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Abstract. We propose two algorithms for finding (common) zeroes of finitely

many maximal monotone mappings in reflexive Banach spaces. These algo-

rithms are based on the Bregman distance related to a well-chosen convex

function and improves previous results.

Finally, we mention two applications of our algorithms for solving equi-

librium problems and convex feasibility problems.

1. Introduction

In this paper we are concerned with the problem of finding zeroes of mappings

A : X → 2X
∗
, that is, find x ∈ domA such that

(1.1) 0∗ ∈ Ax.

The domain of a mapping A is defined by the set {x ∈ X : Ax 6= ∅}.
Many problems have reformulations which require to find zeroes, for instance,

differential equations, evolution equations, complementarity problems, mini-max

problems, variational inequalities and optimization problems. It is well known that

minimizing a convex function f can be reduced to finding zeroes of the subdiffer-

ential mapping A = ∂f .

One of the most important techniques for solving the inclusion (1.1) is going

back to the work of Browder [15] in the sixties. One of the basic ideas in the case

of a Hilbert space H is reducing (1.1) to a fixed point problem of the operator

RA : H → 2H defined by

RA = (I +A)
−1

2000 Mathematics Subject Classification. 47H05, 47H09, 47J25, 49J40, 90C25.
Key words and phrases. Banach space, bifunction, Bregman projection, convex feasibility prob-
lem, equilibrium problem, Legendre function, monotone mapping, proximal point algorithm, re-
solvent, totally convex function.

1



2 SHOHAM SABACH

which we call in what follows the classical resolvent of A. When H is a Hilbert

space and A satisfies some monotonicity conditions (see Section 2.2), the classical

resolvent of A is with full domain and nonexpansive, that is,

‖RAx−RAy‖ ≤ ‖x− y‖ ∀x, y ∈ H,

and even firmly nonexpansive, that is,

‖RAx−RAy‖2 ≤ 〈RAx−RAy, x− y〉 ∀x, y ∈ H.

These properties of the resolvent ensure that its Picard iterates xn+1 = RAxn

converge weakly, and sometimes even strongly, to a fixed point of RA which is

necessarily a zero of A. Rockafellar introduced this iteration method and called it

the proximal point algorithm (see [44, 45]).

Methods for finding zeroes of monotone mappings in Hilbert space are based

on the good properties of the resolvent RA such as nonexpansiveness but when we

try to extend these methods to Banach spaces we encounter several difficulties (see,

for example, [21]).

One way to overcome this difficulty is to use, instead of the classical resolvent,

a new type of resolvent introduced by Bauschke, Borwein and Combettes (see [5]).

If f : X → (−∞,+∞] is a Legendre (see Section 2.1) and convex function, then

the operator ResfA : X → 2X given by

ResfA = (∇f +A)
−1 ◦ ∇f

is well defined when A is maximal monotone and int dom f
⋂

domA 6= ∅. Moreover,

similarly to the classical resolvent, a fixed point of ResfA is a solution of (1.1). This

leads to the question whether, and under which conditions for A and f , the iterates

of ResfA approximate a fixed point of ResfA.

In order to modify the proximal point algorithm for the new resolvent and

prove the convergence of the iterates of ResfA we need nonexpansivity properties

of this resolvent as in the case of the classical resolvent. Bauschke, Borwein and

Combettes introduced the class of Bregman firmly nonexpansive operators (see

Subsection 2.3) and proved that the resolvent, ResfA, belongs to this class. They

also proved many others properties of this resolvent (see [5]). These properties

are essential to the convergence of the iterates of ResfA. There are many papers

that deal with the proximal point algorithm in Hilbert and Banach spaces (see, for

instance, [6, 9, 10, 14, 20, 36, 37]).

In this paper we propose two algorithms using products of resolvents. We mod-

ify the classical proximal point algorithm in order to obtain the strong convergence

of the iterates of ResfA. These algorithms hold in general reflexive Banach spaces

and take into account possible computational errors.
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Our paper is organized as follows. In the following section we give a brief

overview of the concepts we will use further. Section 2 consists of three subsections

where the first one deals with functions and the second deals with mappings. The

third subsection focused on types of Bregman nonexpansive operators. We intro-

duce our two algorithms and prove the main result in the third section (Theorem

3.1). Sections 4 and 5 include applications of Theorem 3.1. We modify our algo-

rithms in order to solve equilibrium problems (Theorem 4.1) and propose algorithms

for solving the convex feasibility problem (Theorem 5.1).

