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Abstract. We study the existence and approximation of �xed points of Breg-

man �rmly nonexpansive mappings in re�exive Banach spaces.

1. Introduction

In this paper X denotes a real re�exive Banach space with norm k�k and X�

stands for the (topological) dual of X endowed with the induced norm k�k�. We

denote the value of the functional � 2 X� at x 2 X by h�; xi. An operator A : X !

2X
�
is said to be monotone if for any x; y 2 dom A, we have

� 2 Ax and � 2 Ay =) h� � �; x� yi � 0:

(Recall that the set dom A = fx 2 X : Ax 6= ?g is called the e¤ective domain of

such an operator A.) A monotone operator A is said to be maximal if graph A, the

graph of A, is not a proper subset of the graph of any other monotone operator. In

this paper f : X ! (�1;+1] is always a proper, lower semicontinuous and convex

function, and f� : X� ! (�1;+1] is the Fenchel conjugate of f . A sublevel set

of f is a set of the form levf� (r) = fx 2 X : f (x) � rg for some r 2 R. We say

that f is positively homogeneous of degree � 2 R if f (tx) = t�f (x) for all x 2 X

and t > 0. The set of nonnegative integers will be denoted by N.
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Let C be a nonempty, closed and convex subset of a Hilbert space H. Then

a mapping T : C ! C is said to be nonexpansive if kTx� Tyk � kx� yk for all

x; y 2 C. It turns out that nonexpansive �xed point theory can be applied to the

problem of �nding a point z 2 H satisfying

0 2 Az;

where A : H ! 2H is a maximal monotone operator. A key tool for solving this

problem is the classical resolvent of A which is de�ned by RA = (I +A)
�1. This

resolvent is not only nonexpansive but also a �rmly nonexpansive mapping, that is,

kRAx�RAyk2 � hRAx�RAy; x� yi

for all x; y 2 H (the resolvent RA has full domain H when A is maximal monotone).

See [22], [11] and [17] for more details. We also have F (RA) = A�1 (0), where

F (RA) stands for the set of �xed points of RA. Thus the problem of �nding zeroes

of maximal monotone operators in Hilbert space is reduced to that of �nding �xed

points of �rmly nonexpansive mappings. In particular, if A is the subdi¤erential

@f of f , then RA is given by

RAx = argminy2H

�
f(y) +

1

2
ky � xk2

�
for all x 2 H [23]. In this case, F (RA) = fz 2 H j f(z) = infy2H f(y)g.

The notion of a �rmly nonexpansive mapping was extended to Banach spaces in

[10] and [11]; see also [17]. However, in contrast with the case of Hilbert space, the

resolvent of a maximal monotone operator is not, in general, even a nonexpansive

mapping in the case of Banach spaces. Many other types of resolvents have been

studied. For example, Alber [1], and Kohsaka and Takahashi [19, 20, 21] initiated

the study of a generalized resolvent based on the duality mapping J .
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Recently, Kohsaka and Takahashi [20, 21] have introduced the class of map-

pings of �rmly nonexpansive type. Such a mapping T satis�es

hJTx� JTy; Tx� Tyi � hJx� Jy; Tx� Tyi

for all x; y 2 C, where J is the duality mapping of the Banach space X, and C

is a nonempty, closed and convex subset of X. It is obvious that if we return to

Hilbert space, then J = I and the de�nitions of a �rmly nonexpansive mapping

and a mapping of �rmly nonexpansive type coincide. Kohsaka and Takahashi prove

that the generalized resolvent is a mapping of �rmly nonexpansive type when X is

a smooth, strictly convex and re�exive Banach space.

Even earlier, Bauschke, Borwein and Combettes [4] generalized the class of

�rmly nonexpansive mappings on smooth, strictly convex and re�exive Banach

spaces to the case of general re�exive Banach spaces. Their mappings do not

depend on the duality mapping J , but on the gradient rf of a well chosen function

f . They call those mappings Df -�rmly nonexpansive mappings. In this paper we

call them Bregman �rmly nonexpansive mappings (BFNE in short) with respect to

the function f . Bauschke, Borwein and Combettes prove that the resolvent based

on the gradient rf of a well chosen function f is a BFNE mapping.

