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Abstract. We study the convergence of two iterative algorithms for finding

common fixed points of finitely many Bregman strongly nonexpansive oper-

ators in reflexive Banach spaces. Both algorithms take into account possible

computational errors. We establish two strong convergence theorems and then

apply them to the solution of convex feasibility, variational inequality and

equilibrium problems.

1. Introduction

Let X denote a real reflexive Banach space with norm ‖·‖ and let X∗ stand for

the (topological) dual of X equipped with the induced norm ‖·‖∗. We denote the

value of the functional ξ ∈ X∗ at x ∈ X by 〈ξ, x〉.

An operator A : X → 2X
∗

is said to be monotone if for any x, y ∈ dom A, we

have

ξ ∈ Ax and η ∈ Ay =⇒ 〈ξ − η, x− y〉 ≥ 0.

(Recall that the set dom A = {x ∈ X : Ax 6= ∅} is called the effective domain of

such an operator A.) A monotone operator A is said to be maximal if graph A, the

graph of A, is not a proper subset of the graph of any other monotone operator.

In this paper f : X → (−∞,+∞] is always a proper, lower semicontinuous and
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convex function, and f∗ : X∗ → (−∞,+∞] is the Fenchel conjugate of f . The set

of nonnegative integers will be denoted by N.

Let K be a nonempty, closed and convex subset of a Hilbert space H. An

operator T : K → K is said to be nonexpansive (or 1-Lipschitz) if ‖Tx− Ty‖ ≤

‖x− y‖ for all x, y ∈ K. It turns out that nonexpansive fixed point theory can

be applied to the solution of diverse problems such as finding zeroes of monotone

operators and solutions to certain evolution equations, and solving convex feasibility

(CFP), variational inequality (VIP) and equilibrium problems (EP). In some cases it

is enough to assume that the operator T is quasi-nonexpansive, that is, ‖p− Tx‖ ≤

‖p− x‖ for all p ∈ F (T ) and x ∈ K, where F (T ) stands for the (nonempty) fixed

point set of T . There are, in fact, many papers that deal with methods for finding

fixed points of nonexpansive and quasi-nonexpansive operators in Hilbert space.

When we try to extend this theory to Banach spaces we encounter some diffi-

culties because many of the useful examples of nonexpansive operators in Hilbert

space are no longer nonexpansive in Banach spaces (for example, the resolvent

RA = (I +A)−1 of a maximal monotone operator A : H → 2H and the metric pro-

jection PK onto a nonempty, closed and convex subset K of H). There are several

ways to overcome these difficulties. One of them is to use the Bregman distance

(see Section 2.3) instead of the norm and Bregman (quasi-) nonexpansive opera-

tors instead of (quasi-) nonexpansive operators (see Section 2.5 for more details).

The Bregman projection (Section 2.4) and the generalized resolvent (Section 5) are

examples of Bregman (quasi-) nonexpansive operators.

In this paper we are concerned with Bregman strongly nonexpansive opera-

tors (see Section 2.5). Our main goal is to study the convergence of two iterative

algorithms for finding common fixed points of finitely many Bregman strongly non-

expansive operators in reflexive Banach spaces. Both algorithms take into account

possible computational errors. We establish two strong convergence theorems (The-

orems 1 and 2 below) and then get as corollaries two methods for solving convex
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feasibility problems (Corollaries 1 and 2), finding zeroes of maximal monotone op-

erators (Corollaries 3 and 4) and solving equilibrium problems (Corollaries 5 and 6).

All these corollaries also allow for possible computational errors. In addition, we

obtain two methods for finding zeroes of Bregman inverse strongly monotone opera-

tors (Corollaries 7 and 8) and for solving certain variational inequalities (Corollaries

9 and 10).

The paper is organized as follows. In Section 2 we present several preliminary

definitions and results. The third section is devoted to the study of our two iterative

methods. In Sections 4–8 we modify these methods in order to solve other prob-

lems: convex feasibility problems (Section 4), finding zeroes of maximal monotone

operators (Section 5), equilibrium problems (Section 6), finding zeroes of Bregman

inverse strongly monotone operators (Section 7) and variational inequalities (Sec-

tion 8). For more information regarding these problems see, for example, [2], [26],

[6], [12] and [17, 18], respectively. In Section 9 we observe that our methods may

also be used for finding common solutions to mixed problems.

2. Preliminaries

2.1. Some facts about Legendre functions. Legendre functions mapping

a general Banach space X into (−∞,+∞] are defined in [4]. According to [4,

Theorems 5.4 and 5.6], since X is reflexive, the function f is Legendre if and only

if it satisfies the following two conditions:

(L1) The interior of the domain of f , int dom f , is nonempty, f is Gâteaux

differentiable (see below) on int dom f , and

dom∇f = int dom f ;

(L2) The interior of the domain of f∗, int dom f∗, is nonempty, f∗ is Gâteaux

differentiable on int dom f∗, and

dom∇f∗ = int dom f∗.
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Since X is reflexive, we always have (∂f)
−1

= ∂f∗ (see [7, p. 83]). This fact,

when combined with conditions (L1) and (L2), implies the following equalities:

∇f = (∇f∗)−1,

ran∇f = dom ∇f∗ = int dom f∗

and

ran∇f∗ = dom ∇f = int dom f.

Also, conditions (L1) and (L2), in conjunction with [4, Theorem 5.4], imply that the

functions f and f∗ are strictly convex on the interior of their respective domains.

Several interesting examples of Legendre functions are presented in [3] and [4].

Among them are the functions 1
s ‖·‖

s
with s ∈ (1,∞), where the Banach space X

is smooth and strictly convex and, in particular, a Hilbert space. From now on we

assume that the convex function f : X → (−∞,+∞] is Legendre.

2.2. A Property of gradients. For any convex f : X → (−∞,+∞] we

denote by dom f the set {x ∈ X : f (x) < +∞}. For any x ∈ int dom f and y ∈ X,

we denote by f◦(x, y) the right-hand derivative of f at x in the direction y, that

is,

f◦(x, y) := lim
t↘0

f(x+ ty)− f(x)

t
.

The function f is called Gâteaux differentiable at x if limt→0 (f(x+ ty)− f(x)) /t

exists for any y. In this case f◦(x, y) coincides with (∇f) (x), the value of the

gradient ∇f of f at x. The function f is said to be Fréchet differentiable at x if

this limit is attained uniformly in ‖y‖ = 1. Finally, f is said to be uniformly Fréchet

differentiable on a subset E of X if the limit is attained uniformly for x ∈ E and

‖y‖ = 1. We will need the following result.