2. Preliminaries

Throughout this paper X is a real reflexive Banach space and X∗ is its dual.

For ξ ∈ X∗ and x ∈ X the pairing 〈ξ, x〉 denotes the value of ξ at x. We denote by

R the set of real numbers and by N the set of nonnegative integers.

We divide our preliminaries into three subsections. The first one (Subsection

2.1) is devoted to notions and results on functions. In the second subsection (Sub-

section 2.2) we give notions and basic results of mappings. The last subsection

(Subsection 2.3) deals with types of Bregman nonexpansive operators.

2.1. Properties of Functions. Let f : X → (−∞,+∞] be a function. The

domain of the function f is the set

dom f := {x ∈ X : f (x) < +∞} .

If dom f 6= ∅ then the function f is called proper. From now on, we assume that f

is a proper, convex and lower semicontinuous function.

Let x ∈ int dom f . The function f is called Gâteaux differentiable at x if

(2.1) f◦ (x, y) := lim
t→0

f (x+ ty)− f (x)

t

exists for any y ∈ X. In this case, the gradient of f at x is defined by ∇f (x) :=

f◦ (x, ·). If f is Gâteaux differentiable at any x ∈ int dom f we will say that f is

Gâteaux differentiable.

If the limit in (2.1) is attained uniformly for any y ∈ X with ‖y‖ = 1 we say

that f is Fréchet differentiable at x. Let E be a subset of X. If the limit in (2.1)

is attained uniformly for any x ∈ E and y ∈ X with ‖y‖ = 1 we say that f is

uniformly Fréchet differentiable at x.

It is well known that f is Gâteaux (respectively Fréchet) differentiable at

x ∈ int dom f if and only if the gradient ∇f is norm-to-weak∗ (norm-to-norm)

continuous at x (see [34, Propostion 2.8, p. 19]). In [36] the authors proved the

following result which will be very useful in the proof of our main result (Theorem

3.1).
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Proposition 2.1 (cf. [36, Proposition 2.1, p. 474]). If f : X → R is uniformly

Fréchet differentiable and bounded on bounded subsets of X, then ∇f is uniformly

continuous on bounded subsets of X from the strong topology of X to the strong

topology of X∗.

The function f : X → (−∞,+∞] is called Legendre if it satisfies the following

two conditions:

(L1) the function f is Gâteaux differentiable, int dom f 6= ∅ and dom∇f =

int dom f ;

(L2) the function f∗ is Gâteaux differentiable, int dom f∗ 6= ∅ and dom∇f∗ =

int dom f∗.

The notion of Legendre functions in infinite dimensional spaces was first studied

by Bauschke, Borwein and Combettes in [4]. It is clear from the definition that

f is Legendre if and only if f∗ is Legendre. It also follows that f and f∗ are

strictly convex on int dom f and int dom f∗, respectively. The function (1/p) ‖·‖p

is Legendre for any 1 < p < +∞ when the Banach space is smooth and strictly

convex. Other properties and examples of Legendre functions can be found, for

example, in [3, 4].

From now on we assume that f : X → (−∞,+∞] is also Legendre.

The Bregman distance with respect to f , or simply, Bregman distance which

was introduced in [22] is the bifunction Df : dom f × int dom f → [0,+∞) defined

by

(2.2) Df (y, x) := f (y)− f (x)− 〈∇f (x) , y − x〉 .

Its importance in optimization as a substitute for the usual distance or, more

exactly, for the square of the norm-induced on X, was first emphasized by Bregman

[13]. It should be noted that Df is not a distance in the usual sense of the term.

Clearly, Df (x, x) = 0, but Df (y, x) = 0 may not imply x = y. In our case when f

is Legendre this indeed holds (see [4, Theorem 7.3(vi), p. 642]). In general, Df is

not symmetric and does not satisfies the triangle inequality. However, Df satisfies

the three point identity

(2.3) Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f (z)−∇f (y) , x− y〉 .

for any x ∈ dom f and y, z ∈ int dom f .

The modulus of total convexity at x is the bifunction υf : int dom f×[0,+∞)→
[0,+∞], defined by

υf (x, t) := inf {Df (y, x) : y ∈ dom f, ‖y − x‖ = t} .

