Three Strong Convergence Theorems Regarding Iterative
Methods for Solving Equilibrium Problems in Reflexive

Banach Spaces

Simeon Reich and Shoham Sabach

ABSTRACT. We establish three strong convergence theorems regarding itera-
tive methods for finding a common solution to the equilibrium problems corre-
sponding to finitely many bifunctions in reflexive Banach spaces. In all three

theorems we also take into account possible computational errors.

1. Introduction

Let X denote a real reflexive Banach space with norm ||-|| and let X* stand for
the (topological) dual of X endowed with the induced norm ||-||,. We denote the
value of the functional £ € X* at x € X by (£, x). In this paper f : X — (—o0, +]
is always a proper, lower semicontinuous and convex function, and f* : X* —
(—00, +00] is the Fenchel conjugate of f. The set of nonnegative integers is denoted
by N.

Let K be a closed and convex subset of X and let ¢ : K Xx K — R be a

bifunction. The equilibrium problem corresponding to g is to find £ € K such that

(1.1) 9(T,y) >0 VyekK.
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The set of solutions of (1.1) is denoted by EP (g). This problem contains as special
cases many optimization, fixed point and variational inequality problems (see [7]
and [15] for more details). In 2005 Combettes and Hirstoaga [15] introduced an
iterative scheme in Hilbert space for finding the best approximation to the initial
datum from EP (g) when EP (g) is nonempty, and established a strong convergence
theorem for their scheme. More recently, Takahashi and Zembayashi [25] have
proposed an algorithm for solving equilibrium problems in those Banach spaces X
which are both uniformly convex and uniformly smooth. More algorithms can be
found, for example, in [24]. In the present paper we propose three algorithms (see
Algorithms (3.1), (4.1) and (5.1) below) for solving (common) equilibrium problems
in general reflexive Banach spaces using a well chosen convex function f, as well
as the Bregman distance and projection associated with it (see Section 2.3). Our
algorithms are more flexible than those previously used because they leave us the
freedom of fitting the function f to the nature of the bifunctions g and of the space
X. If X is a uniformly convex and uniformly smooth Banach space, then we can
choose f (z) = (1/2) ||z||* in our algorithms. However, this choice may make the
computations quite difficult in some Banach spaces. These computations can be
simplified by an appropriate choice of f. For instance, if X = ¢ or X = LP with
p € (1, 00), then we may choose f (z) = (1/p) ||z||”. All three of our algorithms allow
for certain computational errors. These algorithms are similar to, but different from
those we have recently studied in [17, Theorem 4.2, p. 35] and [19, Corollaries 5
and 6], where the algorithms approximate common zeroes of finitely many maximal
monotone operators. Our main results (Theorems 1, 2 and 3) are formulated and
proved in Sections 3, 4 and 5, respectively. Their proofs, although similar, differ
from each other in significant details. Each one of these sections also contains three
corollaries which are deduced from the theorem established in that section. The
next section is devoted to several preliminary definitions and results.

From now on we denote the set {z € X : f (z) < 400} by dom f and the set

{f(x):x € dom f} by ran f. The interior of a set K is denoted by int K.
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2. Preliminaries

2.1. Some facts about Legendre functions. Legendre functions mapping
a general Banach space X into (—oo,+oco] are defined in [3]. According to [3,
Theorems 5.4 and 5.6], since X is reflexive, the function f is Legendre if and only
if it satisfies the following two conditions:

(L1) The interior of the domain of f, intdom f, is nonempty, f is Gateaux

differentiable (see below) on int dom f, and
domV f = intdom f;

(L2) The interior of the domain of f*, int dom f*, is nonempty, f* is Gateaux

differentiable on int dom f*, and
dom V f* = int dom f*.

Since X is reflexive, we always have (9f) " = f* (see [8, p. 83]). This fact,

when combined with conditions (L1) and (L2), implies the following equalities:
V=V,

ranVf = dom Vf* = int dom f*

and

ran Vf* = dom Vf = intdom f.

Also, conditions (L1) and (L2), in conjunction with [3, Theorem 5.4], imply that the
functions f and f* are strictly convex on the interior of their respective domains.

Several interesting examples of Legendre functions are presented in [2] and [3].
Among them are the functions (1/s)[|]|* with s € (1, 0), where the Banach space
X is smooth and strictly convex and, in particular, a Hilbert space. From now on

we assume that the convex function f : X — (—oo, +00] is Legendre.
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2.2. A property of gradients. For any z € intdom f and y € X, we denote

by f°(x,y) the right-hand derivative of f at x in the direction y, that is,

o) = fiy LT 1)

The function f is called Géteaux differentiable at x if limy_o (f(x + ty) — f(x)) /t
exists for any y. In this case f°(x,y) coincides with (Vf) (z), the value of the
gradient Vf of f at x. The function f is said to be Fréchet differentiable at x
if this limit is attained uniformly for ||y|| = 1. Finally, f is said to be uniformly
Fréchet differentiable on a subset E of X if the limit is attained uniformly for x € F
and |ly|]| = 1. We will need the following result.

