו בדיוק לאיז חזק
תר לנקודת נקודת השבת המתקבלת על ידי הסדרה היא הקרובה ביו. שבת

אני מוכיח שהכללת התוצאות למקרה  בנוסף. לה ביחס למרחק ברגמןההתח
 ורים אפשרית ואז מובטחת התכנסות חזקהשל מספר סופי של אופרט

  .האופרטורים כללנקודת שבת משותפת של 
אי דיוקים חישוביים המשפיעים על  בזמן הרצת האלגוריתמים מופיעים

כך שיוכלו תמים שיפרתי את האלגורילשם כך  .התנהגותו של האלגוריתם
על  מסוימותהראיתי שתחת הנחות עוד . לטפל בשגיאות החישוביות הללו

.השגיאות האלגוריתם עדיין מתכנס לנקודת שבת
קודות שבת של ב נוסתומה לקרהתכנסות שיטה לבסוף אני מוכיח 

  .ביחס למרחקי ברגמן אופרטורים מכווצים מסוימים
של  בשיטות איטרטיביות למציאת שורשיםבפרק הרביעי אני מתרכז 

נה בעיה מרכזית באופטימיזציה שורשים היבעיית ה. העתקות מונוטוניות
לא (ה מלרע למחצה קמורה ורציפ, בהינתן פונקצית מטרה נאותהש מפני

הדיפרנציאל שלה היא העתקה -אנו יודעים כי העתקת תת )גזירה בהכרח
של  קודת מינימום של הפונקציה היא שורשכן ידוע כי כל נ כמו. מונוטונית

  .הדיפרנציאל ולהפך- תת
של אופרטורים מונוטוניים  כים הנפוצות ביותר למציאת שורשיםאחת הדר

נקרא שהיא לבנות מההעתקה המונוטונית אופרטור  במרחבי הילברט
 של בהכרח שורש היא והיא בכך שכל נקודת שבת של וונטה וחשיבותורזול

  .לבעיית נקודת שבת בדרך זו אנו ממירים בעיית שורשים. ההעתקה ולהפך
, כאשר מנסים להשתמש בשיטה זאת במרחבי בנך נתקלים במספר בעיות

. חשיבותה כלונטה הקלאסית איננה מתאימה ומאבדת את ובין היתר הרזול
נדרשת רזולונטה  -מאחר והמעבר לבעיית נקודת שבת הוא מאוד נפוץ 

התכונות  כלנטה הזו והוכחו והרזולו האכן נמצא 2003שנת ב. מוכללת
. הנדרשות להכללת האלגוריתמים הידועים במרחבי הילברט למרחבי בנך

ונטה הכללית ותכונות ידועות של הרזולהצגת אני מתחיל באת הפרק הרביעי 
במרחבי , יםינטות במרחבים אוקלידוולאחר מכן אני מציג דוגמאות לרזולו

ארבעה  בשני החלקים האחרונים של הפרק מובאים. בי בנךהילברט ובמרח
של העתקות מונוטוניות במרחבי בנך  אלגוריתמים למציאת שורשים

 מציאת שורש: אני דן בשתי הכללות בדומה לפרק השלישי. יםירפלקסיב



  תקציר
תזה מחקרית זאת מתמקדת בשיטות איטרטיביות לפתרון מגוון רחב של 

  .םיבעיות אופטימיזציה במרחבים בעלי מימד אינסופי וגם במרחבים אוקלידי
 :הבאים רומות שלי לתחומיםבתזה ישנם שישה פרקים המסכמים את הת

התרומות שלי לתחומים . אנליזה לא ליניארית ושיטות נומריות, אופטימיזציה
לפתרון בעיות אופטימיזציה  אלו נפרשות על המנעד שבין שיטות ישימות

ים לקרוב פתרונות של יהמגיעות מהעולם המדעי לבין אלגוריתמים איטרטיב
  .אינסופי בעיות אופטימיזציה במרחבים בעלי מימד

המושגים הבסיסים הנדרשים להבנת  כלבפרק הראשון ניתן למצוא את 
פרק זה נועד לנוחות הקורא ולמען . התוצאות המובאות בפרקים שלאחר מכן

מובאות הגדרות ותוצאות קלאסיות באנליזה  ,בהתחלה. שלמות העבודה
) בעל מימד אינסופי(קמורה הקשורות לפונקציות המוגדרות ממרחב בנך 

לאחר ). להתקבל לוכהערך פלוס אינסוף י(רפלקסיבי לישר הממשי המורחב 
. בצורה מפורטת מוצג –מרחקי ברגמן  -מכן המושג המרכזי ביותר בתזה 

 ,הקשורות למרחקים אלו ,מוכחות מספר תוצאות בסיסיות בחלק זה, בנוסף
  .בסיס לתוצאות המרכזיות תהווינהאשר 

מרוכזים כל המושגים הנדרשים  ראשוןשל הפרק השני החלקים האחרונים ב
לגבי אופרטורים ממרחב בנך רפלקסיבי לעצמו וכמו כן העתקות ממרחב בנך 

  .למרחב תת הקבוצות של המרחב הצמוד
. שבתהת ונקוד לתוצאות חדשות בתחום של תורת הפרק השני מוקדש

חלק מרכזי  השבת תופסתת ות נקודורשנה האחרונות תהשישים במשך 
  .מהווה בסיס חשוב למספר תיאוריותהיא נקציונאלית ואנליזה פוב

בעבודה זאת אני מוכיח לראשונה תוצאות עבור נקודות שבת של אופרטורים 
המוגדרים  ,אופרטורים מכווצים. מרחקי ברגמןהמוגדרים ביחס ל מכווצים

חילו לפני כעשור הת. הם מאוד ידועים ובעלי חשיבות רבה ,ביחס לנורמה
המוגדרים ביחס למרחק ברגמן ולא ביחס  ים מכווציםלהשתמש באופרטור

שנים האחרונות השימוש בהם ופרטורים אלו הם כלליים יותר ובא. לנורמה
  .עיבוד תמונה ועוד, ממוחשבתהמתרחב מאוד לתחומי הלמידה 

כיח אפיון של אופרטורים ובפרק זה שני חלקים כאשר בראשון א אני אציג
משום אפיון זה חשוב . מןגיחס למרחקי ברבאופן הדוק המוגדרים ב מכווצים

במרחבים  מסוג זההוא נותן לנו כלים לייצר דוגמאות רבות של אופרטורים ש
טורים כאלה כאשר הפונקציות אני אציג בעיקר דוגמאות לאופר. םיאוקלידי

  .מרחק ברגמן הן שתי אנטרופיותהמגדירות את 
ספיק לקיום נקודת שבת אציג תוצאות לגבי תנאי הכרחי ותנאי מ ,בחלק השני

ת השבת ומספר תכונות של קבוצת נקודאוכיח וכמו כן  מסוג זהלאופרטורים 
. של אופרטורים כאלה

הפרק השלישי הוא המשך ישיר של הפרק השני והוא מתמקד בשיטות 
המוגדרים ביחס  מכווציםאיטרטיביות למציאת נקודות שבת של אופרטורים 

  .יטות מפורשות לקרוב נקודות שבתאני אציג שלוש ש. למרחק ברגמן



הנחיית פרופסור נעשתה ב עבודת המחקר
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