The function f is called totally convex at x ∈ int dom f if υf (x, t) is positive for

any t > 0. This notion was first introduced by Butnariu and Iusem in [18, Section
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1.2, p. 17] (see also [17]). Let E be a nonempty subset of X. The modulus of total

convexity of f on E is the bifunction υf : int dom f × [0,+∞) → [0,+∞] defined

by

υf (E, t) := inf
{
υf (x, t) : x ∈ E

⋂
int dom f

}
.

The function f is called totally convex on bounded subsets if υf (E, t) is positive for

any nonempty and bounded subset E and for any t > 0.

In [18, Proposition 1.2.5, p. 25] the authors proved that any uniformly convex

function at x ∈ int dom f (see [49]) is totally convex function at x ∈ int dom f . It

is also known that every totally convex function is strictly convex. For the case of

bounded subsets there is no difference between these notions, that is, f is totally

convex on bounded subsets if and only if f is uniformly convex on bounded subsets

(see [21, Theorem 2.10, p. 9]). For more information on totally convex functions

and Bregman distance see, for instance, [18, 19, 43].

We have the following property of the Bregman distance related to totally

convex functions.

Proposition 2.2 (cf. [37, Lemma 3.1, p. 31]). Let f : X → R be a

Gâteaux differentiable and totally convex function. If x ∈ X and the sequence

{Df (xn, x)}n∈N is bounded, then the sequence {xn}n∈N is bounded too.

The next property is also true where ∇f∗ is bounded on bounded subsets of

int dom f∗.

Proposition 2.3. Let f : X → R be a Legendre function such that ∇f∗

is bounded on bounded subsets of int dom f∗. Let x ∈ X if {Df (x, xn)}n∈N is

bounded, then the sequence {xn}n∈N is bounded too.

Proof. Combining Theorem 3.3 and Lemma 7.3(viii) of [4] with Proposition

4.1(v)(a) of [5]. �

Let {xn}n∈N and {yn}n∈N be sequences in int dom f and dom f , respectively,

where the first one is bounded. The function f is called sequentially consistent if

lim
n→∞

Df (yn, xn) = 0 =⇒ lim
n→∞

‖yn − xn‖ = 0.

The following result emphasizes the connection between the notions of sequentially

consistent and totally convex functions on bounded subsets.

Proposition 2.4 (cf. [18, Lemma 2.1.2, p. 67]). The function f is totally

convex on bounded subsets if and only if it is sequentially consistent.

2.2. Properties of Mappings. Let A : X → 2X
∗

be a mapping. The resol-

vent of A is the multi-valued operator ResfA : X → 2X defined by

(2.4) ResfA = (∇f +A)
−1 ◦ ∇f.
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This class of operators was first introduced and studied in [5]. If we assume that

the mapping A is monotone, that is, satisfies the following inequality

(2.5) 〈ξ − η, x− y〉 ≥ 0.

for any ξ ∈ Ax and η ∈ Ay, then the resolvent is single-valued when f is strictly

convex on int dom f (as in our case). If A = ∂ϕ, where ϕ is a proper, lower

semicontinuous and convex function, then the proximal operator proxfϕ is defined

as follows

proxfϕ := Resf∂ϕ.

If K is a subset of X then the indicator function ιK of K is defined by

ιK (x) :=

{
0 if x ∈ K
+∞ if x /∈ K.

When the set K is nonempty, closed and convex the function ιK is proper, convex

and lower semicontinuous, and therefore ∂ιK exists and is a maximal monotone

mapping with domain K (see [24, Proposition 4.1, p. 168]). We recall that, a

monotone mapping A is said to be maximal if graphA is not a proper subset of the

graph of any other monotone mapping.

If we take ϕ = ιK then the proximal operator proxfιK is called the Bregman

projection onto K with respect to f and we denote it by projfK . Therefore, the

Bregman projection (cf. [13]) of x ∈ int dom f onto a nonempty, closed and convex

subset K of dom f is necessarily the unique vector projfK(x) ∈ K which satisfies

Df

(
projfK (x) , x

)
= inf {Df (y, x) : y ∈ K} .

This projection is a generalization for Banach spaces of the metric projection in

Hilbert spaces. Indeed, when X is a Hilbert space and f = ‖·‖2, then the Bregman

distance Df (y, x) equals ‖y − x‖2 and the Bregman projection of x onto K is the

metric projection PK , i.e., argmin {‖y − x‖ : y ∈ K}.
In addition to this similarity between Bregman and metric projection we have

the following variational characterization of Bregman projection which is a gener-

alization of the metric projection characterization.