Proposition 1 (¢f. [16, Proposition 2.1, p. 474]). If f: X — R is uniformly
Fréchet differentiable and bounded on bounded subsets of X, then V f is uniformly
continuous on bounded subsets of X from the strong topology of X to the strong
topology of X*.

2.3. Some facts about totally convex functions. Let f : X — (—o0, +0o0]
be a convex function which is Gateaux differentiable in intdom f. The function

Dy :dom f x intdom f — [0,+00), defined by

(2.1) Dy(y,z) = f(y) = f(z) = (Vf(2),y —x),

is called the Bregman distance with respect to f (c¢f. [14]). The Bregman distance
has the following two important properties, called the three point identity: for any

x € dom f and y, z € intdom f,

(2.2) Dy(z,y) + Dy(y,2) = Dy(w,2) = (Vf(2) = Vf({y),x —y),

and the four point identity: for any y,w € dom f and z, z € int dom f,

(23)  Ds(y,x) = Dy(y, 2) = Dy(w,z) + Dy(w, 2) = (Vf(2) = Vf(2),y —w).

Recall that, according to [11, Section 1.2, p. 17] (see also [10]), the function f

is called totally convex at a point x € intdom f if its modulus of total convexity at
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x, that is, the function vy : int dom f x [0, +00) — [0, +00], defined by
vp(x,t) ;== inf {Ds(y,z) : y € dom f, |y — x| =t},

is positive whenever ¢ > 0. The function f is called totally convexr when it is totally
convex at every point x € intdom f. In addition, the function f is called totally
convex on bounded sets if v(E,t) is positive for any nonempty and bounded subset
FE of X and for any t > 0, where the modulus of total convezity of the function f

on the set E is the function vy : int dom f x [0, +00) — [0, +00] defined by
vf(E,t) :=inf {vs(z,t) : 2 € ENintdom f}.

We remark in passing that f is totally convex on bounded sets if and only if f is
uniformly convex on bounded sets (see [13, Theorem 2.10, p. 9]).

Examples of totally convex functions can be found, for instance, in [11, 13].
The next proposition turns out to be very useful in the proof of Theorems 1, 2 and
3 below.

Proposition 2 (¢f. [21, Proposition 2.2, p. 3]). If x € intdom f, then the
following statements are equivalent:

(i) The function f is totally convez at x;

(ii) For any sequence {yn},n C dom f,

lim Dy (yn,2) =0 = 1im |y, —z| =0.

n—-+4oo

Recall that the function f is called sequentially consistent (see [13]) if for any two
sequences {z,}, cy and {yn},cy in intdom f and dom f, respectively, such that

the first one is bounded,

lim Dy (yn,l‘n) =0 = nkrfm ”yn - an =0.

n—-+o0o

Proposition 3 (¢f. [11, Lemma 2.1.2, p. 67]). The function f is totally convex

on bounded sets if and only if it is sequentially consistent.



6 SIMEON REICH AND SHOHAM SABACH

Recall that the Bregman projection (cf. [9]) of x € intdom f onto the non-
empty, closed and convex set K C dom f is the necessarily unique vector pro j}; (z) €
K satisfying

Dy (proj{((az),x) =inf{Ds(y,z):y € K}.

Similarly to the nearest point projection in Hilbert spaces, Bregman projec-
tions with respect to totally convex and differentiable functions have variational
characterizations.

Proposition 4 (¢f. [13, Corollary 4.4, p. 23]). Suppose that f is Gdteaux
differentiable and totally conver on intdom f. Let x € intdom f and let K C
intdom f be a nonempty, closed and convexr set. If & € K, then the following
conditions are equivalent:

(i) The vector & is the Bregman projection of x onto K with respect to f;

(ii) The vector & is the unique solution of the variational inequality
(Vf()=Vf(z),z—y) 20  VyeK;
(iii) The vector & is the unique solution of the inequality
Dy (y,z) + Dy (z,2) < Dy (y,x) Yy € K.

The following two propositions exhibit two additional properties of totally con-
vex functions.