Our aim in this paper is to study the existence and approximation of �xed

points of BFNEmappings in re�exive Banach spaces. In Section 2 we present several

preliminary de�nitions and results. The third section is devoted to two properties of

BFNE mappings. In the fourth section we prove two existence theorems (Theorems

1 and 2) regarding �xed points of a single BFNE mappings, as well as a common

�xed point theorem (Theorem 3). Our approximation result is proved in Section 5

(Theorem 4). In the sixth and last section we present two consequences of Theorem

4.
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2. Preliminaries

2.1. Some facts about Legendre functions. Legendre functions mapping

a general Banach space X into (�1;+1] are de�ned in [3]. According to [3,

Theorems 5.4 and 5.6], since X re�exive, the function f is Legendre if and only if

it satis�es the following two conditions:

(L1) The interior of the domain of f , int dom f , is nonempty, f is Gâteaux

di¤erentiable (see below) on int dom f , and

domrf = int dom f ;

(L2) The interior of the domain of f�, int dom f�, is nonempty, f� is Gâteaux

di¤erentiable on int dom f�, and

domrf� = int dom f�:

Since X is re�exive, we always have (@f)�1 = @f� (see [7, p. 83]). This fact,

when combined with conditions (L1) and (L2), implies the following equalities:

rf = (rf�)�1;

ranrf = dom rf� = int dom f�

and

ranrf� = dom rf = int dom f:

Also, conditions (L1) and (L2), in conjunction with [3, Theorem 5.4], imply that the

functions f and f� are strictly convex on the interior of their respective domains.

Several interesting examples of Legendre functions are presented in [2] and [3].

Among them are the functions 1
s k�k

s with s 2 (1;1), where the Banach space X

is smooth and strictly convex and, in particular, a Hilbert space.

2.2. Two properties of gradients. For any convex f : X ! (�1;+1] we

denote by dom f the set fx 2 X : f (x) < +1g. For any x 2 int dom f and y 2 X,

we denote by f�(x; y) the right-hand derivative of f at x in the direction y, that



BREGMAN FIRMLY NONEXPANSIVE MAPPINGS 5

is,

f�(x; y) := lim
t&0

f(x+ ty)� f(x)
t

:

The function f is said to beGâteaux di¤erentiable at x if limt!0 (f(x+ ty)� f(x)) =t

exists for any y. The function f is said to be Fréchet di¤erentiable at x if this limit

is attained uniformly in kyk = 1. Finally, f is said to be uniformly Fréchet di¤eren-

tiable on a subset E of X if the limit is attained uniformly for x 2 E and kyk = 1.

We will need the following result.

Proposition 1 (cf. [27, Proposition 2.1, p. 474]). If f : X ! R is uniformly

Fréchet di¤erentiable and bounded on bounded subsets of X, then rf is uniformly

continuous on bounded subsets of X from the strong topology of X to the strong

topology of X�.

Proposition 2. If f : X ! R is a positively homogeneous function of degree

� 2 R, then rf is a positively homogeneous function of degree �� 1.

Proof. By the de�nition of the gradient we have

rf (tx) = lim
h!0

f (tx+ hy)� f (tx)
h

= lim
h!0

f (tx+ thy)� f (tx)
th

=
t�

t
lim
h!0

f (x+ hy)� f (x)
h

= t��1rf (x)

for any x 2 X and all t > 0. �

2.3. Some facts about totally convex functions. Let f : X ! (�1;+1]

be a convex and Gâteaux di¤erentiable function. The function Df : dom f �

int dom f ! [0;+1], de�ned by

(2.1) Df (y; x) := f(y)� f(x)� hrf(x); y � xi ;

is called the Bregman distance with respect to f (cf. [16]). With the function f we

associate the function W f : X� �X ! [0;+1] de�ned by

W f (�; x) = f(x)� h�; xi+ f�(�):