Proposition 2.5 (cf. [21, Corollary 4.4, p. 23]). Suppose that f is Gâteaux

differentiable and totally convex on int dom f . Let x ∈ int dom f and let K ⊂
int dom f be a nonempty, closed and convex set. If x̂ ∈ K, then the following

conditions are equivalent: (i) the vector x̂ is the Bregman projection of x onto K

with respect to f ;

(ii) The vector x̂ is the unique solution of the variational inequality

〈∇f (x)−∇f (z) , z − y〉 ≥ 0 ∀y ∈ K;
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(iii) The vector x̂ is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x) ∀y ∈ K.

The next result is essential for our purposes.

Proposition 2.6 (cf. [37, Lemma 3.2, p. 31]). Let f : X → R be a Gâteaux

differentiable and totally convex function, x0 ∈ X and let K be a nonempty,

closed and convex subset of X. Suppose that the sequence {xn}n∈N is bounded

and any weak subsequential limit of {xn}n∈N belongs to K. If Df (xn, x0) ≤
Df

(
projfK (x0) , x0

)
for any n ∈ N, then {xn}n∈N converges strongly to projfK (x0).

2.3. Types of Bregman Nonexpansive Operators. In 2003, Bauschke,

Borwein and Combettes [5] studied the following class of operators. Let K be

a nonempty subset of int dom f and let T be an operator from K to int dom f .

An operator T is called Bregman firmly nonexpansive (BFNE) if it satisfies the

following inequality

(2.6) 〈∇f (Tx)−∇f (Ty) , Tx− Ty〉 ≤ 〈∇f (x)−∇f (y) , Tx− Ty〉

for all x, y ∈ K. Inequality (2.6) is equivalent to the following inequality

(2.7)

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x)

since we use the definition of Bregman distance (see (2.2)). More information on

BFNE operators can be found, for example, in [5, 38].

The fixed point set of the operator T is denoted by F (T ). If F (T ) is nonempty

then we can take x ∈ K and p := y ∈ F (T ) in (2.6) and obtain the following

inequality

(2.8) 〈∇f (x)−∇f (Tx) , Tx− p〉 ≥ 0

which is equivalent to

(2.9) Df (p, Tx) +Df (Tx, x) ≤ Df (p, x) .

An operator which satisfies (2.8) is called quasi-Bregman firmly nonexpansive

(QBFNE). Any QBFNE operator satisfies

(2.10) Df (p, Tx) ≤ Df (p, x)

for all x ∈ K and p ∈ F (T ). Any operator which satisfies (2.10) will be called

quasi-Bregman nonexpansive (QBNE). In [38, Lemma 15.5, p. 305] it is proved

that the fixed point set of a QBNE operator is closed and convex when f is a

Legendre function. Bauschke, Borwein and Combettes [5] proved that when the

mapping A is maximal monotone then its resolvent ResfA is a BFNE single valued
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operator with full domain and

F
(

ResfA

)
= A−1 (0∗)

⋂
(int dom f)

where x ∈ A−1 (0∗) if and only if 0∗ ∈ Ax.

Let f : X → R be a Legendre function and assume that A−1 (0∗) 6= ∅. Then

F
(

ResfA

)
= A−1 (0∗) 6= ∅ and the resolvent is also a QBNE operator (since any

BFNE operator is QBNE when its fixed point set is nonempty) and therefore

(2.11) Df

(
u,ResfA (x)

)
≤ Df (u, x)

for all u ∈ A−1 (0∗) and x ∈ X.

Let K be a nonempty subset of X. A point p ∈ K is said to be an asymptotic

fixed point of T [35] if there exists a sequence {xn}n∈N in K such that xn ⇀ p and

xn − Txn → 0. We denote the asymptotic fixed point set of T by F̂ (T ). It is clear

from the definition that F (T ) ⊂ F̂ (T ) for any operator T .

Another class of operators which was introduced in [23, 35] is the following.

We say that an operator T is Bregman strongly nonexpansive (BSNE) with respect

to a nonempty F̂ (T ) if for all p ∈ F̂ (T ) and x ∈ K

(2.12) Df (p, Tx) ≤ Df (p, x)

and for any {xn}n∈N ⊂ K bounded, p ∈ F̂ (T ), with

(2.13) lim
n→∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that

(2.14) lim
n→∞

Df (Txn, xn) = 0.

