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ABSTRACT. We study the existence and approximation of fixed points of Breg-

man firmly nonexpansive mappings in reflexive Banach spaces.

1. Introduction

In this paper X denotes a real reflexive Banach space with norm ||-|| and X*
stands for the (topological) dual of X endowed with the induced norm |-||,. We
denote the value of the functional £ € X* at € X by (£, x). An operator A: X —

2X" is said to be monotone if for any z,y € dom A, we have

€Az andne dy = ({—nax—y)>0.

(Recall that the set dom A = {z € X : Az # &} is called the effective domain of
such an operator A.) A monotone operator A is said to be mazimal if graph A, the
graph of A, is not a proper subset of the graph of any other monotone operator. In
this paper f: X — (—o00,400] is always a proper, lower semicontinuous and convex
function, and f* : X* — (—o0, +0o0] is the Fenchel conjugate of f. A sublevel set
of f is a set of the form leV’; (r)={xe X : f(z)<r} for some r € R. We say
that f is positively homogeneous of degree a € R if f (tx) = t*f (z) for all z € X
and ¢t > 0. The set of nonnegative integers will be denoted by N.
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Let C' be a nonempty, closed and convex subset of a Hilbert space H. Then
a mapping T : C' — C is said to be nonexpansive if |Tx — Ty|| < ||z — y|| for all
xz,y € C. It turns out that nonexpansive fixed point theory can be applied to the

problem of finding a point z € H satisfying
0€ Az,

where A : H — 2" is a maximal monotone operator. A key tool for solving this
problem is the classical resolvent of A which is defined by R4 = (I + A)~'. This

resolvent is not only nonexpansive but also a firmly nonerpansive mapping, that is,
2
[Raz — Ray|” < (Raz — Ray,z — y)

for all x,y € H (the resolvent R 4 has full domain H when A is maximal monotone).
See [22], [11] and [17] for more details. We also have F(R4) = A™!(0), where
F(R,) stands for the set of fixed points of R4. Thus the problem of finding zeroes
of maximal monotone operators in Hilbert space is reduced to that of finding fixed
points of firmly nonexpansive mappings. In particular, if A is the subdifferential

Jf of f, then R4 is given by
. 1 2
Rz = axgmin,e ;3 £(0) + 3 1y ol

for all x € H [23]. In this case, F(Ra) ={z € H | f(z) =infyecnm f(y)}.

The notion of a firmly nonexpansive mapping was extended to Banach spaces in
[10] and [11]; see also [17]. However, in contrast with the case of Hilbert space, the
resolvent of a maximal monotone operator is not, in general, even a nonexpansive
mapping in the case of Banach spaces. Many other types of resolvents have been
studied. For example, Alber [1], and Kohsaka and Takahashi [19, 20, 21] initiated

the study of a generalized resolvent based on the duality mapping J.



BREGMAN FIRMLY NONEXPANSIVE MAPPINGS 3

Recently, Kohsaka and Takahashi [20, 21] have introduced the class of map-

pings of firmly nonexpansive type. Such a mapping T satisfies

(JTz — JTy,Tx —Ty) < (Jr — Jy,Tx —Ty)

for all z,y € C, where J is the duality mapping of the Banach space X, and C
is a nonempty, closed and convex subset of X. It is obvious that if we return to
Hilbert space, then J = I and the definitions of a firmly nonexpansive mapping
and a mapping of firmly nonexpansive type coincide. Kohsaka and Takahashi prove
that the generalized resolvent is a mapping of firmly nonexpansive type when X is
a smooth, strictly convex and reflexive Banach space.

Even earlier, Bauschke, Borwein and Combettes [4] generalized the class of
firmly nonexpansive mappings on smooth, strictly convex and reflexive Banach
spaces to the case of general reflexive Banach spaces. Their mappings do not
depend on the duality mapping J, but on the gradient V f of a well chosen function
f. They call those mappings D y-firmly nonexpansive mappings. In this paper we
call them Bregman firmly nonexpansive mappings (BFNE in short) with respect to
the function f. Bauschke, Borwein and Combettes prove that the resolvent based
on the gradient V f of a well chosen function f is a BFNE mapping.