Proposition 5 (¢f. [17, Lemma 3.1, p. 31]). Let f : X — R be a Legendre and
totally convex function. If zg € X and the sequence {D(Tn,20)}, cy 8 bounded,

then the sequence {xn}, oy s bounded too.

ne

Proposition 6 (c¢f. [17, Lemma 3.2, p. 31]). Let f : X — R be a Legendre and
totally convex function, xg € X, and let K be a nonempty, closed and convex subset
of X. Suppose that the sequence {xy}, y is bounded and any weak subsequential

limit of {wn}, cy belongs to K. If Dy (zn,70) < Dy (proj{((mo),xo) foranyn e N,

then {x,}, cy converges strongly to proj}l((xo).
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2.4. Some facts about the resolvent of a bifunction. Let K be a closed
and convex subset of X, and let ¢ : K x K — R be a bifunction satisfying the
following conditions [7, 15]:

(C1) g(x,2) =0 for all z € K;

(C2) g is monotone, i.e., g (x,y) + g (y,z) <0 for all x,y € K;

(C3) for all z,y,z € K,

limsupg (tz+ (1 —t) z,y) < g(x,y);
t10

(C4) for each z € K, g (x,-) is convex and lower semicontinuous.
Let A be a positive real number. The resolvent of a bifunction g : K x K — R

[15] is the mapping Res];g : X — 2K defined by
Res{, (¢) = {z € K : Mg (2,9) + (V (z) = Vf (2),.y = 2) 20 Vy € K}.

Recall that the function f is said to be coercive if lim ;400 (f (x) /[|2]]) =
+o0. If K is a subset of int dom f, then the operator T : K — K is called Bregman

firmly nonexpansive (BFNE for short) if
(Vf(Tz) =V f(Ty),Tx—Ty) <(Vf(z)-Vf(y),Tz—-Ty)

for all z,y € K. See [4, 18] for more information on BFNE operators.

Now we list some properties of the resolvent of a bifunction.

Proposition 7 (¢f. [19, Lemmas 1 and 2. pp. 130-131)). Let f : X —
(—00,400] be a coercive Legendre function. Let K be a closed and convex subset of
X. If the bifunction g : K x K — R satisfies conditions (C1)—(C4), then:

(i) dom (Resg) = X;

(ii) Resg is single-valued;

(1i3) Resg is a BFNE operator;

(iv) the set of fized points of Resg is the solution set of the corresponding
equilibrium problem, i.e., F(Resg) = EP (g);

(v) EP (g) is a closed and convex subset of K
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(vi) for all x € X and for all u € F(Resg), we have
Dy (u,Resg (x)) + Dy (Resg (x) ,x) < Dy (u, ).

3. Algorithm I

In this section we present an algorithm which is motivated by the algorithm
proposed by Bauschke and Combettes [5] (see also Solodov and Svaiter [22]). More

precisely, we study the following algorithm when E := ﬂfvzl EP (g;) # @:

o € X,

yi, = Res], | (wn +eb),

1 Ch={2€X: Dy (2y,) < Dj (2,20 +¢})},
. Co =0, CL,

Qn={2€ X :(Vf(xo) = Vf(zn),z—x,) <0},

LTn+1l = projénﬂQn (l’o), n= 07 la 2) s

Theorem 1. Let K;, i = 1,2,...,N, be N nonempty, closed and convex
subsets of X. Let g; : K; x K; = R, i=1,2,...,N, be N bifunctions that satisfy
conditions (C1)-(C4) with E := ﬂfil EP(g;)) # &. Let f : X — R be a coercive
Legendre function which is bounded, uniformly Fréchet differentiable and totally
conver on bounded subsets of X. Then, for each xo € X, there are sequences
{an},en which satisfy (3.1). If, for each i =1,2,...,N, liminf, 4 A}, >0, and

the sequence of errors {e%} C X satisfies lim,, ., €l = 0, then each such

neN
sequence {xy},cy converges strongly to projé(xo) as n — +oo.

Proof. We divide our proof into four steps.

Step 1. There are sequences {T,}, oy which satisfy (3.1).

From Proposition 7(i) we know that dom Res{zgi =X foranyi=1,2,...,N.
Therefore each y! is well-defined whenever x,, is. Let n € N. It is not difficult to

check that the sets C? are closed and convex for each i = 1,2,..., N. Hence their

intersection C,, is also closed and convex. It is also obvious that Q,, is a closed and
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convex set. Let u € E. For any n € N, we obtain from Proposition 7(vi) that

i

Dy (u,y}) = Dy (u,ResJ;i g:(@n + e;)) < Dy (u,z, +€,),

which implies that u € C%. Since this holds for any i = 1,2,..., N, it follows
that v € C),,. Thus F C (), for any n € N. On the other hand, it is obvious
that E C Qo = X. Thus E C Cy()Qo, and therefore z; = projémQO(xo) is
well defined. Now suppose that E C C,—1[)Qn-1 for some n > 1. Then z, =
projéniani1 (z0) is well defined because Cy,—1 (| @n—1 is a nonempty, closed and

convex subset of X. So from Proposition 4(ii) we have

<Vf(l'0) - Vf(xn)ay - $n> < 07

for any y € C,,—1 () Qn—1. Hence we obtain that £ C Q,,. Therefore E C C,, [ Qn
and hence x,41 = proijmQ” (x0) is well defined. Consequently, we see that E C
C,, Q@ for any n € N. Thus the sequence we constructed is indeed well defined
and satisfies (3.1), as claimed.