Note that the notion of strongly nonexpansive operators (with respect to the norm)

was first introduced and studied in [16]. Reich proves in [35] two properties of

BSNE operators. These two properties are summarized in the following result.

Proposition 2.7. Let f : X → R be a Legendre function which is bounded,

uniformly Fréchet differentiable and totally convex on bounded subsets of X. Let

K be a nonempty, closed and convex subset of X. If {Ti : 1 ≤ i ≤ N} are N BSNE

operators from K into itself, and the set

F̂ =
⋂{

F̂ (Ti) : 1 ≤ i ≤ N
}

is not empty, then F̂ (TNTN−1 · · ·T1) ⊂ F̂ . In addition, the operator TNTN−1 · · ·T1
is also BSNE operator with respect to F̂ (TNTN−1 · · ·T1).

In applications it seems that the assumption F̂ (T ) = F (T ) on the operator T

is essential for the convergence of iterative methods. In [38, Lemma 15.6, p. 306]

a sufficient condition for a BFNE operator to satisfy this condition is given.
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Remark 1. Let {Ti : 1 ≤ i ≤ N} be N BSNE operators which satisfy F̂ (Ti) =

F (Ti) for each 1 ≤ i ≤ N and let T = TNTN−1 · · ·T1. If

F =
⋂
{F (Ti) : 1 ≤ i ≤ N}

and F (T ) are nonempty, then T is also BSNE with F (T ) = F̂ (T ). Indeed, from

Proposition 2.7 we get that

F (T ) ⊂ F̂ (T ) ⊂
⋂{

F̂ (Ti) : 1 ≤ i ≤ N
}

=
⋂
{F (Ti) : 1 ≤ i ≤ N} ⊂ F (T ) ,

which implies that F (T ) = F̂ (T ), as claimed.

3. Products of Resolvents

In this section we propose two algorithms for finding common zeroes of finitely

many maximal monotone mappings. Both algorithms are based on products of

resolvents. For earlier results based on this method see, for example, [9, 16, 35, 42].

3.1. Bauschke-Combettes Iterative Method. As we have seen in the In-

troduction, one of the main methods for finding zeroes of maximal monotone map-

ping in Hilbert spaces, is the classical proximal point algorithm

(3.1) xn+1 = RλnA (xn) = (I + λnA)
−1
xn, n = 0, 1, 2, . . . ,

where {λn}n∈N is a given sequence of positive real numbers. Note that (3.1) is

equivalent to

(3.2) 0 ∈ Axn+1 +
1

λn
(xn+1 − xn) , n = 0, 1, 2, . . . .

This algorithm was first introduced by Martinet [33] and further developed by

Rockafellar [44], who proved that the sequence generated by (3.1) converges weakly

to an element of A−1 (0) when A−1 (0) is nonempty and lim infn→∞ λn > 0. Fur-

thermore, Rockafellar [44] raised the question whether sequence generated by (3.1)

converges strongly. For general monotone mappings a negative answer to this ques-

tion follows from [28]; see also [10]. In the case of subdifferentials this question

was answered in the negative by Güler [29], who presented an example of a sub-

differential mapping for which the sequence generated by (3.1) converges weakly

but not strongly (see [10] for a more recent and simpler example). Bauschke and

Combettes [6] have modified the proximal point algorithm (see (3.1) and (3.2)) in

order to generate a strongly convergent sequence. They introduced, for example,

the following algorithm (see [6, Corollary 6.1(ii), p. 258] for a single mapping and
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λn = 1/2):

(3.3)



x0 ∈ H,

yn = RλnA (xn) ,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖} ,

Qn = {z ∈ H : 〈x0 − xn, z − xn〉 ≤ 0} ,

xn+1 = PCn∩Qn (x0) , n = 0, 1, 2, . . . .

Recently, this algorithm was generalized to general reflexive Banach spaces in the

following way (see [37]).

(3.4)



x0 ∈ X,

yn = ResfλnA
(xn) ,

Cn = {z ∈ X : Df (z, yn) ≤ Df (z, xn)} ,

Qn = {z ∈ X : 〈∇f (x0)−∇f (xn) , z − xn〉 ≤ 0} ,

xn+1 = projfCn∩Qn
(x0) , n = 0, 1, 2, . . . .

where f : X → (−∞,+∞] is a well chosen convex function.