Our aim in this paper is to study the existence and approximation of fixed
points of BFNE mappings in reflexive Banach spaces. In Section 2 we present several
preliminary definitions and results. The third section is devoted to two properties of
BFNE mappings. In the fourth section we prove two existence theorems (Theorems
1 and 2) regarding fixed points of a single BFNE mappings, as well as a common
fixed point theorem (Theorem 3). Our approximation result is proved in Section 5
(Theorem 4). In the sixth and last section we present two consequences of Theorem

4.
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2. Preliminaries

2.1. Some facts about Legendre functions. Legendre functions mapping
a general Banach space X into (—oo,+oco] are defined in [3]. According to [3,
Theorems 5.4 and 5.6], since X reflexive, the function f is Legendre if and only if
it satisfies the following two conditions:

(L1) The interior of the domain of f, int dom f, is nonempty, f is Gateaux

differentiable (see below) on int dom f, and
dom V f = int dom f;

(L2) The interior of the domain of f*, int dom f*, is nonempty, f* is Gateaux

differentiable on int dom f*, and
dom V f* = int dom f*.

Since X is reflexive, we always have (9f) " = df* (see [7, p. 83]). This fact,

when combined with conditions (L1) and (L2), implies the following equalities:
V=V,

ranVf = dom Vf* = intdom f~*

and

ran Vf* = dom Vf = int dom f.

Also, conditions (L1) and (L2), in conjunction with [3, Theorem 5.4], imply that the
functions f and f* are strictly convex on the interior of their respective domains.
Several interesting examples of Legendre functions are presented in [2] and [3].
Among them are the functions 1 ||-|* with s € (1,00), where the Banach space X
is smooth and strictly convex and, in particular, a Hilbert space.
2.2. Two properties of gradients. For any convex f : X — (—o0, +00] we
denote by dom f the set {x € X : f(x) < +oo}. For any x € intdom f and y € X,

we denote by f°(z,y) the right-hand derivative of f at x in the direction y, that
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is,

o o f@tty) — f(2)
[z, y) = Jim , :

The function f is said to be Gdteaux differentiable at x if lim; ¢ (f(z + ty) — f(x)) /t
exists for any y. The function f is said to be Fréchet differentiable at x if this limit

is attained uniformly in ||y|| = 1. Finally, f is said to be uniformly Fréchet differen-

tiable on a subset E of X if the limit is attained uniformly for € E and |ly|| = 1.

We will need the following result.

Proposition 1 (¢f. [27, Proposition 2.1, p. 474]). If f: X — R is uniformly
Fréchet differentiable and bounded on bounded subsets of X, then V f is uniformly
continuous on bounded subsets of X from the strong topology of X to the strong
topology of X*.

Proposition 2. If f: X — R is a positively homogeneous function of degree
a € R, then V f is a positively homogeneous function of degree o — 1.

Proof. By the definition of the gradient we have

[ (tz + hy) — f (tx) [ (tz + thy) — f (tx)

Vi (tr) = }1L1—>mo h - }1nl—>mo th
e fathy) —f@) e
= h =V
for any x € X and all ¢t > 0. (Il

2.3. Some facts about totally convex functions. Let f: X — (—o0,+0o0]
be a convex and Géateaux differentiable function. The function Df : dom f x

int dom f — [0, 4+00], defined by

(2.1) Dy(y,z) = f(y) — f(z) = (Vf(2),y —x),

is called the Bregman distance with respect to f (cf. [16]). With the function f we

associate the function W/ : X* x X — [0, +o0] defined by

W/ z) = f(z) — (& z) + (6.