Proposition 1 (cf. [22, Proposition 2.1, p. 474]). If f : X → R is uniformly

Fréchet differentiable and bounded on bounded subsets of X, then ∇f is uniformly

continuous on bounded subsets of X from the strong topology of X to the strong

topology of X∗.
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2.3. Some facts about the Bregman distance. Let f : X → (−∞,+∞]

be a convex and Gâteaux differentiable function. The function Df : dom f ×

int dom f → [0,+∞), defined by

(2.1) Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉 ,

is called the Bregman distance with respect to f (cf. [14]). The Bregman distance

has the following two important properties, called the three point identity : for any

x ∈ dom f and y, z ∈ int dom f ,

(2.2) Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉 ,

and the four point identity : for any y, w ∈ dom f and x, z ∈ int dom f ,

(2.3) Df (y, x)−Df (y, z)−Df (w, x) +Df (w, z) = 〈∇f(z)−∇f(x), y − w〉 .

2.4. Some facts about totally convex functions. Let f : X → (−∞,+∞]

be a convex and Gâteaux differentiable function. Recall that, according to [11,

Section 1.2, p. 17] (see also [10]), the function f is called totally convex at a point

x ∈ int dom f if its modulus of total convexity at x, that is, the function υf :

int dom f × [0,+∞)→ [0,+∞], defined by

υf (x, t) := inf {Df (y, x) : y ∈ dom f, ‖y − x‖ = t} ,

is positive whenever t > 0. The function f is called totally convex when it is totally

convex at every point x ∈ int dom f . In addition, the function f is called totally

convex on bounded sets if υf (E, t) is positive for any nonempty bounded subset E

of X and for any t > 0, where the modulus of total convexity of the function f on

the set E is the function υf : int dom f × [0,+∞)→ [0,+∞] defined by

υf (E, t) := inf {υf (x, t) : x ∈ E ∩ int dom f} .
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We remark in passing that f is totally convex on bounded sets if and only if f is

uniformly convex on bounded sets (see [13, Theorem 2.10, p. 9]).

Examples of totally convex functions can be found, for instance, in [11, 13].

The next proposition turns out to be very useful in the proof of Theorems 1

and 2 below.

Proposition 2 (cf. [25, Proposition 2.2, p. 3]). If x ∈ int dom f , then the

following statements are equivalent:

(i) The function f is totally convex at x;

(ii) For any sequence {yn}n∈N ⊂ dom f ,

lim
n→+∞

Df (yn, x) = 0 =⇒ lim
n→+∞

‖yn − x‖ = 0.

Recall that the function f is called sequentially consistent (see [13]) if for any two

sequences {xn}n∈N and {yn}n∈N in int dom f and dom f , respectively, such that

the first one is bounded,

lim
n→+∞

Df (yn, xn) = 0 =⇒ lim
n→+∞

‖yn − xn‖ = 0.

Proposition 3 (cf. [11, Lemma 2.1.2, p. 67]). The function f is totally convex

on bounded sets if and only if it is sequentially consistent.

Recall that the Bregman projection (cf. [8]) of x ∈ int dom f onto the nonempty,

closed and convex set K ⊂ dom f is the necessarily unique vector projfK(x) ∈ K

satisfying

Df

(
projfK(x), x

)
= inf {Df (y, x) : y ∈ K} .

Similarly to the metric projection in Hilbert space, Bregman projections with

respect to totally convex and differentiable functions have variational characteriza-

tions.

Proposition 4 (cf. [13, Corollary 4.4, p. 23]). Suppose that f is Gâteaux

differentiable and totally convex on int dom f . Let x ∈ int dom f and let K ⊂

int dom f be a nonempty, closed and convex set. If x̂ ∈ K, then the following

conditions are equivalent :
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(i) The vector x̂ is the Bregman projection of x onto K with respect to f ;

(ii) The vector x̂ is the unique solution of the variational inequality

〈∇f (x)−∇f (z) , z − y〉 ≥ 0 ∀y ∈ K;

(iii) The vector x̂ is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x) ∀y ∈ K.

The following two propositions exhibit two additional properties of totally con-

vex functions.

Proposition 5 (cf. [23, Lemma 3.1, p. 31]). Let f : X → R be a Gâteaux dif-

ferentiable and totally convex function. If x0 ∈ X and the sequence {Df (xn, x0)}n∈N
is bounded, then the sequence {xn}n∈N is bounded too.

Proposition 6 (cf. [23, Lemma 3.2, p. 31]). Let f : X → R be a Gâteaux dif-

ferentiable and totally convex function, x0 ∈ X and let K be a nonempty, closed and

convex subset of X. Suppose that the sequence {xn}n∈N is bounded and any weak

subsequential limit of {xn}n∈N belongs to K. If Df (xn, x0) ≤ Df

(
projfK(x0), x0

)
for any n ∈ N, then {xn}n∈N converges strongly to projfK(x0).

2.5. Some facts about Bregman strongly nonexpansive operators.

This class of operators was introduced in [15] and [21]. Let K be a convex subset

of int dom f and let T be a self-mapping of K. A point p in the closure of K is said

to be an asymptotic fixed point of T (cf. [15] and [21]) if K contains a sequence

{xn}n∈N which converges weakly to p such that the strong limn→+∞ (xn − Txn) =

0. The set of asymptotic fixed points of T will be denoted by F̂ (T ). We say that

the operator T is (quasi-) Bregman strongly nonexpansive (BSNE for short) with

respect to a nonempty F̂ (T ) if

(2.4) Df (p, Tx) ≤ Df (p, x)
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for all p ∈ F̂ (T ) and x ∈ K, and if whenever {xn}n∈N ⊂ K is bounded, p ∈ F̂ (T ),

and

(2.5) lim
n→+∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that

(2.6) lim
n→+∞

Df (Txn, xn) = 0.

Note that the notion of a strongly nonexpansive operator (with respect to the norm)

was first introduced and studied in [9] (see also [20]).

Another well-known family of operators is the class of Bregman firmly non-

expansive operators, where an operator T : K → K is called Bregman firmly

nonexpansive (BFNE for short) if

(2.7) 〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (x)−∇f (y) , Tx− Ty〉

for all x, y ∈ K. It is clear from the definition of the Bregman distance (2.1) that

inequality (2.7) is equivalent to

(2.8)

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x) .

See [5, 24] for more information on BFNE operators. In particular, we prove in [24,

Lemma 1.3.2] that for any BFNE operator T , F (T ) = F̂ (T ) when the Legendre

function f is uniformly Fréchet differentiable and bounded on bounded subsets of

X. In this case it also follows that any BFNE operator is a BSNE operator with

respect to a nonempty F (T ) = F̂ (T ).