It is clear that W f (rf(x); y) = Df (y; x) for any x; y 2 int dom f .
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The Bregman distance has the following important properties, called the three

point identity : for any x; y; z 2 int dom f ,

(2.2) Df (x; y) +Df (y; z)�Df (x; z) = hrf(z)�rf(y); x� yi ;

and the four point identity : for any x; y; z; w 2 int dom f ,

(2.3) Df (y; x)�Df (y; z)�Df (w; x) +Df (w; z) = hrf(z)�rf(x); y � wi :

Recall that, according to [13, Section 1.2, p. 17] (see also [12]), the function f

is called totally convex at a point x 2 int dom f if its modulus of total convexity at

x, that is, the function �f : int dom f � [0;+1)! [0;+1], de�ned by

�f (x; t) := inf fDf (y; x) : y 2 dom f; ky � xk = tg ;

is positive whenever t > 0. The function f is called totally convex when it is totally

convex at every point x 2 int dom f . Examples of totally convex functions can be

found, for instance, in [13, 15]. The next proposition turns out to be very useful

in the proof of Theorem 4 below.

Proposition 3 (cf. [28, Proposition 2.2, p. 3]). If x 2 int dom f , then the

following statements are equivalent:

(i) The function f is totally convex at x;

(ii) For any sequence fyngn2N � dom f ,

lim
n!+1

Df (yn; x) = 0) lim
n!+1

kyn � xk = 0:

2.4. Some facts about Bregman �rmly nonexpansive mappings. Let

C be a nonempty, closed and convex subset of int dom f . We say that a mapping

T : C ! C is a Bregman �rmly nonexpansive mapping with respect to f (BFNE

with respect to f for short) if

(2.4) hrf (Tx)�rf (Ty) ; Tx� Tyi � hrf (x)�rf (y) ; Tx� Tyi
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for all x; y 2 C. It is clear from the de�nition of the Bregman distance (2.1) that

(2.4) is equivalent to

(2.5)

Df (Tx; Ty) +Df (Ty; Tx) +Df (Tx; x) +Df (Ty; y) � Df (Tx; y) +Df (Ty; x) :

Bauschke, Borwein and Combettes [4, Prop. 3.8, p. 604] prove that the resol-

vent ResfA = (rf +A)
�1 � rf is a BFNE mapping with respect to f whenever A

is a monotone mapping.

We remark in passing that an analogous result for very general resolvents can

be found in a recent paper by Bauschke, Wang and Yao [5].

2.5. The resolvent of A relative to f . Let A : X ! 2X
�
be an operator

and assume that f is Gâteaux di¤erentiable. The operator

PrtfA := (rf +A)
�1
: X� ! 2X

is called the protoresolvent of A, or, more precisely, the protoresolvent of A relative

to f . This allows us to de�ne the resolvent of A, or, more precisely, the resolvent of

A relative to f , introduced and studied in [4], as the operator ResfA : X ! 2X given

by ResfA := Prt
f
A �rf . This operator is single-valued when A is monotone and f is

strictly convex on int dom f . If A = @', where ' is a proper, lower semicontinuous

and convex function, then we denote

Proxf' := Prt
f
@' and proxf' := Res

f
@':

If C is a nonempty, closed and convex subset of X, then the indicator function �C

of C, that is, the function

�C (x) :=

8><>: 0 if x 2 C

+1 if x =2 C;

is proper, convex and lower semicontinuous, and therefore @�C exists and is a maxi-

mal monotone operator with domain C. The operator proxf�C is called the Bregman
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projection onto C with respect to f (cf. [8]) and we denote it by projfC . Note that

if X is a Hilbert space and f(x) = 1
2 kxk

2, then the Bregman projection of x onto

C, i.e., argmin fky � xk : y 2 Cg, is the metric projection PC .

Recall that the Bregman projection of x onto the nonempty, closed and convex

set K � dom f is the necessarily unique vector projfK(x) 2 K satisfying

Df

�
projfK(x); x

�
= inf fDf (y; x) : y 2 Kg :

Similarly to the metric projection in Hilbert spaces, Bregman projections with

respect to totally convex and di¤erentiable functions have variational characteriza-

tions.