It is clear that W/ (V f(z),y) = D;(y,x) for any =,y € intdom f.
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The Bregman distance has the following important properties, called the three

point identity: for any x,y, z € int dom f,

(2.2) Dy(z,y) + Ds(y,2) — Dy(x,2) = (Vf(2) = Vf(y),x —y),

and the four point identity: for any z,y, z,w € intdom f,
(2.3)  D¢(y,z) — Ds(y,2) — Dy(w,z) + Dg(w,z) = (Vf(2) = Vf(z),y —w).

Recall that, according to [13, Section 1.2, p. 17] (see also [12]), the function f
is called totally convex at a point x € intdom f if its modulus of total convexity at

x, that is, the function vy : int dom f x [0, +00) — [0, +00], defined by
vf(z,t) :=inf {Dy(y,z) : y €dom f, |ly—a| =t},

is positive whenever ¢ > 0. The function f is called totally convexr when it is totally
convex at every point z € intdom f. Examples of totally convex functions can be
found, for instance, in [13, 15]. The next proposition turns out to be very useful
in the proof of Theorem 4 below.

Proposition 3 (c¢f. [28, Proposition 2.2, p. 3]). If x € intdom f, then the
following statements are equivalent:

(i) The function f is totally convex at x;

(ii) For any sequence {yn},cn C dom f,

lim Dy (yn, @) = 0= Tim_|lyn — 2] =0.

n—-+o0o

2.4. Some facts about Bregman firmly nonexpansive mappings. Let
C be a nonempty, closed and convex subset of int dom f. We say that a mapping
T :C — C is a Bregman firmly nonexpansive mapping with respect to f (BFNE

with respect to f for short) if

(2.4) (Vf(Tz) =V f(Ty),Te—Ty) <(Vf(z) - Vf(y),Tz—Ty)
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for all z,y € C. Tt is clear from the definition of the Bregman distance (2.1) that
(2.4) is equivalent to
(2.5)

Dy (Tz,Ty) + Dy (Ty, Tx) + Dy (Tz,z) + Dy (Ty,y) < Dy (Tx,y) + Dy (Ty, ).

Bauschke, Borwein and Combettes [4, Prop. 3.8, p. 604] prove that the resol-
vent Resfc4 =(Vf+ A)f1 o Vf is a BEFNE mapping with respect to f whenever A
is a monotone mapping.

We remark in passing that an analogous result for very general resolvents can
be found in a recent paper by Bauschke, Wang and Yao [5].

2.5. The resolvent of A relative to f. Let A: X — 2% be an operator

and assume that f is Gateaux differentiable. The operator
Prt£ = (Vf+A) " X —2%

is called the protoresolvent of A, or, more precisely, the protoresolvent of A relative
to f. This allows us to define the resolvent of A, or, more precisely, the resolvent of
A relative to f, introduced and studied in [4], as the operator Resff1 : X — 2% given
by Resff1 = Prtf; oV f. This operator is single-valued when A is monotone and f is
strictly convex on int dom f. If A = 0¢, where ¢ is a proper, lower semicontinuous

and convex function, then we denote
Proxi = Prtgw and proxf; = Resgw.

If C is a nonempty, closed and convex subset of X, then the indicator function ¢¢
of C, that is, the function
0 ifxeC

Lo (x) =
+oo ifx ¢ C,

is proper, convex and lower semicontinuous, and therefore Jvc exists and is a maxi-

mal monotone operator with domain C. The operator prox/ . is called the Bregman
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projection onto C' with respect to f (¢f. [8]) and we denote it by projé. Note that
if X is a Hilbert space and f(z) = 3 []|?, then the Bregman projection of & onto
C, i.e., argmin {||y — z|| : y € C}, is the metric projection Pc.

Recall that the Bregman projection of z onto the nonempty, closed and convex

set K C dom f is the necessarily unique vector proij(a:) € K satisfying

Dy (projf (@), z) = inf {Dy (y,2) 1y € K}.