In [37] we proposed a modification of Algorithm (3.4) for finding common zeroes

of finitely many maximal monotone mappings. In this algorithm we build, at any

step, N copies of the half-space Cn with respect to any mapping. Then the next

iteration is the Bregman projection onto the intersection of N + 1 half-spaces (N

copies of Cn and Qn). In this paper we propose a new variant of Algorithm (3.4)

which also find common zeroes of finitely many maximal monotone mappings. In

the new algorithm we use the concept of products of resolvents and therefore we

build, at any step, only one copy of the half-space Cn. Then the the next iteration

is the Bregman projection onto the intersection of two half-spaces (Cn and Qn).

(3.5)



x0 ∈ X,

yn = Resf
λN
n AN

· · ·Resfλ1
nA1

(xn + en) ,

Cn = {z ∈ X : Df (z, yn) ≤ Df (z, xn + en)} ,

Qn = {z ∈ X : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0} ,

xn+1 = projfCn∩Qn
(x0), n = 0, 1, 2, . . . ,

The following algorithm is a modification of Algorithm (3.5) where at any step we

calculate the Bregman projection onto only one set which is not a half-space. Even

if we only project onto one set, the computation of the projection is harder since

this set is a general convex set. Even though we present and analyze this algorithm

since the proof is very similar to the one of Algorithm (3.5). More precisely, we
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introduce the following algorithm.

(3.6)



x0 ∈ X,

H0 = X,

yn = Resf
λN
n AN

· · ·Resfλ1
nA1

(xn + en) ,

Hn+1 = {z ∈ Hn : Df (z, yn) ≤ Df (z, xn + en)} ,

xn+1 = projfHn+1
(x0) , n = 0, 1, 2, . . . .

We have the following theorem.

Theorem 3.1. Let Ai : X → 2X
∗
, i = 1, 2, . . . , N , be N maximal monotone

mappings with Z :=
⋂N
i=1A

−1
i (0∗) 6= ∅. Let f : X → R be a Legendre function

which is bounded, uniformly Fréchet differentiable and totally convex on bounded

subsets of X. Suppose that ∇f∗ is bounded on bounded subsets of int dom f∗. Then,

for each x0 ∈ X, the sequence {xn}n∈N which is generated by (3.5) or (3.6) is well

defined. If the sequence of errors {en}n∈N ⊂ X satisfies limn→∞ en = 0 and for

each i = 1, 2, . . . , N , lim infn→∞ λin > 0, then the sequence {xn}n∈N converges

strongly to projfZ (x0) as n→∞.

We will prove Theorem 3.1 by sequence of five lemmata.

Lemma 3.1. Algorithms (3.5) and (3.6) are well defined.

Proof. We have to prove that the sequences {xn}n∈N and {yn}n∈N are well

defined, that is, we have to prove that the Bregman projection onto Cn
⋂
Qn, Hn

and Z are well defined. We will show that these sets are nonempty, closed and

convex.

As we explained in Section 2.2 we have that F
(

ResfλAi

)
= A−1i (0∗) is closed

and convex for any i = 1, 2, . . . , N . Therefore Z is nonempty, closed and convex

and the Bregman projection onto Z, projfZ , is well defined.

Note that dom∇f = X because dom f = X and f is Legendre. Hence it

follows from [5, Corollary 3.14, p. 606] that dom ResfλA = X. Hence the sequence

{yn}n∈N is well defined. It is easy to check that Cn is a closed half-space for

any n ∈ N. Let u ∈ Z. We denote by T in the resolvent Resfλi
nAi

and by Sin

the composition T in · · ·T 1
n for any i = 1, 2, . . . , N and for each n ∈ N. Therefore

yn = TNn · · ·T 1
n (xn + en) = SNn (xn + en). We also assume that S0

n = I, where I is

the identity operator.

Each resolvent Resfλi
nAi

is a QBNE operator and therefore SNn , a composition

of QBNE operators, is also QBNE. Hence we get from (2.12) that

Df (u, yn) = Df

(
u,Resf

λN
n AN

· · ·Resfλ1
nA1

(xn + en)
)

= Df

(
u, SNn (xn + en)

)
≤ Df (u, xn + en)(3.7)
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which implies that u ∈ Cn. Thus Z ⊂ Cn for any n ∈ N. In the same way we prove

that Z ⊂ Hn for any n ∈ N. This proves that Algorithm (3.6) is well defined.