Proposition 4 (cf. [15, Corollary 4.4, p. 23]). Suppose that f is totally convex

on int dom f . Let x 2 int dom f and let K � int dom f be a nonempty, closed and

convex set. If x̂ 2 K, then the following conditions are equivalent :

(i) The vector x̂ is the Bregman projection of x onto K with respect to f ;

(ii) The vector x̂ is the unique solution of the variational inequality

hrf (x)�rf (z) ; z � yi � 0; 8y 2 K;

(iii) The vector x̂ is the unique solution of the inequality

Df (y; z) +Df (z; x) � Df (y; x) ; 8y 2 K:

3. Two properties of Bregman �rmly nonexpansive mappings

In this section we present two properties of the �xed point set F (T ) of a BFNE

mapping. We �rst show that F (T ) is closed and convex for any BFNE mapping

with respect to f when f is also Gâteaux di¤erentiable.

Lemma 1. Let f : X ! (�1;+1] be a Legendre function. Let C be a

nonempty, closed and convex subset of int dom f , and let T : C ! C be a BFNE

mapping with respect to f . Then F (T ) is closed and convex.
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Proof. It is su¢ cient to consider the case where F (T ) is nonempty. From (2.5)

it follows that

Df (x; Ty) +Df (Ty; y) � Df (x; y)

for any x 2 F (T ) and y 2 C. A fortiori,

(3.1) Df (x; Ty) � Df (x; y)

for any x 2 F (T ) and y 2 C.

We �rst show that F (T ) is closed. To this end, let fxngn2N be a sequence in

F (T ) such that xn ! �x. From (3.1) it follows that

(3.2) Df (xn; T �x) � Df (xn; �x)

for any n 2 N. Since f is continuous at �x 2 C � int dom f and xn ! �x, it follows

that

lim
n!+1

Df (xn; T �x) = lim
n!+1

[f (xn)� f (T �x)� hrf (T �x) ; xn � T �xi]

= [f (�x)� f (T �x)� hrf (T �x) ; �x� T �xi] = Df (�x; T �x)

and

lim
n!+1

Df (xn; �x) = Df (�x; �x) = 0:

Thus (3.2) implies that Df (�x; T �x) = 0 and therefore it follows from [3, Lemma

7.3(vi), p. 642] that �x = T �x. Hence �x 2 F (T ) and this means that F (T ) is closed,

as claimed.

Next we show that F (T ) is convex. For any x; y 2 F (T ) and t 2 (0; 1), put

z = tx+ (1� t)y. We have to show that Tz = z. Indeed, from the de�nition of the
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Bregman distance and (3.1) it follows that

Df (z; Tz) = f (z)� f (Tz)� hrf (Tz) ; z � Tzi

= f (z)� f (Tz)� hrf (Tz) ; tx+ (1� t)y � Tzi

= f (z) + tDf (x; Tz) + (1� t)Df (y; Tz)� tf(x)� (1� t)f(y)

� f (z) + tDf (x; z) + (1� t)Df (y; z)� tf(x)� (1� t)f(y)

= hrf (z) ; z � tx� (1� t)yi = 0:

Again from [3, Lemma 7.3(vi), p. 642] it follows that Tz = z. Therefore F (T ) is

also convex, as asserted. �

Next we show that if f is a Legendre function which is uniformly Fréchet

di¤erentiable on bounded subsets of X, and T is a BFNE mapping with respect to

f , then the set of �xed points of T coincides with the set of its asymptotic �xed

points. Recall that a point u 2 C is said to be an asymptotic �xed point [26] of T

if there exists a sequence fxngn2N in C such that xn * u and xn � Txn ! 0. We

denote the set of asymptotic �xed points of T by F̂ (T ).

Lemma 2. Let f : X ! R be a Legendre function which is uniformly Fréchet

di¤erentiable and bounded on bounded subsets of X. Let C be a nonempty, closed

and convex subset of X and let T : C ! C be a BFNE mapping with respect to f .