Similarly to the metric projection in Hilbert spaces, Bregman projections with
respect to totally convex and differentiable functions have variational characteriza-
tions.

Proposition 4 (c¢f. [15, Corollary 4.4, p. 23]). Suppose that f is totally convex
on intdom f. Let x € intdom f and let K C intdom f be a nonempty, closed and
convex set. If & € K, then the following conditions are equivalent:

(i) The vector I is the Bregman projection of x onto K with respect to f;

(1i) The vector I is the unique solution of the variational inequality
(Vf(x)=Vf(2),z—y) =20, VyeK;
(1ii) The vector & is the unique solution of the inequality
Dy (y,z) + Dy (z,2) < Dy (y,x),  VyeK.

3. Two properties of Bregman firmly nonexpansive mappings

In this section we present two properties of the fixed point set F(T') of a BFNE
mapping. We first show that F(T) is closed and convex for any BFNE mapping
with respect to f when f is also Gateaux differentiable.

Lemma 1. Let f : X — (—o00,4+00] be a Legendre function. Let C be a
nonempty, closed and convexr subset of intdom f, and let T : C — C be a BFNE

mapping with respect to f. Then F(T) is closed and convez.
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Proof. It is sufficient to consider the case where F(T) is nonempty. From (2.5)
it follows that

Dy (z,Ty) + Dy (Ty,y) < Dy (x,y)

for any x € F(T) and y € C. A fortiori,
(3.1) Dy (x,Ty) < Dy (z,y)

for any x € F(T) and y € C.

We first show that F(T) is closed. To this end, let {z,} be a sequence in

neN

F(T) such that =, — Z. From (3.1) it follows that

for any n € N. Since f is continuous at £ € C C intdom f and x,, — Z, it follows

that
i Dy (2, T2) = N[ (@) = f (T2) ~ (V] (T%) 2 — )
=[f(x) - f(Tz)—(Vf(Tz),z - T%)| = Dy (z,T2)
and

lim Dy (Tp,Z) = Dy (z,z)=0.

n—+oo
Thus (3.2) implies that Dy (Z,7%) = 0 and therefore it follows from [3, Lemma
7.3(vi), p. 642] that z = TZ. Hence T € F(T') and this means that F(T) is closed,
as claimed.

Next we show that F(T) is convex. For any z,y € F(T) and t € (0,1), put

z =tx+ (1 —1t)y. We have to show that Tz = z. Indeed, from the definition of the



10 SIMEON REICH AND SHOHAM SABACH

Bregman distance and (3.1) it follows that

Dy(2,Tz) = f (2) = f (T2) = (Vf (T2),2 = Tz)
=[(2) = f(T2) = (Vf(Tz),te+ (1 -t)y - Tz)
= [ (2) +tDp(x,Tz) + (1 =) Dy(y, Tz) — tf(x) = (1 = 1) f(y)
< f(2) +tDg(z,2) + (1 =) Ds(y, 2) = tf(z) = (L =) f(y)

=(Vf(z),z—te—(1—t)y) =0.

Again from [3, Lemma 7.3(vi), p. 642] it follows that Tz = z. Therefore F(T') is
also convex, as asserted. [l

Next we show that if f is a Legendre function which is uniformly Fréchet
differentiable on bounded subsets of X, and T is a BENE mapping with respect to
f, then the set of fixed points of T coincides with the set of its asymptotic fixed
points. Recall that a point u € C' is said to be an asymptotic fized point [26] of T
if there exists a sequence {xn}neN in C such that z,, — v and z,, — Tz, — 0. We
denote the set of asymptotic fixed points of T by F (7).

Lemma 2. Let f: X — R be a Legendre function which is uniformly Fréchet
differentiable and bounded on bounded subsets of X. Let C be a nonempty, closed
and convez subset of X and let T : C — C be a BFNE mapping with respect to f.
Then F(T) = F(T).