Let f : X → R be bounded, uniformly Fréchet differentiable and totally

convex on bounded subsets of K. In [21, Lemma 1, p. 314] it is shown that if

{Ti : 1 ≤ i ≤ N} are N BSNE operators on K and F̂ =
⋂{

F̂ (Ti) : 1 ≤ i ≤ N
}

is not empty, then F̂ (TNTN−1 · · ·T1) is contained in F̂ . Also, according to [21,
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Lemma 2, p. 314], if {Ti : 1 ≤ i ≤ N} are BSNE operators, T = TNTN−1 · · ·T1,

and the sets F̂ (T ) and F̂ are nonempty, then T is BSNE too.

Let {Ti : 1 ≤ i ≤ N} be N BSNE operators which satisfy F̂ (Ti) = F (Ti) for

each 1 ≤ i ≤ N and let T = TNTN−1 · · ·T1. If F =
⋂
{F (Ti) : 1 ≤ i ≤ N} and

F (T ) are nonempty, then T is also BSNE with F (T ) = F̂ (T ). Indeed,

F (T ) ⊂ F̂ (T ) ⊂
⋂{

F̂ (Ti) : 1 ≤ i ≤ N
}

=
⋂
{F (Ti) : 1 ≤ i ≤ N} ⊂ F (T ) ,

which implies that F (T ) = F̂ (T ), as claimed.

3. Two Strong Convergence Theorems

In this section we study the following algorithm when F :=
⋂N

i=1 F (Ti) 6= ∅:

(3.1)



x0 ∈ X,

yin = Ti(xn + ein),

Ci
n =

{
z ∈ X : Df

(
z, yin

)
≤ Df

(
z, xn + ein

)}
,

Cn := ∩Ni=1C
i
n,

Qn = {z ∈ X : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0} ,

xn+1 = projfCn∩Qn
(x0), n = 0, 1, 2, . . . .

Theorem 1. Let Ti : X → X, i = 1, 2, . . . , N , be N BSNE operators which

satisfy F (Ti) = F̂ (Ti) for each 1 ≤ i ≤ N and F :=
⋂N

i=1 F (Ti) 6= ∅. Let

f : X → R be a Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Then, for each x0 ∈ X, there are

sequences {xn}n∈N which satisfy (3.1). If, for each i = 1, 2, . . . , N , the sequences

of errors
{
ein
}
n∈N ⊂ X satisfy limn→+∞ ein = 0, then each such sequence {xn}n∈N

converges strongly to projfF (x0) as n→ +∞.

Proof. We begin with the following claim.

Claim 1. There are sequences {xn}n∈N which satisfy (3.1).

Let n ∈ N. It is not difficult to check that the sets Ci
n are closed and convex

for any i = 1, 2, . . . , N . Hence their intersection Cn is also closed and convex. It
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is also obvious that Qn is a closed and convex set. Let u ∈ F . For any n ∈ N, we

obtain from (2.4) that

Df

(
u, yin

)
= Df

(
u, Ti(xn + ein)

)
≤ Df

(
u, xn + ein

)
,

which implies that u ∈ Ci
n. Since this holds for any i = 1, 2, . . . , N , it follows

that u ∈ Cn. Thus F ⊂ Cn for any n ∈ N. On the other hand, it is obvious

that F ⊂ Q0 = X. Thus F ⊂ C0

⋂
Q0, and therefore x1 = projfC0∩Q0

(x0) is

well defined. Now suppose that F ⊂ Cn−1
⋂
Qn−1 for some n ≥ 1. Then xn =

projfCn−1∩Qn−1
(x0) is well defined because Cn−1

⋂
Qn−1 is a nonempty, closed and

convex subset of X. So from Proposition 4(ii) we have

〈∇f(x0)−∇f(xn), y − xn〉 ≤ 0

for any y ∈ Cn−1
⋂
Qn−1. Hence we obtain that F ⊂ Qn. Therefore F ⊂ Cn

⋂
Qn

and hence xn+1 = projfCn∩Qn
(x0) is also well defined. Consequently, we see that

F ⊂ Cn

⋂
Qn for any n ∈ N. Thus the sequence we constructed is indeed well

defined and satisfies (3.1), as claimed.

From now on we fix an arbitrary sequence {xn}n∈N satisfying (3.1).

Claim 2. The sequence {xn}n∈N is bounded.

It follows from the definition of Qn and Proposition 4(ii) that projfQn
(x0) = xn.

Furthermore, by Proposition 4(iii), for each u ∈ F , we have

Df (xn, x0) = Df

(
projfQn

(x0), x0

)
(3.2)

≤ Df (u, x0)−Df

(
u,projfQn

(x0)
)

≤ Df (u, x0) .

Hence the sequence {Df (xn, x0)}n∈N is bounded byDf (u, x0) for any u ∈ F . There-

fore by Proposition 5 the sequence {xn}n∈N is bounded too, as claimed.

Claim 3. Every weak subsequential limit of {xn}n∈N belongs to F .
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It follows from the definition of Qn and Proposition 4(ii) that projfQn
(x0) = xn.

Since xn+1 ∈ Qn, it follows from Proposition 4(iii) that

Df

(
xn+1,projfQn

(x0)
)

+Df

(
projfQn

(x0), x0

)
≤ Df (xn+1, x0)

and hence

(3.3) Df (xn+1, xn) +Df (xn, x0) ≤ Df (xn+1, x0) .

Therefore the sequence {Df (xn, x0)}n∈N is increasing and since it is also bounded

(see Claim 2), limn→+∞Df (xn, x0) exists. Thus it follows from (3.3) that

(3.4) lim
n→+∞

Df (xn+1, xn) = 0.

Proposition 3 now implies that

(3.5) lim
n→+∞

(xn+1 − xn) = 0.

For any i = 1, 2, . . . , N , it follows from the definition of the Bregman distance (see

(2.1)) that

Df

(
xn, xn + ein

)
= f (xn)− f

(
xn + ein

)
−
〈
∇f(xn + ein), xn −

(
xn + ein

)〉
=

f (xn)− f
(
xn + ein

)
+
〈
∇f(xn + ein), ein

〉
.

The function f is bounded on bounded subsets of X and therefore ∇f is also

bounded on bounded subsets of X (see [11, Proposition 1.1.11, p. 17]). In addition,

f is uniformly Fréchet differentiable and therefore f is uniformly continuous on

bounded subsets (see [1, Theorem 1.8, p. 13]). Hence, since limn→+∞ ein = 0, we

see that

(3.6) lim
n→+∞

Df

(
xn, xn + ein

)
= 0.
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For any i = 1, 2, . . . , N , it follows from the three point identity (see (2.2)) that

Df

(
xn+1, xn + ein

)
= Df (xn+1, xn) +Df

(
xn, xn + ein

)
+
〈
∇f(xn)−∇f(xn + ein), xn+1 − xn

〉
.

Since ∇f is bounded on bounded subsets of X, (3.4), (3.5) and (3.6) imply that

lim
n→+∞

Df

(
xn+1, xn + ein

)
= 0.