Then F (T ) = F̂ (T ).

Proof. The inclusion F (T ) � F̂ (T ) is obvious. To show that F (T ) � F̂ (T ),

let u 2 F̂ (T ) be given. Then we have a sequence fxngn2N in C such that xn * u

and xn � Txn ! 0. Since f is uniformly Fréchet di¤erentiable on bounded subsets

of X, rf is uniformly continuous on bounded subsets of X (see Proposition 1).

Hence (rf(Txn)�rf(xn))! 0 as n! +1 and therefore

(3.3) lim
n!+1

hrf(Txn)�rf(xn); yi = 0



BREGMAN FIRMLY NONEXPANSIVE MAPPINGS 11

for any y 2 X, and

(3.4) lim
n!+1

hrf(Txn)�rf(xn); xni = 0;

because fxngn2N is bounded. On the other hand, since T is a BFNE mapping with

respect to f , we have

(3.5) 0 � Df (Txn; u)�Df (Txn; Tu) +Df (Tu; xn)�Df (Tu; Txn) :

From the three point identity (2.2) and (3.5) we now obtain

Df (u; Tu) = Df (Txn; Tu)�Df (Txn; u)� hrf(u)�rf(Tu); Txn � ui

� Df (Tu; xn)�Df (Tu; Txn)� hrf(u)�rf(Tu); Txn � ui

= [f(Tu)� f(xn)� hrf(xn); Tu� xni]�

[f(Tu)� f(Txn)� hrf(Txn); Tu� Txni]

� hrf(u)�rf(Tu); Txn � ui
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= f(Txn)� f(xn)� hrf(xn); Tu� xni+ hrf(Txn); Tu� Txni

� hrf(u)�rf(Tu); Txn � ui

= � [f(xn)� f(Txn)� hrf(Txn); xn � Txni]� hrf(Txn); xn � Txni

� hrf(xn); Tu� xni+ hrf(Txn); Tu� Txni

� hrf(u)�rf(Tu); Txn � ui

= �Df (xn; Txn)� hrf(Txn); xn � Txni � hrf(xn); Tu� xni

+ hrf(Txn); Tu� Txni � hrf(u)�rf(Tu); Txn � ui

� � hrf(Txn); xn � Txni � hrf(xn); Tu� xni

+ hrf(Txn); Tu� Txni � hrf(u)�rf(Tu); Txn � ui

= hrf(xn)�rf(Txn); xn � Tui � hrf(u)�rf(Tu); Txn � xni

� hrf(u)�rf(Tu); xn � ui :

From (3.3), (3.4), and the hypotheses xn * u and xn � Txn ! 0 we get that

Df (u; Tu) � 0. Consequently, Df (u; Tu) = 0 and from [3, Lemma 7.3(vi), p. 642]

it follows that Tu = u. That is, u 2 F (T ), as required. �

4. Existence of Fixed Points

In this section we obtain necessary and su¢ cient conditions for BFNE mappings

to have a (common) �xed point in general re�exive Banach spaces. We begin with

a theorem for a single BFNE mapping. This result can be proved by combining

Theorem 3.3 and Lemma 7.3(viii) of [3] with Proposition 4.1(v)(a) of [4]. However,

we include a more detailed version of the proof for the readers convenience.

Theorem 1. Let f : X ! (�1;+1] be a Legendre function such that rf�

is bounded on bounded subsets of int dom f�. Let C be a nonempty, closed and

convex subset of int dom f and let T : C ! C be a BFNE mapping with respect to

f . If F (T ) is nonempty, then fTnygn2N is bounded for each y 2 C.
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Proof. We know by (3.1) that

Df (x; Ty) � Df (x; y)

for any x 2 F (T ) and y 2 C. Therefore

Df (x; T
ny) � Df (x; y)

for any x 2 F (T ) and y 2 C. This inequality shows that the nonnegative sequence

fDf (x; T
ny)gn2N is bounded. Let M be an upper bound of fDf (x; T

ny)gn2N.