Proof. The inclusion F(T) C F(T) is obvious. To show that F(T) > F(T),
let u € F(T) be given. Then we have a sequence {Zn},en in C such that z, — u
and x,, — Tz, — 0. Since f is uniformly Fréchet differentiable on bounded subsets
of X, Vf is uniformly continuous on bounded subsets of X (see Proposition 1).
Hence (Vf(Txy) — Vf(xy)) — 0 as n — +o0o and therefore
(3.3) lim (Vf(Txz,)—Vf(zn),y)=0

n— 00
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for any y € X, and

(3.4) lim (Vf(Tz,)—Vf(z,),z,) =0,

n—-+oo
because {Z, },, <y is bounded. On the other hand, since 7" is a BFNE mapping with
respect to f, we have
(3.5) 0<Dj(Tzy,u) — Dy (Txy,Tu) + Df (Tu,x,) — Dy (Tu, Txy,) .

From the three point identity (2.2) and (3.5) we now obtain

Dy (u, Tu) = Dy (T, Tu) — Dy (Twn,u) — (Vf(u) — Vf(Tu), Tz, —u)
< Dy (Tu,x,) — Dy (Tu, T,) — (Vf(u) = Vf(Tu), T, — u)
= [f(Tu) = f(zn) = (Vf(@n), Tu — z)] -

[f(Tw) = f(Txn) = (Vf(Tn), Tu— Txy)]

—(Vf(u) = Vf(Tu), Tz, —u)
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= f(Txn) — f(@) — (Vf(xn), Tu —2,) + (Vf(Tz,), Tu — Tx,,)
— (Vf(u) = Vf(Tu), Tz, — u)
= —[f(@n) = f(T2n) = (Vf(T@n), 20 — Taa)] = (Vf(Tan), 20 — Tap)
—(Vf(zn), Tu— ) + (Vf(Txy), Tu — Txy)
—(Vf(w) = Vf(Tu), Tz, — u)
— —Df (0, Txn) — (V(T20), @0 — Tn) — (Vf(20), Tu — 2,,)
+ (Vf(Txy), Tu—Tax,) — (Vf(u) — V(Tu), Tz, —u)
< = (Vf(Tn), an — Ton) — (Vf(20), Tu — o)
+ (Vf(Txy), Tu—Ta,) — (Vf(u) — Vf(Tu), Tz, —u)
= (Vf(xn) = VI(Tn), a0 — Tu) — (Vf(u) — Vf(Tu), Tz, — 2,)
—(Vf(w) = Vf(Tu),zn —u).
From (3.3), (3.4), and the hypotheses z, — u and z, — Tz, — 0 we get that

Dy (u,Tu) < 0. Consequently, Dy (u,Tu) = 0 and from [3, Lemma 7.3(vi), p. 642]

it follows that Tw = u. That is, u € F (T'), as required. O

4. Existence of Fixed Points

In this section we obtain necessary and sufficient conditions for BFNE mappings
to have a (common) fixed point in general reflexive Banach spaces. We begin with
a theorem for a single BFNE mapping. This result can be proved by combining
Theorem 3.3 and Lemma 7.3(viii) of [3] with Proposition 4.1(v)(a) of [4]. However,
we include a more detailed version of the proof for the readers convenience.

Theorem 1. Let f: X — (—oo,+00] be a Legendre function such that V f*
is bounded on bounded subsets of intdom f*. Let C be a nonempty, closed and
convex subset of intdom f and let T : C — C be a BFNE mapping with respect to
[ If F(T) is nonempty, then {T"y}, . is bounded for each y € C.
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Proof. We know by (3.1) that
Dy (z,Ty) < Dy (,y)
for any x € F(T) and y € C. Therefore
Dy (z,T"y) < Dy (2,y)

for any « € F(T) and y € C. This inequality shows that the nonnegative sequence
{Dy (z,T"y)}, o is bounded. Let M be an upper bound of {Dy (z,T"y)}, -

Then
fa) = (VT y),x)+ f*(VF(T"y) = W (Vf(T"y),x) = Dy (z,T"y) < M.