Next, for any i = 1, 2, . . . , N , it follows from the inclusion xn+1 ∈ Ci
n that

Df

(
xn+1, y

i
n

)
≤ Df

(
xn+1, xn + ein

)
.

Hence limn→+∞Df

(
xn+1, y

i
n

)
= 0. Proposition 3 now implies that

limn→+∞
(
yin − xn+1

)
= 0. Therefore, for any i = 1, 2, . . . , N , we have

∥∥yin − xn∥∥ ≤ ∥∥yin − xn+1

∥∥+ ‖xn+1 − xn‖ → 0,

and since limn→+∞ ein = 0, we obtain that

(3.7) lim
n→+∞

∥∥yin − (xn + ein)
∥∥ = 0.

This means that the sequence
{
yin
}
n∈N is bounded for any i = 1, 2, . . . , N . Since f

is uniformly Fréchet differentiable, it follows from Proposition 1 that

lim
n→+∞

∥∥∇f (yin)−∇f (xn)
∥∥
∗ = 0

and since limn→+∞ ein = 0, it also follows that

(3.8) lim
n→+∞

∥∥∇f (yin)−∇f (xn + ein
)∥∥
∗ = 0

for any i = 1, 2, . . . , N . Since f is uniformly Fréchet differentiable, it is also uni-

formly continuous (see [1, Theorem 1.8, p. 13]) and therefore

(3.9) lim
n→+∞

∥∥f (yin)− f (xn + ein
)∥∥ = 0
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for any i = 1, 2, . . . , N . From the definition of the Bregman distance (see (2.1)) we

obtain that

Df

(
u, xn + ein

)
−Df

(
u, yin

)
=
[
f(u)− f(xn + ein)

−
〈
∇f(xn + ein), u− (xn + ein)

〉]
−
[
f(u)− f(yin)−

〈
∇f(yin), u− yin

〉]
= f(yin)− f(xn + ein) +

〈
∇f(yin), u− yin

〉
−
〈
∇f(xn + ein), u− (xn + ein)

〉
= f(yin)− f(xn + ein) +

〈
∇f(yin), xn + ein − yin

〉
+
〈
∇f(yin)−∇f(xn + ein), u− (xn + ein)

〉
for any u ∈ F . Since the sequence

{
yin
}
n∈N is bounded,

{
∇f(yin)

}
n∈N is bounded

too. Now from (3.7), (3.8) and (3.9), we obtain that

lim
n→+∞

(
Df

(
u, xn + ein

)
−Df

(
u, yin

))
= 0

for any u ∈ F , that is,

lim
n→+∞

(
Df

(
u, xn + ein

)
−Df

(
u, Ti(xn + ein)

))
= 0

for any u ∈ F . Since each Ti, 1 ≤ i ≤ N , is a BSNE operator which satisfies

F (Ti) = F̂ (Ti), it follows that

lim
n→+∞

Df

(
Ti(xn + ein), xn + ein

)
= 0.

Proposition 3 now implies that

(3.10) lim
n→+∞

(
Ti(xn + ein)− (xn + ein)

)
= 0.

Now let {xnk
}k∈N be a weakly convergent subsequence of {xn}n∈N and denote its

weak limit by v. Set zin = xn + ein. Since xnk
⇀ v and eink

→ 0, it is obvious

that for any 1 ≤ i ≤ N , the sequence
{
zink

}
k∈N converges weakly to v. We also
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have limn→+∞
(
Tiz

i
nk
− zink

)
= 0 by (3.10). This means that v ∈ F̂ (Ti) = F (Ti).

Therefore v ∈ F , as claimed. This proves Claim 3.

Claim 4. The sequence {xn}n∈N converges strongly to projfF (x0) as n→ +∞.

Let ũ = projfF (x0). Since xn+1 = projfCn∩Qn
(x0) and F is contained in

Cn

⋂
Qn, we have Df (xn+1, x0) ≤ Df (ũ, x0). Therefore Proposition 6 implies

that {xn}n∈N converges strongly to ũ = projfF (x0), as claimed.

This completes the proof of Theorem 1. �

We now present another result which is similar to Theorem 1, but with a

different construction of the sequence {Cn}n∈N. The following algorithm is based

on the concept of the so-called shrinking projection method which was introduced

by Takahashi, Takeuchi and Kubota in [27]. More precisely, we study the following

algorithm when F :=
⋂N

i=1 F (Ti) 6= ∅:

(3.11)



x0 ∈ X,

Ci
0 = X, i = 1, 2, . . . , N,

yin = Ti(xn + ein),

Ci
n+1 =

{
z ∈ Ci

n : Df

(
z, yin

)
≤ Df

(
z, xn + ein

)}
,

Cn+1 := ∩Ni=1C
i
n+1,

xn+1 = projfCn+1
(x0), n = 0, 1, 2, . . . .

Theorem 2. Let Ti : X → X, i = 1, 2, . . . , N , be N BSNE operators which

satisfy F̂ (Ti) = F (Ti) for each 1 ≤ i ≤ N and F :=
⋂N

i=1 F (Ti) 6= ∅. Let

f : X → R be a Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Then, for each x0 ∈ X, there are

sequences {xn}n∈N which satisfy (3.11). If, for each i = 1, 2, . . . , N , the sequences

of errors
{
ein
}
n∈N ⊂ X satisfy limn→+∞ ein = 0, then each such sequence {xn}n∈N

converges strongly to projfF (x0) as n→ +∞.

Proof. We begin with the following claim.

Claim 1. There are sequences {xn}n∈N which satisfy (3.11).
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Again it is not difficult to check that the sets Ci
n are closed and convex for any

i = 1, 2, . . . , N . Hence their intersection Cn is also closed and convex. Let u ∈ F .

For any n ∈ N, we obtain from (2.4) the inequality

Df

(
u, yin

)
= Df

(
u, Ti(xn + ein)

)
≤ Df

(
u, xn + ein

)
,

which implies that u ∈ Ci
n+1. Since this holds for any i = 1, 2, . . . , N , it follows

that u ∈ Cn+1. Thus F ⊂ Cn for any n ∈ N.

From now on we fix an arbitrary sequence {xn}n∈N satisfying (3.11).

Claim 2. The sequence {xn}n∈N is bounded.

It follows from Proposition 4(iii) that, for each u ∈ F , we have

Df (xn, x0) = Df

(
projfCn

(x0), x0

)
(3.12)

≤ Df (u, x0)−Df

(
u,projfCn

(x0)
)

≤ Df (u, x0) .

Hence the sequence {Df (xn, x0)}n∈N is bounded byDf (u, x0) for any u ∈ F . There-

fore by Proposition 5 the sequence {xn}n∈N is bounded too, as claimed.