Then

f (x)� hrf (Tny) ; xi+ f� (rf (Tny)) =W f (rf (Tny) ; x) = Df (x; T
ny) �M:

This implies that the sequence frf (Tny)gn2N is contained in the sublevel set

lev � (M � f (x)) of the function  = f� � h�; xi. Since the function f� is proper

and lower semicontinuous, an application of the Moreau-Rockafellar Theorem [29,

Theorem 7A] shows that  = f� � h�; xi is coercive. Consequently, all sublevel

sets of  are bounded. Hence, the sequence frf (Tny)gn2N is bounded. Since the

function f� is bounded on bounded subsets of X by hypothesis, the gradient rf�

is also bounded on bounded subsets of X [13, Proposition 1.1.11, p. 17]. Thus the

sequence Tny = rf� (rf (Tny)), n 2 N, is bounded too, as claimed. �

For a mapping T : C ! C, let Sn(z) := 1=n
Pn
k=1 T

kz for all z 2 C.

Theorem 2. Let f : X ! (�1;+1] be a Legendre function. Let C be a

nonempty, closed and convex subset of int dom f and let T : C ! C be a BFNE

mapping with respect to f . If there exists y 2 C such that kSn(y)k91 as n!1,

then F (T ) is nonempty.

Proof. Suppose that there exists y 2 C such that kSn(y)k 9 1 as n ! 1.

Let x 2 C, k 2 N and n 2 N be given. Since T is BFNE with respect to f , we have

(4.1) Df

�
T k+1y; Tx

�
+Df

�
Tx; T k+1y

�
� Df

�
Tx; T ky

�
+Df

�
T k+1y; x

�
:
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From the three point identity (2.2) we get that

Df

�
T k+1y; Tx

�
+Df

�
Tx; T k+1y

�
� Df

�
Tx; T ky

�
+Df

�
T k+1y; Tx

�
+Df (Tx; x)

+


rf(Tx)�rf(x); T k+1y � Tx

�
:

This implies that

0 � Df (Tx; x) +Df

�
Tx; T ky

�
�Df

�
Tx; T k+1y

�
+


rf(Tx)�rf(x); T k+1y � Tx

�
:

Summing these inequalities with respect to k = 0; 1; : : : ; n� 1, we now obtain

0 � nDf (Tx; x) +Df (Tx; y)�Df (Tx; T
ny)

+

*
rf(Tx)�rf(x);

n�1X
k=0

T k+1y � nTx
+
:

Dividing this inequality by n, we have

0 � Df (Tx; x) +
1

n
[Df (Tx; y)�Df (Tx; T

ny)](4.2)

+ hrf(Tx)�rf(x); Sn(y)� Txi

and

(4.3) 0 � Df (Tx; x) +
1

n
Df (Tx; y) + hrf(Tx)�rf(x); Sn(y)� Txi :

Since kSn(y)k91 as n!1 by assumption, there exists a subsequence fSnk(y)gk2N
of fSn(y)gn2N such that Snk(y)* u 2 C. Letting nk ! +1 in (4.3), we obtain

(4.4) 0 � Df (Tx; x) + hrf(Tx)�rf(x); u� Txi :
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Setting x = u in (4.4), we get from the four point identity (2.3) that

0 � Df (Tu; u) + hrf(Tu)�rf(u); u� Tui

= Df (Tu; u) +Df (u; u)�Df (u; Tu)�Df (Tu; u) +Df (Tu; Tu)

= �Df (u; Tu) :

Hence Df (u; Tu) � 0 and so Df (u; Tu) = 0. It now follows from [3, Lemma

7.3(vi), p. 642] that Tu = u. That is, u 2 F (T ). This completes the proof of

Theorem 2. �

Remark 1. As can be seen from the proof, Theorem 2 remains true for those

mappings which only satisfy (4.1). In the special case where f = 1=2 k�k2, such

mappings are called non-spreading. For more information see [21].

Remark 2. We remark in passing that we still do not know if the analog of

Theorem 2 for nonexpansive mappings holds outside Hilbert space (cf. [24, Remark

2, p. 275]).