This implies that the sequence {Vf(T™y)}, oy is contained in the sublevel set
leV'é (M — f (z)) of the function ¥ = f* — (-,z). Since the function f* is proper
and lower semicontinuous, an application of the Moreau-Rockafellar Theorem [29,
Theorem 7A] shows that ¢ = f* — (-,x) is coercive. Consequently, all sublevel
sets of ¢ are bounded. Hence, the sequence {V f (T™y)}, oy is bounded. Since the
function f* is bounded on bounded subsets of X by hypothesis, the gradient V f*
is also bounded on bounded subsets of X [13, Proposition 1.1.11, p. 17]. Thus the
sequence Ty = Vf* (Vf(T"y)), n € N, is bounded too, as claimed. O

For a mapping T : C — C, let S,,(2) :=1/n> "} _, T*z for all z € C.

Theorem 2. Let f : X — (—o00,400] be a Legendre function. Let C be a
nonempty, closed and convex subset of intdom f and let T : C — C be a BFNE
mapping with respect to f. If there exists y € C such that ||.S,(y)|| - oo as n — oo,
then F'(T) is nonempty.

Proof. Suppose that there exists y € C such that ||.S,,(y)|| - 0o as n — oo.

Let x € C, k € Nand n € N be given. Since T is BFNE with respect to f, we have

(4.1) Dy (T"*'y,Tz) + Dy (Tz, T"'y) < Dy (Tz, T*y) + Dy (T 'y, 2).
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From the three point identity (2.2) we get that

Dy (T**'y,Tz) + Dy (T2, T**'y) < Dy (Tz,T"y) + Dy (T* 'y, Tx)
+ Dy (Tx,x)

+(Vf(Tz) - Vf(z), T" "y —Tz).
This implies that

0 < Dy (Tz,x) + Dy (T, Ty) — Dy (Tz, T"y)

+(Vf(Tz) - Vf(z), Ty —Tz).
Summing these inequalities with respect to £k =0,1,...,n — 1, we now obtain
0<nDy(Tz,z)+ Dy (Tz,y) — Dy (Tz, T"y)
n—1
+ <Vf(Ta:) - Vf(x), Z THHy — nTac> .
k=0
Dividing this inequality by n, we have

(4.2) 0.< Dy (T2,3) + - [Dy (T,y) — Dy (T, T")]

+(Vf(Tz) = Vf(x),S(y) — Tx)
and
(43)  0<Dy(Taa)+ =Dy (To,y) + (VF(T2) ~ V(). 5uy) ~ T

Since ||Sy,(y)|| - oo asn — oo by assumption, there exists a subsequence { Sy, (¥)},cn

of {Sn(y)},cy such that S, (y) = u € C. Letting ny, — 400 in (4.3), we obtain

(4.4) 0<Dy(Tz,z)+ (Vf(Tz) - Vf(r),u—Tz).
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Setting = u in (4.4), we get from the four point identity (2.3) that

0 < Dy (Tu,u) +(Vf(Tu) — Vf(u),u —Tu)
= D¢ (Tu,u) + Df (u,u) — Dy (u,Tu) — Dy (Tu,u) + Dy (Tu, Tu)

=—Dy(u,Tu).

Hence Dy (u,Tu) < 0 and so Dy (u,Tu) = 0. It now follows from [3, Lemma
7.3(vi), p. 642] that Tu = u. That is, u € F(T). This completes the proof of
Theorem 2. (]

Remark 1. As can be seen from the proof, Theorem 2 remains true for those
mappings which only satisfy (4.1). In the special case where f = 1/2 ||H2, such
mappings are called non-spreading. For more information see [21].