Claim 3. Every weak subsequential limit of {xn}n∈N belongs to F .

Since xn+1 ∈ Cn+1 ⊂ Cn, it follows from Proposition 4(iii) that

Df

(
xn+1,projfCn

(x0)
)

+Df

(
projfCn

(x0), x0

)
≤ Df (xn+1, x0)

and hence

(3.13) Df (xn+1, xn) +Df (xn, x0) ≤ Df (xn+1, x0) .

Therefore the sequence {Df (xn, x0)}n∈N is increasing and since it is also bounded

(see Claim 2), limn→+∞Df (xn, x0) exists. Thus it follows from (3.13) that

(3.14) lim
n→+∞

Df (xn+1, xn) = 0.
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Now, using an argument similar to the one we employed in the proof of Theorem 1

(see Claim 3 there), we get the conclusion of Claim 3.

Claim 4. The sequence {xn}n∈N converges strongly to projfF (x0) as n→ +∞.

Let ũ = projfF (x0). Since xn = projfCn
(x0) and F is contained in Cn, we have

Df (xn, x0) ≤ Df (ũ, x0). Therefore Proposition 6 implies that {xn}n∈N converges

strongly to ũ = projfF (x0), as claimed.

This completes the proof of Theorem 2. �

4. Convex Feasibility Problems

Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex subsets of X. The

convex feasibility problem (CFP) is to find an element in the assumed nonempty

intersection
⋂N

i=1Ki. It is clear that F
(

projfKi

)
= Ki for any i = 1, 2, . . . , N . If the

Legendre function f is uniformly Fréchet differentiable and bounded on bounded

subsets of X, then the Bregman projection projfKi
is BFNE, hence BSNE, and

F
(

projfKi

)
= F̂

(
projfKi

)
(cf. [24, Lemma 1.3.2]). Therefore, if we take Ti =

projfKi
in Theorems 1 and 2, then we get two different algorithms for solving convex

feasibility problems which allow for computational errors.

Corollary 1. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X such that K :=
⋂N

i=1Ki 6= ∅. Let f : X → R be a Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex on

bounded subsets of X. Then, for each x0 ∈ X, there are sequences {xn}n∈N which

satisfy (3.1) (with Ti = projfKi
). If the sequences of errors

{
ein
}
n∈N ⊂ X satisfy

limn→+∞ ein = 0, then each such sequence {xn}n∈N converges strongly to projfK(x0)

as n→ +∞.

Corollary 2. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X such that K :=
⋂N

i=1Ki 6= ∅. Let f : X → R be a Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex on

bounded subsets of X. Then, for each x0 ∈ X, there are sequences {xn}n∈N which

satisfy (3.11) (with Ti = projfKi
). If the sequences of errors

{
ein
}
n∈N ⊂ X satisfy
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limn→+∞ ein = 0, then each such sequence {xn}n∈N converges strongly to projfK(x0)

as n→ +∞.

5. Zeroes of Maximal Monotone Operators

Let A : X → 2X
∗

be a maximal monotone operator. The problem of finding

an element x ∈ X such that 0∗ ∈ Ax is very important in Optimization Theory

and related fields. In this section we present two different algorithms for finding

common zeroes of N maximal monotone operators.

Recall that the resolvent of A, denoted by ResfA : X → 2X , is defined as follows

[5]:

ResfA(x) = (∇f +A)
−1 ◦ ∇f(x).

Bauschke, Borwein and Combettes [5, Prop. 3.8(iv), p. 604] prove that this

resolvent is a single-valued BFNE operator. In addition, if the Legendre func-

tion f is uniformly Fréchet differentiable and bounded on bounded subsets of

X, then the resolvent ResfA is a BSNE operator (see Section 2.5) which satisfies

F
(

ResfA

)
= F̂

(
ResfA

)
(cf. [24, Lemma 1.3.2]). It is well known that the fixed

point set of the resolvent ResfA is equal to the set of zeroes of the operator A, that

is, F
(

ResfA

)
= A−1(0∗). If we take Ti = ResfAi

in Theorems 1 and 2, then we

obtain two different algorithms for finding common zeroes of finitely many max-

imal monotone operators which allow for computational errors. Note that since

each Ai is a maximal monotone operator, X∗ = ran (∇f) = ran (∇f +Ai) (see

[23, Proposition 2.3, p. 28] and [5, Prop. 3.8(iv), p. 604]) and therefore each Ti is

defined on all of X.

Corollary 3. Let Ai : X → 2X
∗
, i = 1, 2, . . . , N , be N maximal monotone

operators with Z :=
⋂N

i=1A
−1
i (0∗) 6= ∅. Let f : X → R be a Legendre function

which is bounded, uniformly Fréchet differentiable and totally convex on bounded

subsets of X. Then, for each x0 ∈ X, there are sequences {xn}n∈N which satisfy

(3.1) (with Ti = ResfAi
). If, for each i = 1, 2, . . . , N , the sequences of errors
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ein
}
n∈N ⊂ X satisfy limn→+∞ ein = 0, then each such sequence {xn}n∈N converges

strongly to projfZ(x0) as n→ +∞.

Corollary 4. Let Ai : X → 2X
∗
, i = 1, 2, . . . , N , be N maximal monotone

operators with Z :=
⋂N

i=1A
−1
i (0∗) 6= ∅. Let f : X → R be a Legendre function

which is bounded, uniformly Fréchet differentiable and totally convex on bounded

subsets of X. Then, for each x0 ∈ X, there are sequences {xn}n∈N which satisfy

(3.11) (with Ti = ResfAi
). If, for each i = 1, 2, . . . , N , the sequences of errors{

ein
}
n∈N ⊂ X satisfy limn→+∞ ein = 0, then each such sequence {xn}n∈N converges

strongly to projfZ(x0) as n→ +∞.

6. Equilibrium Problems

Let K be a nonempty, closed and convex subset of X. Let g : K ×K → R be

a bifunction that satisfies the following conditions [6]:

(C1) g (x, x) = 0 for all x ∈ K;

(C2) g is monotone, i.e., g (x, y) + g (y, x) ≤ 0 for all x, y ∈ K;

(C3) for all x, y, z ∈ K,

lim sup
t↓0

g (tz + (1− t)x, y) ≤ g (x, y) ;

(C4) for each x ∈ K, g (x, ·) is convex and lower semicontinuous.

The equilibrium problem corresponding to g is to find x̄ ∈ K such that

(6.1) g (x̄, y) ≥ 0 ∀y ∈ K.

The set of solutions of (6.1) is denoted by EP (g).

The resolvent of a bifunction g : K ×K → R [16] is the operator Resfg : X →

2K , defined by

Resfg (x) = {z ∈ K : g (z, y) + 〈∇f (z)−∇f (x) , y − z〉 ≥ 0 ∀y ∈ K} .
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In the following two lemmata we obtain several properties of these resolvents.