Corollary 1. Let f : X ! (�1;+1] be a Legendre function. Every non-

empty, bounded, closed and convex subset of int dom f has the �xed point property

for BFNE self-mappings with respect to f .

As in [21], Corollary 1, when combined with Lemma 1, yields the following

result.

Theorem 3. Let f : X ! (�1;+1] be a Legendre function. Let C be

a nonempty, bounded, closed and convex subset of int dom f . Let fT�g�2A be a

commutative family of BFNE mappings with respect to f from C into itself. Then

the family fT�g�2A has a common �xed point.

5. Approximation of Fixed Points

In this section we prove a strong convergence theorem of Browder�s type for

BFNE mappings with respect to a well chosen function f .

Theorem 4. Let f : X ! R be a Legendre, totally convex function which

is positively homogeneous of degree � > 1, uniformly Fréchet di¤erentiable and
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bounded on bounded subsets of X. Let C be a nonempty, bounded, closed and

convex subset of X with 0 2 C, and let T be a BFNE self-mapping with respect to

f . Then the following two assertions hold:

(i) For each t 2 (0; 1), there exists a unique ut 2 C satisfying ut = tTut;

(ii) The net futgt2(0;1) converges strongly to proj
f
F (T )(rf� (0)) as t! 1�.

Proof. (i) Fix t 2 (0; 1) and let St be the mapping de�ned by St = tT . Since

0 2 C and C is convex, St is a mapping from C into itself. We next show that St

is a BFNE mapping with respect to f . Indeed, if x; y 2 C, then, since T is BFNE

with respect to f , it follows from Proposition 2 that

hrf (Stx)�rf (Sty) ; Stx� Styi = t� hrf (Tx)�rf (Ty) ; Tx� Tyi

� t� hrf (x)�rf (y) ; Tx� Tyi

= t��1 hrf (x)�rf (y) ; Stx� Styi(5.1)

� hrf (x)�rf (y) ; Stx� Styi :

Thus St is also BFNE with respect to f . Since C is bounded, it follows from

Corollary 1 that St has a �xed point. We next show that F (St) consists of exactly

one point. If u; u0 2 F (St), then it follows from (5.1) that

hrf (u)�rf (u0) ; u� u0i = hrf (Stu)�rf (Stu0) ; Stu� Stu0i(5.2)

� t��1 hrf (u)�rf (u0) ; Stu� Stu0i

= t��1 hrf (u)�rf (u0) ; u� u0i :

By (5.2) and the monotonicity of rf , we have

hrf (u)�rf (u0) ; u� u0i = 0:

Since f is Legendre, rf is strictly monotone and therefore u = u0. Thus there

exists a unique ut 2 C such that ut = Stut.
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(ii) Let ftngn2N be a sequence in (0; 1) such that tn ! 1� as n ! +1. Put

xn = utn for all n 2 N. By Lemma 1 and Theorem 2, F (T ) is nonempty, closed and

convex. Thus the Bregman projection projfF (T ) is well de�ned. In order to show

that ut ! projfF (T )(rf� (0)), it is su¢ cient to show that xn ! projfF (T )(rf� (0)).

Since C is bounded, there is a subsequence fxnkgk2N of fxngn2N such that xnk * v.

By the de�nition of xn, we have kxn � Txnk = (1 � tn) kTxnk for all n 2 N. So,

we have xn � Txn ! 0 and hence v 2 F̂ (T ). Lemma 2 now implies that v 2 F (T ).