Remark 2. We remark in passing that we still do not know if the analog of
Theorem 2 for nonexpansive mappings holds outside Hilbert space (¢f. [24, Remark
2, p. 275)).

Corollary 1. Let f: X — (—o00,+400] be a Legendre function. FEvery non-
empty, bounded, closed and convex subset of intdom f has the fixed point property
for BFNE self-mappings with respect to f.

As in [21], Corollary 1, when combined with Lemma 1, yields the following
result.

Theorem 3. Let f : X — (—o0,+0o0] be a Legendre function. Let C be

a nonempty, bounded, closed and convex subset of intdom f. Let {T,} be a

a€cA
commutative family of BFNE mappings with respect to f from C into itself. Then

the family {Tu} has a common fized point.

a€cA

5. Approximation of Fixed Points

In this section we prove a strong convergence theorem of Browder’s type for
BFNE mappings with respect to a well chosen function f.
Theorem 4. Let f: X — R be a Legendre, totally convex function which

is positively homogeneous of degree o > 1, uniformly Fréchet differentiable and
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bounded on bounded subsets of X. Let C be a nonempty, bounded, closed and
conver subset of X with 0 € C, and let T be a BENFE self-mapping with respect to
f- Then the following two assertions hold:

(i) For each t € (0,1), there exists a unique us € C satisfying uy = tTuy;

(ii) The net {“t}te(o,l) converges strongly to projé(T)(Vf* (0)) ast — 1.

Proof. (i) Fix t € (0,1) and let S; be the mapping defined by S; = ¢T'. Since
0 € C and C is convex, S; is a mapping from C into itself. We next show that S;
is a BFNE mapping with respect to f. Indeed, if z,y € C, then, since T is BENE

with respect to f, it follows from Proposition 2 that
(Vf (Siz) = V[ (Sw), Sew — Spy) =t (V[ (Tx) = V[ (Ty), Tx = Ty)
St (Vf(2) = Vf(y), Te—Ty)
(5.1) =tV (2) = VI (y), Sex — Sty)
<(Vf(z) = V[ (y), Sz — Swy).
Thus S; is also BFNE with respect to f. Since C is bounded, it follows from
Corollary 1 that S; has a fixed point. We next show that F'(S;) consists of exactly
one point. If u,u’ € F(S;), then it follows from (5.1) that
(5.2) (Vfu) = Vf@),u—u)=(Vf(Swu)—Vf(Sw'),Su— Su')
<tV (u) = Vf (u'), Seu — Sp)

— (T f () - VF (W) u— ).
By (5.2) and the monotonicity of V f, we have
(Vf(u) = Vf@),u-u)=0.

Since f is Legendre, V[ is strictly monotone and therefore v = u'. Thus there

exists a unique u; € C such that u; = Syu;.
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(ii) Let {t,},cyn be a sequence in (0,1) such that ¢, — 17 as n — +oo. Put
Zn = ug, for all n € N. By Lemma 1 and Theorem 2, F/(T') is nonempty, closed and
convex. Thus the Bregman projection projé(T) is well defined. In order to show
that u; — projé(T)(Vf* (0)), it is sufficient to show that x, — proj{:(T)(Vf* (0)).
Since C'is bounded, there is a subsequence {y, }, <y of {Zn }, cn such that z,,, — v.
By the definition of x,, we have ||z, — Tz,| = (1 — t,) || Tz,| for all n € N. So,
we have z,, — T, — 0 and hence v € F(T)). Lemma 2 now implies that v € F(T).
We next show that z,, — v. Let y € F(T) be given and fix n € N. Then, since T

is BENE with respect to f, we have
(Vf(Txyn) =V f(Ty), Tey = Ty) <(Vf(xn) = Vf(y),Ten —Ty).

That is,
0<(Vf(zn)—Vf(Txy), Ty —y).