From now on we fix an arbitrary sequence {z,},y which satisfies (3.1).

Step 2. The sequence {y}, cy is bounded.

It follows from the definition of the set @,, and Proposition 4(ii) that projg" (z0) =

Zy. Furthermore, by Proposition 4(iii), for each u € E, we have

Dy (xy,x0) = Dy (projén (ajo),x())

§ Df (U,IL'Q) - Df (u,projén (xO)) S Df (uaxO) .

Hence the sequence {Df(xy,, zo)}, - is bounded by D (u, x¢) for any w € E. There-

neN

fore by Proposition 5 the sequence {x,}, .y is bounded too, as claimed.

Step 3. Every weak subsequential limit of {xn} belongs to F.

neN
It follows from the definition of @,, and Proposition 4(ii) that projg” (x0) = .

Since x, 41 € Qn, it follows from Proposition 4(iii) that

Dy (:cn+1,pr0jén (%)) + Dy (Projgn (500)@0) < Dy (n+1,Z0)
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and hence
(3.2) Dy ($n+17$n) + Dy (xnax()) < Dy (Tni1,20) -

Therefore the sequence {Dy(zy,0)}, oy I8 increasing and since it is also bounded
(see Step 2), limy, 4o Dy(zy, o) exists. Thus from (3.2) it follows that

(3.3) lim Dy (zy41,2,) =0.

n—-+o0o

Proposition 3 now implies that lim, o (€ns1 — @,) = 0. For any i =1,2,..., N,

it follows from the definition of the Bregman distance (see (2.1)) that

Dy (2stn +ch) = F (@) = f (2 + ) = (V@0 + b — (2 + ) =

f@n) = f(zn+eh) +(Vf(zn+e,)€).

The function f is bounded on bounded subsets of X and therefore Vf is also
bounded on bounded subsets of X (see [11, Proposition 1.1.11, p. 17]). In addition,
f is uniformly Fréchet differentiable and therefore it is uniformly continuous on
bounded subsets (see [1, Theorem 1.8, p. 13]). Hence, since lim,_, 4 €}, = 0, it

follows that

(3.4) lim Dy (@, 2, +e,) =0.

n—-+oo

For any i = 1,2,..., N, it follows from the three point identity (see (2.2)) that

Dy (xn+1,xn + efl) = Df (znt1,2n) + Dy (xn,xn + e;)

+ <Vf(xn) — Vf(x, +e),zp1 — xn> .

Since limy, 4 o0 (Tn+1 — ) = 0 and V f is bounded on bounded subsets of X, (3.3)
and (3.4) imply that

lim Dy (:cn+1,:cn + e;) =0.

n—-+o0o
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For any i = 1,2,..., N, it follows from the inclusion x,; € C? that

Df (anrlayj«L) < Df (xn+17xn + 6;) .

Hence lim,,_, yo Dy ($n+17 y;) = 0. Proposition 3 now implies that

limy,— 400 (¥4 — Tpt1) = 0. Therefore, for any i = 1,2,..., N, we have
v, = zal| < |lus, = o || + |21 = 2al — 0.

This means that the sequence {y}, } . is bounded for any i =1,2,..., N. Since f

is uniformly Fréchet differentiable, it follows from Proposition 1 that

i[9 (44) — VF )], =
and since lim,,_, ;o €!, = 0, it also follows that
(3.5) Jim [V (5) = VI (20 + €)= 0

for any i = 1,2,..., N. By the definition of y, we know that
Xogi (Ynsy) + (VI (y3) = VI (2n+e) 9 —up) >0
for all y € K;. Hence from condition (C2) it follows that
(3.6) (VI () =V (zat+en),y—yn) = =g (vhoy) > A (v:9)

for all y € K;. Now let {xy, },y be a weakly convergent subsequence of {z,},

and denote its weak limit by v. Then {yﬁlk also converges weakly to v for any

}kGN

i=1,2,...,N. Replacing n by ny in (3.6), we get that

(3.7) (VW) =Vf (@ e ) y—yh ) =N g(y,yh,).
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is bounded, condition (C4) holds, and lim infy .y oo Y, >

. i
Since the sequence {ynk "

}keN
0, it follows from (3.5) and (3.7) that

(3-8) 9i (y,v) <0,

for each y € K; and for any ¢ = 1,2,...,N. For any ¢t € (0,1], we now define
ye=ty+ (1 —t)v. Let i =1,2,..., N, since y and v belongs to K;, it follows from

the convexity of K; that y; € K; too. Hence g; (y¢,v) <0 for any i = 1,2,...,N.