We first show that dom (Resfg ) is the whole space X when f is a coercive (i.e.,

lim‖x‖→+∞ (f (x) / ‖x‖) = +∞) and Gâteaux differentiable function.

Lemma 1. Let f : X → (−∞,+∞] be a coercive and Gâteaux differentiable

function. Let K be a closed and convex subset of X. If the bifunction g : K×K → R

satisfies conditions (C1)–(C4), then dom (Resfg ) = X.

Proof. First we show that for any ξ ∈ X∗, there exists x̄ ∈ K such that

(6.2) g (x̄, y) + f (y)− f (x̄)− 〈ξ, y − x̄〉 ≥ 0

for any y ∈ K. Since f is a coercive function, the function h : X×X → (−∞,+∞],

defined by

h (x, y) = f (y)− f (x)− 〈ξ, y − x〉 ,

satisfies

lim
‖x−y‖→+∞

h (x, y)

‖x− y‖
= −∞

for each fixed y ∈ K. Therefore it follows from Theorem 1 in [6] that (6.2) holds.

Now we prove that (6.2) implies that

g (x̄, y) + 〈∇f (x̄) , y − x̄〉 − 〈ξ, y − x̄〉 ≥ 0

for any y ∈ K. We know that (6.2) holds for y = tx̄ + (1− t) ȳ, where ȳ ∈ K and

t ∈ (0, 1). Hence,

(6.3) g (x̄, tx̄+ (1− t) ȳ) + f (tx̄+ (1− t) ȳ)− f (x̄)− 〈ξ, tx̄+ (1− t) ȳ − x̄〉 ≥ 0

for all ȳ ∈ K. Since

f (tx̄+ (1− t) ȳ)− f (x̄) ≤ 〈∇f (tx̄+ (1− t) ȳ) , tx̄+ (1− t) ȳ − x̄〉 ,
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we get from (6.3) and condition (C4) that

tg (x̄, x̄) + (1− t) g (x̄, ȳ) + 〈∇f (tx̄+ (1− t) ȳ) , tx̄+ (1− t) ȳ − x̄〉

− 〈ξ, tx̄+ (1− t) ȳ − x̄〉 ≥ 0

for all ȳ ∈ K. From condition (C1) we know that g (x̄, x̄) = 0. So, we have

(1− t) g (x̄, ȳ) + 〈∇f (tx̄+ (1− t) ȳ) , (1− t) (ȳ − x̄)〉 − 〈ξ, (1− t) (ȳ − x̄)〉 ≥ 0

and

(1− t) [g (x̄, ȳ) + 〈∇f (tx̄+ (1− t) ȳ) , ȳ − x̄〉 − 〈ξ, ȳ − x̄〉] ≥ 0

for all ȳ ∈ K. Therefore

g (x̄, ȳ) + 〈∇f (tx̄+ (1− t) ȳ) , ȳ − x̄〉 − 〈ξ, ȳ − x̄〉 ≥ 0

for all ȳ ∈ K. Since f is a Gâteaux differentiable function, it follows that ∇f is

norm-to-weak∗ continuous (see [19, Propostion 2.8, p. 19]). Therefore, letting here

t→ 1−, we obtain that

g (x̄, ȳ) + 〈∇f (x̄) , ȳ − x̄〉 − 〈ξ, ȳ − x̄〉 ≥ 0

for all ȳ ∈ K. Hence, for any x ∈ X, taking ξ = ∇f (x), we obtain x̄ ∈ K such that

g (x̄, ȳ) + 〈∇f (x̄)−∇f (x) , ȳ − x̄〉 ≥ 0

for all ȳ ∈ K, that is, x̄ ∈ Resfg (x). Hence dom (Resfg ) = X. �

In the next lemma we list more properties of the resolvent of a bifunction.

Lemma 2. Let f : X → (−∞,+∞] be a Legendre function. Let K be a closed

and convex subset of X. If the bifunction g : K × K → R satisfies conditions

(C1)–(C4), then

(i) Resfg is single-valued;

(ii) Resfg is a BFNE operator;
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(iii) the set of fixed points of Resfg is the solution set of the corresponding

equilibrium problem, i.e., F (Resfg ) = EP (g);

(iv) EP (g) is a closed and convex subset of K;

(v) For all x ∈ X and for all u ∈ F (Resfg ), we have

Df

(
u,Resfg (x)

)
+Df

(
Resfg (x) , x

)
≤ Df (u, x) .

Proof. (i) Let z1, z2 ∈ Resfg (x). Then the definition of the resolvent implies

that

g (z1, z2) + 〈∇f (z1)−∇f (x) , z2 − z1〉 ≥ 0

and

g (z2, z1) + 〈∇f (z2)−∇f (x) , z1 − z2〉 ≥ 0.

Adding these two inequalities, we obtain

g (z1, z2) + g (z2, z1) + 〈∇f (z2)−∇f (z1) , z1 − z2〉 ≥ 0.

From condition (C2) it follows that

〈∇f (z2)−∇f (z1) , z1 − z2〉 ≥ 0.

The function f is Legendre and therefore it is strictly convex. Hence ∇f is strictly

monotone and therefore z1 = z2.

(ii) For any x, y ∈ K, we have

g
(

Resfg (x) ,Resfg (y)
)

+
〈
∇f

(
Resfg (x)

)
−∇f (x) ,Resfg (y)− Resfg (x)

〉
≥ 0

and

g
(

Resfg (y) ,Resfg (x)
)

+
〈
∇f

(
Resfg (y)

)
−∇f (y) ,Resfg (x)− Resfg (y)

〉
≥ 0.



22 SIMEON REICH AND SHOHAM SABACH

Adding these two inequalities, we obtain that

g
(

Resfg (x) ,Resfg (y)
)

+ g
(

Resfg (y) ,Resfg (x)
)

+
〈
∇f

(
Resfg (x)

)
−∇f (x) +∇f (y)−∇f

(
Resfg (y)

)
,Resfg (y)− Resfg (x)

〉
≥ 0.

From condition (C2) it follows that

〈
∇f

(
Resfg (x)

)
−∇f (x) +∇f (y)−∇f

(
Resfg (y)

)
,Resfg (y)− Resfg (x)

〉
≥ 0.

Hence

〈
∇f

(
Resfg (x)

)
−∇f

(
Resfg (y)

)
,Resfg (x)− Resfg (y)

〉
≤
〈
∇f (x)−∇f (y) ,Resfg (x)− Resfg (y)

〉
.

This means that Resfg is a BFNE operator, as claimed.