We next show that xnk ! v. Let y 2 F (T ) be given and �x n 2 N. Then, since T

is BFNE with respect to f , we have

hrf (Txn)�rf (Ty) ; Txn � Tyi � hrf (xn)�rf (y) ; Txn � Tyi :

That is,

0 � hrf (xn)�rf (Txn) ; Txn � yi :

Since

rf (xn)�rf (Txn) = rf (tnTxn)�rf (Txn)

= t��1n rf (Txn)�rf (Txn) = (t��1n � 1)rf (Txn) ;

we have

0 �


(t��1n � 1)rf (Txn) ; Txn � y

�
:

This yields

(5.3) 0 � h�rf (Txn) ; Txn � yi

and

(5.4) hrf (y)�rf (Txn) ; y � Txni � hrf (y) ; y � Txni :
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Since xnk * v and xnk � Txnk ! 0, it follows that Txnk * v. Hence from (5.4)

we obtain that

lim sup
k!+1

hrf (y)�rf (Txnk) ; y � Txnki � lim sup
k!+1

hrf (y) ; y � Txnki(5.5)

= hrf (y) ; y � vi :

Substituting y = v in (5.5), we get

0 � lim sup
k!+1

hrf (v)�rf (Txnk) ; v � Txnki � 0:

Thus

lim
k!+1

hrf (v)�rf (Txnk) ; v � Txnki = 0:

Since

Df (v; Txnk) +Df (Txnk ; v) = hrf (v)�rf (Txnk) ; v � Txnki

it follows that

lim
k!+1

Df (v; Txnk) = lim
k!+1

Df (Txnk ; v) = 0:

Proposition 3 now implies that Txnk ! v. Finally, we claim that v = projfF (T )(rf� (0)).

Sincerf is norm-to-weak� continuous on bounded subsets, it follows thatrf (Txnk)*

rf (v). Setting n := nk and letting k ! +1 in (5.3), we obtain

0 � h�rf (v) ; v � yi

for any y 2 F (T ). Hence

0 � hrf (rf� (0))�rf (v) ; v � yi

for any y 2 F (T ). Thus Proposition 4 implies that v = projfF (T )(rf� (0)). Con-

sequently, the whole net futgt2(0;1) converges strongly to proj
f
F (T )(rf� (0)) as

t! 1�. This completes the proof of Theorem 4. �
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Remark 3. Early analogs of Theorem 4 for nonexpansive mappings in Hilbert

and Banach spaces may be found in [9, 18, 25].

6. Consequences of the Approximation Result

We �rst specialize Theorem 4 to the case where f(x) = 1
2 kxk

2 and X is a

uniformly smooth and uniformly convex Banach space, and then apply it to the

problem of �nding zeroes of a maximal monotone operator A : X ! 2X
�
. In this

case the function f(x) = 1
2 kxk

2 is Legendre (cf. [3, Lemma 6.2, p.24]) and uni-

formly Fréchet di¤erentiable on bounded subsets of X. According to [14, Corollary

1(ii), p. 325], since X is uniformly convex, f is totally convex. Thus we obtain the

following corollary.

Corollary 2. Let X be a uniformly smooth and uniformly convex Banach

space. Let C be a nonempty, bounded, closed and convex subset of X with 0 2 C,

and let T : C ! C be of �rmly nonexpansive type. Then the following two assertions

hold:

(i) For each t 2 (0; 1), there exists a unique ut 2 C satisfying ut = tTut;

(ii) The net futgt2(0;1) converges strongly to proj
f
F (T )(0) as t! 1�.

As a matter of fact, this corollary is known to hold even when X is only a

smooth and uniformly convex Banach space [21].

As a direct consequence of Theorem 4 we get the following new result.

Corollary 3. Let f : X ! R be a Legendre, totally convex function which

is positively homogeneous of degree � > 1, uniformly Fréchet di¤erentiable and

bounded on bounded subsets of X. Let C be a nonempty, bounded, closed and

convex subset of X with 0 2 C. Let � be positive real number and let A be a

monotone operator such that domA � C � (rf)�1 (ran (rf + �A)). Then the

following two assertions hold:

(i) For each t 2 (0; 1), there exists a unique ut 2 C satisfying ut = tResf�Aut;

(ii) The net futgt2(0;1) converges strongly to proj
f
A�1(0�)(rf

� (0)) as t! 1�.



20 SIMEON REICH AND SHOHAM SABACH

Remark 4. Algorithm 5.5 in [6] provides another way for constructing Breg-

man projections onto the zero sets of maximal monotone operators.
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