)

So, from conditions (C1) and (C4), and (3.8) it follows that

0=gi (e, ye) < tgi (e, y) + (1 = 1) gi (ye,v) < tgs (e, y) -

Dividing by ¢, we obtain that g; (y;,y) > 0 for all y € K. Letting ¢ | 0, and using
condition (C3), we see that g; (v,y) > 0 for all y € K;. Thus v € EP (g;) for any
1=1,2,...,N. Therefore v € E and this proves Step 3.

Step 4. The sequence {T,}, oy converges strongly to projé(wo) as n — +o00.

From Proposition 7(v) it follows that EP (g;) is closed and convex for any
i =1,2,...,N. Therefore F is nonempty, closed and convex, and the Bregman
projection proj{E is well defined. Let @ = projé(wo). Since xp 41 = projémQ" (x0)
and F is contained in C, N Q,, we have Df (zp41,20) < Dy (4, x0). Therefore
Proposition 6 implies that {x, }, .y converges strongly to @ = proj‘};(xo), as claimed.

This completes the proof of Theorem 1. O

Now we present three consequences of Theorem 1. First we study the following

algorithm:
T € X,
— Res!
Yn = Resy (25),
(3.9) C,=1{2€ X :D;(2,y,) <Dy (2,2,)},

Qn={z€X:(Vf(xo) = Vf(zn),z—z,) <0},

Tpy1 = prOJQan (x0), n=0,1,2,....
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Algorithm (3.9) is a special case of Algorithm (3.1) when e,, =0 for all n € N
and N = 1. Therefore we obtain the following result as a direct consequence of
Theorem 1.

Corollary 1. Let K be a monempty, closed and conver subset of X. Let
g: K x K — R be a bifunction that satisfies conditions (C1)-(C4) with EP (g) #
. Let f: X — R be a coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of X, and suppose that
liminf, .o Ay > 0. Then, for each xo € X, the sequence {,},n generated by
(8.9) converges strongly to projép(g)(cco) as n — +oo.

The following corollary [19, Corollary 5] follows immediately from Theorem 1
when we take \{, =1 foralln € Nandi=1,2,...,N.

Corollary 2. Let K;, 1 = 1,2,...,N, be N nonempty, closed and convex
subsets of X. Let g; : K; x K; — R, i =1,2,...,N, be N bifunctions that sat-
isfy conditions (C1)-(C4) with E := ﬂiil EP(g;) # @. Let f : X — R be a
coercive Legendre function which is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of X. Then, for each xqg € X, there are se-
quences {Tn},y which satisfy (3.1). If, for each i = 1,2,..., N, the sequence of
errors {efl}neN C X satisfies lim,,_, 1o €%, = 0, then each such sequence {Zn},en
conwverges strongly to projé(xo) as n — +00.

A notable corollary of Theorem 1 occurs when the space X is both uniformly
smooth and uniformly convex. In this case the function f(z) = (1/2) ||z||* is coer-
cive and Legendre (¢f. [3, Lemma 6.2, p. 24]), and uniformly Fréchet differentiable
on bounded subsets of X. According to [12, Corollary 1(ii), p. 325], f is sequen-
tially consistent (because X is uniformly convex) and hence f is totally convex
on bounded subsets of X (see Proposition 3). Therefore Theorem 1 holds in this

setting and leads to the following result, which is a special case of Theorem 3.1 in
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[25]. More precisely, we consider the following algorithm:

Ty € X,
Yn = ReS{ng(fEn),
(3.10) Chn={2€X:0(z,yn) < b(z,20)},

Qn={z€ X :(J(xg) — J(zpn),z — zpn) <0},

Tni1 = Po,nq, (7o), n=0,1,2,...,

where J : X — X* is the normalized duality mapping of the space X, ¢ (y,z) =
lyll* = 2 (Jz,y) + |z|* and Px is the Bregman projection onto K with respect to
F(&) = (1/2) |2l

Corollary 3. Let X be a uniformly smooth and uniformly convexr Banach
space, and let K be a nonempty, closed and convex subset of X. Let g : K X
K — R be a bifunction that satisfies conditions (C1)-(C4) with EP (g) # @. If
liminf, . o Ay > 0, then for each xo € X, the sequence {x,}, y generated by

(3.10) converges strongly to Pgp(g)(To) as n — +o00.