(iii) Indeed,

x ∈ F (Resfg )⇐⇒ x = Resfg (x)

⇐⇒ 0 ≤ g (x, y) + 〈∇f (x)−∇f (x) , y − x〉 ∀y ∈ K

⇐⇒ 0 ≤ g (x, y) ∀y ∈ K

⇐⇒ x ∈ EP (g) .

(iv) Since Resfg is a BFNE operator, it follows from [24, Lemma 1.3.1] that

F (Resfg ) is a closed and convex subset of C. Therefore from (iii) we obtain that

EP (g) = F (Resfg ) is also a closed and convex subset of K, as claimed.

(v) Since Resfg is a BFNE operator, it follows from (3.11) that for all x, y ∈ X,

we have

Df

(
Resfg (x) ,Resfg (y)

)
+Df

(
Resfg (y) ,Resfg (x)

)
≤ Df

(
Resfg (x) , y

)
−Df

(
Resfg (x) , x

)
+Df

(
Resfg (y) , x

)
−Df

(
Resfg (y) , y

)
.
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Letting y = u ∈ F (Resfg ), we see that

Df

(
Resfg (x) , u

)
+Df

(
u,Resfg (x)

)
≤ Df

(
Resfg (x) , u

)
−Df

(
Resfg (x) , x

)
+Df (u, x)−Df (u, u) .

Thus

Df

(
u,Resfg (x)

)
+Df

(
Resfg (x) , x

)
≤ Df (u, x) .

This completes the proof. �

So, if the Legendre function f is uniformly Fréchet differentiable and bounded

on bounded subsets of X, then the resolvent Resfg is single-valued (Lemma 2(i)),

BSNE (see Section 2.5) and satisfies F
(

Resfg

)
= F̂

(
Resfg

)
(cf. [24, Lemma 1.3.2]).

From Lemma 2(iii) we also know that F
(

Resfg

)
= EP (g). So, if we take Ti = Resfgi

in Theorems 1 and 2, then we get two different algorithms for finding common

solutions to the equilibrium problems corresponding to finitely many bifunctions,

which allow for computational errors. Note that each Ti is defined on all of X

(Lemma 1).

Corollary 5. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X. Let gi : Ki ×Ki → R, i = 1, 2, . . . , N , be N bifunctions that satisfy

conditions (C1)–(C4) such that E :=
⋂N

i=1EP (gi) 6= ∅. Let f : X → R be a

coercive Legendre function which is bounded, uniformly Fréchet differentiable and

totally convex on bounded subsets of X. Then, for each x0 ∈ X, there are sequences

{xn}n∈N which satisfy (3.1) (with Ti = Resfgi). If, for each i = 1, 2, . . . , N , the

sequences of errors
{
ein
}
n∈N ⊂ X satisfy limn→+∞ ein = 0, then each such sequence

{xn}n∈N converges strongly to projfE(x0) as n→ +∞.

Corollary 6. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X. Let gi : Ki ×Ki → R, i = 1, 2, . . . , N , be N bifunctions that satisfy

conditions (C1)–(C4) such that E :=
⋂N

i=1EP (gi) 6= ∅. Let f : X → R be a

coercive Legendre function which is bounded, uniformly Fréchet differentiable and

totally convex on bounded subsets of X. Then, for each x0 ∈ X, there are sequences



24 SIMEON REICH AND SHOHAM SABACH

{xn}n∈N which satisfy (3.11) (with Ti = Resfgi). If, for each i = 1, 2, . . . , N , the

sequences of errors
{
ein
}
n∈N ⊂ X satisfy limn→+∞ ein = 0, then each such sequence

{xn}n∈N converges strongly to projfE(x0) as n→ +∞.

7. Zeroes of Bregman Inverse Strongly Monotone Operators

Using our methods, we can find common zeroes for another class of operators,

namely, Bregman inverse strongly monotone operators. This class of operators was

introduced by Butnariu and Kassay (see [12]). We assume that the Legendre

function f satisfies the following range condition:

(7.1) ran (∇f −A) ⊆ ran (∇f) .

The operator A : X → 2X
∗

is called Bregman inverse strongly monotone (BISM

for short) if

(domA)
⋂

(int domf) 6= ∅

and for any x, y ∈ int domf , and each ξ ∈ Ax, η ∈ Ay, we have

〈ξ − η,∇f∗ (∇f (x)− ξ)−∇f∗ (∇f (y)− η)〉 ≥ 0.

For any operator A : X → 2X
∗
, the anti-resolvent Af : X → 2X of A is defined by

Af := ∇f∗ ◦ (∇f −A) .

Observe that domAf ⊆ (domA) ∩ (int domf) and ranAf ⊆ int domf .

It is known (see [12, Lemma 3.5 (c) and (d), p. 2109]) that the operator A is

BISM if and only if the anti-resolvent Af is a (single-valued) BFNE operator. For

examples of BISM operators and more information on this new class of operators see

[12]. Before presenting consequences of our main results, we note several properties

of this classs of operators and of the anti-resolvent.

From the definition of the anti-resolvent and [12, Lemma 3.5, p. 2109] we

obtain the following proposition.
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Proposition 7. Let f : X → (−∞,+∞] be a Legendre function and let

A : X → 2X
∗

be a BISM operator such that A−1 (0∗) 6= ∅. Then the following

statements hold:

(i) A−1 (0∗) = F (Af );

(ii) For any u ∈ A−1 (0∗) and x ∈ domAf , we have

Df

(
u,Afx

)
+Df

(
Afx, x

)
≤ Df (u, x) .

So, if the Legendre function f is uniformly Fréchet differentiable and bounded

on bounded subsets of X, then the anti-resolvent Af is a single-valued BSNE op-

erator (see Section 2.5) which satisfies F
(
Af
)

= F̂
(
Af
)

(cf. [24, Lemma 1.3.2]).

Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex subsets of X and

let Ti : Ki → Ki for each i = 1, 2, . . . , N . Assume that
⋂N

i=1Ki 6= ∅ and consider

Algorithms (3.1) and (3.11) without computational errors:

(7.2)



x0 ∈ K =
⋂N

i=1Ki,

yin = Ti(xn),

Ci
n =

{
z ∈ Ki : Df

(
z, yin

)
≤ Df (z, xn)

}
,

Cn :=
⋂N

i=1 C
i
n,

Qn = {z ∈ K : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0} ,

xn+1 = projfCn∩Qn
(x0), n = 0, 1, 2, . . . ,

and

(7.3)



x0 ∈ K =
⋂N

i=1Ki,

Ci
0 = Ki, i = 1, 2, . . . , N,

yin = Ti(xn),

Ci
n+1 =

{
z ∈ Ci

n : Df

(
z, yin

)
≤ Df (z, xn)

}
,

Cn+1 :=
⋂N

i=1 C
i
n+1,

xn+1 = projfCn+1
(x0), n = 0, 1, 2, . . . .
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In the next two results we assume that each one of the operators Ai satisfies

Ki ⊂ domAi and that f : X → R. From the range condition (7.1) we get that

domAf
i = (domAi) ∩ (int domf) = domAi because in our case int domf = X.