Since

Vi(xn) = Vf(Tx,) =Vf({t,Tx,) —Vf(Txy)

=t (Tz,) = Vf(Tx,) = (2 = 1)V (Tz,),

n

we have

This yields
and

(5-4) (VW) =V (Tzn),y—Tan) < (Vf(y),y — Tan).
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Since x,, — v and x,, — Tx,, — 0, it follows that T'z,,, — v. Hence from (5.4)

we obtain that

(55) lim sup <Vf (y) - Vf (Tmnk) Y = Txnk> < lim sup <Vf (y) Y — Tmnk>
k——+oco k——+o0
=(Vf(y)y—v).

Substituting y = v in (5.5), we get

0 <limsup(Vf(v) = Vf(Tzy,),v—Ta,,) <0.

k—+4o00
Thus
Jim (V) =Vf(Tzn,),v—Tz,,)=0.
Since

Dy (v,Txy,) + Df (Tzp,,v) =(Vf () = Vf(Tzy,),v—Tz,,)
it follows that

kEI-il:loo Dy (v, Txy,) = kll»I-il:loo D¢ (Txy,,v) =0.

Proposition 3 now implies that 7'z, — v. Finally, we claim that v = proj{;(T) (Vf*(0)).
Since V f is norm-to-weak* continuous on bounded subsets, it follows that V f (Tx,, ) —

Vf (v). Setting n := nj and letting kK — 400 in (5.3), we obtain
0<(=Vf(v),v=-y)
for any y € F(T'). Hence
0 <(VF(VI(0) = Vf(v),v-y)

for any y € F(T). Thus Proposition 4 implies that v = projé(T)(Vf* (0)). Con-
sequently, the whole net {ut}te(o,l) converges strongly to proj{;(T)(Vf* (0)) as

t — 17. This completes the proof of Theorem 4. O
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Remark 3. Early analogs of Theorem 4 for nonexpansive mappings in Hilbert

and Banach spaces may be found in [9, 18, 25].

6. Consequences of the Approximation Result

We first specialize Theorem 4 to the case where f(z) = %||:r||2 and X is a
uniformly smooth and uniformly convex Banach space, and then apply it to the
problem of finding zeroes of a maximal monotone operator A : X — 2% . In this
case the function f(x) = %Hsz is Legendre (cf. [3, Lemma 6.2, p.24]) and uni-
formly Fréchet differentiable on bounded subsets of X. According to [14, Corollary
1(ii), p. 325], since X is uniformly convex, f is totally convex. Thus we obtain the
following corollary.

Corollary 2. Let X be a uniformly smooth and uniformly convex Banach
space. Let C' be a nonempty, bounded, closed and conver subset of X with 0 € C,
andlet T : C — C be of firmly nonexpansive type. Then the following two assertions
hold:

(i) For each t € (0,1), there exists a unique us € C satisfying uy = tTuy;

(ii) The net {“t}te(o,l) converges strongly to projé(T)(O) ast — 17.

As a matter of fact, this corollary is known to hold even when X is only a
smooth and uniformly convex Banach space [21].

As a direct consequence of Theorem 4 we get the following new result.

Corollary 3. Let f: X — R be a Legendre, totally conver function which
is positively homogeneous of degree o > 1, uniformly Fréchet differentiable and
bounded on bounded subsets of X. Let C be a nonempty, bounded, closed and
convex subset of X with 0 € C. Let X be positive real number and let A be a
monotone operator such that dom A ¢ C C (Vf)™' (ran (Vf + AA)). Then the
following two assertions hold:

(i) For each t € (0,1), there exists a unique uy € C salisfying uy = tRes{Aut;

(it) The net {ui}e g 1) converges strongly to projf;,l(o*)(Vf* (0)) ast — 1.
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Remark 4. Algorithm 5.5 in [6] provides another way for constructing Breg-

man projections onto the zero sets of maximal monotone operators.
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