4. Algorithm II

In this section we present a result which is similar to Theorem 1, but with a
different construction of the sequence {z,}, . The following algorithm is based
on the concept of the so-called shrinking projection method, which was introduced
by Takahashi, Takeuchi and Kubota in [23]. More precisely, we study the following
algorithm when E := ﬂf;l EP (g;) # @:
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T € X,

Ci=X, i=1,2,...,N,

y;z = Resﬁglgi (xn + 6;)7

CfLH = {z S C’fl : Dy (z,y;) < Dy (z,xn —l—e;)},

N .
Chy1 = ﬂi:l :H-l’

Tni1=Dprojl, (), nm=0,1,2....

Theorem 2. Let K;, i+ = 1,2,...,N, be N nonempty, closed and convex
subsets of X. Let g; : K; x K; - R, i=1,2,...,N, be N bifunctions that satisfy
conditions (C1)-(C4) with E := ﬂfil EP(g;) # @. Let f : X — R be a coercive
Legendre function which is bounded, uniformly Fréchet differentiable and totally
conver on bounded subsets of X. Then, for each x¢g € X, there are sequences
{@n}, en which satisfy (4.1). If, for each i =1,2,..., N, liminf, AL >0, and

the sequence of errors {ei} C X satisfies lim,,_, €', = 0, then each such

neN
sequence {xy},y converges strongly to projé(mo) as n — —+0oo.

Proof. Again we divide our proof into four steps.

Step 1. There are sequences {Ty,}, oy which satisfy (4.1).

From Proposition 7(i) we know that dom Res{ilgi =X forany:=1,2,...,N.
Therefore each y!, is well-defined whenever z,, is. Let n € N. It is not difficult to
check that the sets C? are closed and convex for any i = 1,2,..., N. Hence their

intersection C,, is also closed and convex. Let u € E. For any n € N, we obtain

from Proposition 7(vi) that
Dy (u,y) = Dy (u, Resf\: g, (@n + e;)) <Dy (u,z, +€),

which implies that u € C’fLH. Since this holds for any ¢ = 1,2,..., N, it follows
that v € C41. Thus E C C,, for any n € N.
From now on we fix an arbitrary sequence {z,},y satisfying (4.1).

Step 2. The sequence {y},cy is bounded.
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It follows from Proposition 4(iii) that, for each u € E, we have

Dy (xy,x0) = Dy (projén (mo),xo)

< D¢ (u,z0) — Dy (u,projén (5(50)) < Dy (u,xq) .

Hence the sequence { Dy (2, Z0)},, o is bounded by Dy (u, xo) for any u € E. There-

fore by Proposition 5 the sequence {x,},, . is bounded too, as claimed.

ne

Step 3. Every weak subsequential limit of {x,} belongs to E.

neN

Since 41 € Crp1 C Cy, it follows from Proposition 4(iii) that

Dy ($n+1,pfojén (550)) + Dy (PTOJ(];,L (xo)»iﬂo) < Dy (@n+1,20)

and hence

(4.2) Dy (Tnt1,Tn) + Dy (Tn,z0) < Dy (Tn+1,20) -

Therefore the sequence {Dy(zy,0)}, oy I8 increasing and since it is also bounded
(see Step 2), limy, 400 Dy(zy, o) exists. Thus from (4.2) it follows that

lim Dy (xy41,2,) =0.

n——+oo

Now, using an argument similar to the one we employed in the proof of Theorem 1
(see Step 3 there), we get the conclusion of Step 3.

Step 4. The sequence {Ty,},y converges strongly to projé(xo) as n — +oo.

From Proposition 7(v) it follows that EP (g;) is closed and convex for any
i = 1,2,...,N. Therefore F is nonempty, closed and convex, and the Bregman
projection projg is well defined. Let @ = projg(xo). Since x,, = projén (zp) and
E is contained in C,,, we have Dy (2, z0) < Dy (4, xo). Therefore Proposition 6
implies that {x,},y converges strongly to @ = projé(wo), as claimed.

This completes the proof of Theorem 2. O
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Now we present three consequences of Theorem 2. First we specialize to the

case of one bifunction:

ro € X,
CO = X7
(4.3) Yn = Resing(xn +en),

Cn+1 = {Z € Oﬂ : Df (Z7yn) < Df (Z7xn+en)}a

Tn+1 :projénJrl(‘rO)v n= 051727""

In this case we obtain the following result as a direct consequence of Theorem 2.

Corollary 4. Let K be a monempty, closed and conver subset of X. Let
g: KxK — R be a bifunction that satisfies conditions (C1)-(C4) with EP (g) # @.
Let f: X — R be a coercive Legendre function which is bounded, uniformly Fréchet
differentiable and totally convex on bounded subsets of X. Then, for each zy € X,
there are sequences {xn}, .y which satisfy (4.3). If liminf, ., Ay > 0 and the
sequence of errors {en}, oy C X satisfies lim, o e, = 0, then each such sequence
{Zn},en converges strongly to projép(g)(xo) as n — +0o0.