From Proposition 7(i) we know that F
(
Af

i

)
= A−1i (0∗). So, if we take Ti = Af

i in

Theorems 1 and 2, then we get two different algorithms for finding common zeroes

of finitely many BISM operators.

Corollary 7. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X such that K :=
⋂N

i=1Ki. Let Ai : X → 2X
∗
, i = 1, 2, . . . , N ,

be N BISM operators such that Ki ⊂ domAi and Z :=
⋂N

i=1A
−1
i (0∗) 6= ∅. Let

f : X → R be a Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Assume that the range condition (7.1)

is satisfied for each Ai. Then, for each x0 ∈ K, there are sequences {xn}n∈N which

satisfy (7.2) (with Ti = Af
i ) and each such sequence {xn}n∈N converges strongly to

projfZ(x0) as n→ +∞.

Corollary 8. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X such that K :=
⋂N

i=1Ki. Let Ai : X → 2X
∗
, i = 1, 2, . . . , N ,

be N BISM operators such that Ki ⊂ domAi and Z :=
⋂N

i=1A
−1
i (0∗) 6= ∅. Let

f : X → R be a Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Assume that the range condition (7.1)

is satisfied for each Ai. Then, for each x0 ∈ K, there are sequences {xn}n∈N which

satisfy (7.3) (with Ti = Af
i ) and each such sequence {xn}n∈N converges strongly to

projfZ(x0) as n→ +∞.

8. Variational Inequalities

Let A : X → X∗ be a BISM operator and let K be a nonempty, closed and

convex subset of domA. The variational inequality problem corresponding to A is

to find x̄ ∈ K such that

(8.1) 〈Ax̄, y − x̄〉 ≥ 0 ∀y ∈ K.
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The set of solutions of (8.1) is denoted by V I (A,K).

In the following result we point out the connection between the fixed point set

of projfK ◦Af and the solution set of the variational inequality corresponding to the

BISM operator A.

Proposition 8. Let f : X → (−∞,+∞] be a Legendre and totally convex

function which satisfies the range condition (7.1). Let A : X → X∗ be a BISM

operator. If K is a nonempty, closed and convex subset of domA
⋂

int dom f ,

then V I(K,A) = F (projfK ◦Af ).

Proof. From Proposition 4 (ii) we obtain that x̄ = projfK
(
Af x̄

)
if and only if

〈
∇f

(
Af x̄

)
−∇f (x̄) , x̄− y

〉
≥ 0

for all y ∈ K, and this is equivalent to

〈(∇f (x̄)−Ax̄)−∇f (x̄) , x̄− y〉 ≥ 0

for each y ∈ K, that is,

〈−Ax̄, x̄− y〉 ≥ 0

for any y ∈ K, which is equivalent to x̄ ∈ V I(K,A), as claimed. �

So, if the Legendre function f is uniformly Fréchet differentiable and bounded

on bounded subsets of X, then the anti-resolvent Af is a single-valued [12, Lemma

3.5(d), p.2109] BSNE operator (see Section 2.5 and [12, Lemma 3.5(c), p.2109])

which satisfies F
(
Af
)

= F̂
(
Af
)

(cf. [24, Lemma 1.3.2]). Since the Bregman

projection projfK is a BFNE operator, it is also a BSNE operator (see Section 2.5)

which satisfies F
(

projfK

)
= F̂

(
projfk

)
. It now follows from [21, Lemma 2, p.

314] that projfK ◦ Af is also a BSNE operator which satisfies F
(

projfK ◦Af
)

=

F̂
(

projfK ◦Af
)

(see also Section 2.5 for more details). From Proposition 8 we

know that F
(

projfK ◦Af
)

= V I(K,A). In this case we also employ Algorithms

(7.2) and (7.3). Hence, if we take Ti = projfKi
◦ Af

i in Theorems 1 and 2, then

we get two different algorithms for finding a solution to the (common) variational

inequality problem corresponding to finitely many BISM operators.
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Corollary 9. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X such that K :=
⋂N

i=1Ki. Let Ai : X → X∗, i = 1, 2, . . . , N , be

N BISM operators such that Ki ⊂ domAi and V :=
⋂N

i=1 V I(Ki, Ai) 6= ∅. Let

f : X → R be a Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Assume that the range condition (7.1)

is satisfied for each Ai. Then, for each x0 ∈ K, there are sequences {xn}n∈N which

satisfy (7.2) (with Ti = projfKi
◦ Af

i ) and each such sequence {xn}n∈N converges

strongly to projfV (x0) as n→ +∞.

Corollary 10. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X such that K :=
⋂N

i=1Ki. Let Ai : X → X∗, i = 1, 2, . . . , N , be

N BISM operators such that Ki ⊂ domAi and V :=
⋂N

i=1 V I(Ki, Ai) 6= ∅. Let

f : X → R be a Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Assume that the range condition (7.1)

is satisfied for each Ai. Then, for each x0 ∈ K, there are sequences {xn}n∈N which

satisfy (7.3) (with Ti = projfKi
◦ Af

i ) and each such sequence {xn}n∈N converges

strongly to projfV (x0) as n→ +∞.

Remark 1. In both Sections 7 and 8 we can still allow for possible com-

putational errors if we assume that there exists ε > 0 such that
∥∥ein∥∥ < ε for

each i = 1, 2, . . . , N and for all n ∈ N, and that the relevant operators are de-

fined not only on K, but also on Kε := {x ∈ X : d(x,K) < ε}, where d(x,K) :=

inf {‖x− y‖ : y ∈ K}.

9. Mixed Problems

There are many papers which propose algorithms for finding common solutions

to mixed problems, for example, common solutions to two fixed point problems

and, say, an equilibrium problem. If we combine Sections 4–6, then we can find

common solutions to any finite number of problems such as fixed point problems,

CFP, finding zeroes of maximal monotone operators and EP.
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For instance, if we wish to find a common solution to two fixed point problems

and an equilibrium problem, then we define the operators in Theorems 1 and 2 as

follows: T1 = T , T2 = S and T3 = Resfg , where T and S are BSNE operators which

satisfy F (Ti) = F̂ (Ti), i = 1, 2, and g : C × C → R is a bifunction that satisfies

conditions (C1)–(C4). If

F = F (T )
⋂
F (S)

⋂
EP (g) 6= ∅,

then Algorithms (3.1) and (3.11) generate sequences {xn}n∈N which converge strongly

to projfF (x0) as n→ +∞.
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