The following corollary [19, Corollary 6] follows immediately from Theorem 2
when we take \i, =1foralln € Nandi=1,2,...,N.

Corollary 5. Let K;, 1 = 1,2,...,N, be N nonempty, closed and convex
subsets of X. Let g; : K; x K; - R, ¢ =1,2,...,N, be N bifunctions that sat-
isfy conditions (C1)-(C4) with E := ﬂfil EP(g;)) # @. Let f : X — R be a
coercive Legendre function which is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of X. Then, for each xg € X, there are se-
quences {Tn}, oy which satisfy (4.1). If, for each i = 1,2,..., N, the sequence of
errors {eﬁl}neN C X satisfies lim,, oo €8, = 0, then each such sequence {xn}neN
converges strongly to projg(xo) as n — +oo.

Theorem 2 holds, in particular, when the space X is both uniformly smooth
and uniformly convex, and the function f(z) = (1/2)]|z||>. This leads us to the

following result, which is a special case of Theorem 3.1 in [24]. More precisely, we
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consider following algorithm:

T € X,
CO = X’
(4.4) Yn = Res] (zn),

CnJrl = {Z S Cn : ¢(Zayn) S (b(Z,.’En)}7

Tn+1 :PCnJrl(‘rO)a TL:O,l,Q,...,

Corollary 6. Let X be a uniformly smooth and uniformly convexr Banach
space, and let K be a nonempty, closed and convex subset of X. Let g : K X
K — R be a bifunction that satisfies conditions (C1)-(C4) with EP (g) # @. If
liminf, o0 Ay > 0, then for each zo € X, the sequence {mn}neN generated by

(4.4) converges strongly to Prp(g)(2o) as n — +00.

5. Algorithm IIT

In this section we study a second algorithm based on the concept of the so-called

shrinking projection method:

zg € X,
Qb = X, i=1,2,...,N,
yl = Resf\c;gi (, +€b),
w1 =12 € Q) (VS @ntep) = VL) 2 —yh) <0,

N )
Qny1 = 01:1 %-&-1;

Tpt1 = PTOjg”H(xoL n=0,1,2,....

Theorem 3. Let K;, i« = 1,2,...,N, be N nonempty, closed and convex
subsets of X. Let g; : K; x K; = R, i=1,2,...,N, be N bifunctions that satisfy
conditions (C1)-(C4) with E := ﬂfvzl EP(g;) # @. Let f : X — R be a coercive
Legendre function which is bounded, uniformly Fréchet differentiable and totally

convex on bounded subsets of X. Then, for each xy € X, there are sequences
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{zn},en which satisfy (5.1). If, for each i =1,2,...,N, liminf, . A, >0, and

the sequence of errors {ei} C X satisfies lim,,_, €', = 0, then each such

neN
sequence {Ty},cy converges strongly to projé(xo) as n — +oo.

Proof. Our proof is again divided into four steps.

Step 1. There are sequences {y,}, oy which satisfy (5.1).

From Proposition 7(i) we know that dom Res{zbgi =X forany:=1,2,...,N.
Therefore each y! is well-defined whenever z,, is. Let n € N. It is not difficult to
check that the sets Q¢ are closed and convex for all i = 1,2,..., N. Hence their

intersection @, is also closed and convex. Let u € E. For any n € N, we obtain

from the definition of y!, that
Mg (v u) + (Vf (4) = Vf (20 +€h) u—yl) > 0.
Since u € F and condition (C2) holds, we get

(V(xn+e,) = VIih)u—yh) < Xog (yh,u) < =Ag (uyh) <0,

which implies that u € Q;Jrl. Since this holds for any ¢ = 1,2,..., N, it follows
that v € Q1. Thus £ C Q,, for any n € N.
From now on we fix an arbitrary sequence {z, }, .y which satisfies (5.1).
Step 2. The sequence {y}, cy is bounded.

It follows from Proposition 4(iii) that, for each u € E, we have

Dy (xy,z0) = Dy (projén (Jco),xo)

< Dy (u,z9) — Dy (u,projgn (xo)) < Dy (u,zy) .

Hence the sequence { Dy (2, o)}, ¢ is bounded by D (u, xo) for any u € E. There-
fore by Proposition 5 the sequence {z,}, .y is bounded too, as claimed.

Step 3. Every weak subsequential limit of {xn} belongs to F.

neN

Since Zp41 € Qni1 C Qn, it follows from Proposition 4(iii) that

Dy (:cn+1,pr0jén (%)) + Dy (Projgn (500)7%0) < Dy (Tn+1,Z0)
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and hence
(5.2) Dy ($n+17$n) + Dy (xnax()) < Dy (Tni1,20) -

Therefore the sequence {Dy(zy,0)}, oy I8 increasing and since it is also bounded

(see Step 2), limy, 4o Dy(zy,xo) exists. Thus from (5.2) we obtain that

lim Dy (zy41,2,) =0.

n—-+o0o

As in the proof of Theorem 1, it now follows that

(5.3) lim Dy (Znt1, 2y +€) = 0.
For any 1 =1,2,..., N, it follows from the inclusion z,+1 € QZ_H that

< Dy (zn41,95) + Dy (Yo, zn +€h) + (Vf(zn +€h) = VIYL), yh — Tni1)

=Dy (Tnt1,2n +€l).
From (5.3) we obtain that

lim (Df ($n+17y;) + Df (y:mxn + 6;)) =0

n—-+4oo

and therefore lim,, .4~ Dy ($n+1, y;) =0.

Now, using an argument similar to the one we employed in the proof of Theorem
1 (see Step 3 there), we get the conclusion of Step 3.

Step 4. The sequence {x,},y converges strongly to projé(xo) as n — +oo.

From Proposition 7(v) it follows that EP (g;) is closed and convex for any
1 =1,2,...,N. Therefore FE is nonempty, closed and convex, and the Bregman
projection projé is well defined. Let @ = projg(:ro). Since z,, = projén (zp) and E
is contained in @,,, we know that Dy (z,,,z0) < Dy (@, x0). Therefore Proposition

6 implies that {z,}, .y converges strongly to % = projé(xo), as claimed.

This completes the proof of Theorem 3. O



EQUILIBRIUM PROBLEMS IN REFLEXIVE BANACH SPACES 21

Now we present three consequences of Theorem 3. In the first one (Corollary
7) there are no computational errors, in the second (Corollary 8) \; = 1 for all
n€Nandi=1,2,...,N, and in the third (Corollary 9) the space X is uniformly
smooth and uniformly convex, and the function f(z) = (1/2) ||z||>. More precisely,
we first consider the following algorithm:
Tg € X,
Qi=X, i=12,...,N,

i f

y,, = Res},  (zn),
(5.4) nt
Qi1 =12 € Qh  (Vf(zn) = VI(yh) 2 —yh) <0},

N .
Qn+1 = mi:l Q?nJrlv

Tnt1 =Drojl,  (zo), n=0,1,2,....

In this case we obtain the following assertion as a direct consequence of Theorem
3.

Corollary 7. Let K;, i = 1,2,...,N, be N nonempty, closed and convex
subsets of X. Let g; : K; x K; = R, i=1,2,...,N, be N bifunctions that satisfy
conditions (C1)-(C4) with E := ﬂfil EP(g;) # . Let f : X — R be a coercive
Legendre function which is bounded, uniformly Fréchet differentiable and totally
conver on bounded subsets of X. Then, for each xo € X, there are sequences
{xn}, cn which satisfy (5.4). If, for each i =1,2,..., N, liminf, | A >0, then
each such sequence {xy}, .y converges strongly to projé(a:o) as n — +oo.

The next consequence of Theorem 3 is [20, Corollary 3].

Corollary 8. Let K;, 1 = 1,2,...,N, be N nonempty, closed and convex
subsets of X. Let g; : K; x K; — R, i =1,2,...,N, be N bifunctions that sat-
isfy conditions (C1)-(C4) with E = ﬂfv:l EP(g;)) # @. Let f : X — R be a
coercive Legendre function which is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of X. Then, for each xq € X, there are se-

quences {Ty}, oy which satisfy (5.1). If, for each i = 1,2,..., N, the sequence of
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errors {e;}neN C X satisfies lim,, oo €8, = 0, then each such sequence {xn}neN
converges strongly to projg(xo) as n — +oo.

Finally, the third consequence of Theorem 3 concerns the following algorithm:

T € X,
QO = X7
(5.5) Yn = Resf\cng(mn),

Qny1 = {Z €Qn: <Vf($n) - vf(yn)7z - yn> < 0}7

Tnt1 = Po, ., (%0), n=0,1,2,....

Corollary 9. Let X be a uniformly smooth and uniformly convex Banach
space, and let K be a nonempty, closed and convex subset of X. Let g : K X
K — R be a bifunction that satisfies conditions (C1)-(C4) with EP (g) # @. If
liminf, o0 Ay > 0, then for each zo € X, the sequence {xn}neN generated by

(5.5) converges strongly to Pgp(g)(20) as n — +00.
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