For Algorithm (3.5) we only have to show that Cn
⋂
Qn is nonempty. We will

prove that by induction. It is clear that Z ⊂ Q0 = X. Thus Z ⊂ C0

⋂
Q0. Now

suppose that Z ⊂ Cn−1
⋂
Qn−1 for some n ≥ 1. Then xn = projfCn−1∩Qn−1

(x0) is

well defined because Cn−1
⋂
Qn−1 is a nonempty, closed and convex subset of X.

Thence from Proposition 2.5(ii) we obtain

〈∇f (x0)−∇f (xn) , y − xn〉 ≤ 0

for any y ∈ Cn−1
⋂
Qn−1. Hence Z ⊂ Qn and therefore Z ⊂ Cn

⋂
Qn. Conse-

quently, we get that Z ⊂ Cn
⋂
Qn for any n ∈ N. This proves that Algorithm (3.5)

is well defined, as claimed. �

Lemma 3.2. Let {xn}n∈N be the sequence which is generated by Algorithm (3.5)

or (3.6). Then the sequences {Df (xn, x0)}n∈N and {xn}n∈N are bounded.

Proof. We start with Algorithm (3.5). It is easy to see that xn = projfQn
(x0)

which means that we can use Proposition 2.5(iii) with K = Qn. Therefore

(3.8)

Df (xn, x0) = Df

(
projfQn

(x0) , x0

)
≤ Df (u, x0)−Df

(
u,projfQn

(x0)
)
≤ Df (u, x0)

for all u ∈ Z ⊂ Qn. In Algorithm (3.6) the situation is similar where K = Hn and

xn = projfHn
(x0). Therefore (3.8)

(3.9)

Df (xn, x0) = Df

(
projfHn

(x0) , x0

)
≤ Df (u, x0)−Df

(
u,projfHn

(x0)
)
≤ Df (u, x0)

for any u ∈ Z ⊂ Hn.

Hence in both cases the sequence {Df (xn, x0)}n∈N is bounded, as asserted.

Now we use Proposition 2.2 in order to get the second desired result. �

Lemma 3.3. Let {xn}n∈N be the sequence which is generated by Algorithm (3.5)

or (3.6). Then the sequences {yn}n∈N and
{
Sin (xn + en)

}
n∈N, i = 1, 2, . . . , N , are

bounded.

Proof. Let u ∈ Z. From the three point identity (see 2.3)) we get that

Df (u, xn + en) = Df (u, xn)−Df (xn + en, xn)

+ 〈∇f (xn + en)−∇f (xn) , u− (xn + en)〉

≤ Df (u, xn) + 〈∇f (xn + en)−∇f (xn) , u− (xn + en)〉 .(3.10)

In the case of Algorithm (3.5) we have that

Df (u, xn) = Df

(
u,projfCn−1∩Qn−1

(x0)
)
≤ Df (u, x0)
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since the Bregman projection is QBNE and Z ⊂ Cn−1
⋂
Qn−1. In the case of

Algorithm (3.6) the situation is similar since Z ⊂ Hn. Therefore in both cases we

have that

(3.11) Df (u, xn) ≤ Df (u, x0) .

On the other hand since the sequence {xn}n∈N is bounded (see Lemma 3.2) and f

is uniformly Fréchet differentiable we obtain from Proposition 2.1 that

lim
n→∞

‖∇f (xn + en)−∇f (xn)‖∗ = 0

because limn→∞ en = 0. This means that if we take into account that {xn}n∈N is

bounded we get

(3.12) lim
n→∞

〈∇f (xn)−∇f (xn + en) , u− (xn + en)〉 = 0.

Combining (3.10), (3.11) and (3.12) shows that {Df (u, xn + en)}n∈N is bounded.

Now from (3.7) we see that also {Df (u, yn)}n∈N is bounded. The boundedness of

the sequence {yn}n∈N now follows from Proposition 2.3. In addition, we have for

any i = 1, 2, . . . , N that

(3.13) Df

(
u, Sin (xn + en)

)
≤ Df (u, xn + en) .

Therefore in a similar way we prove that each
{
Sin (xn + en)

}
n∈N is bounded. �

Lemma 3.4. Every weak subsequential limit of {xn}n∈N which is generated by

Algorithm (3.5) or (3.6) belongs to Z.

Proof. We will show that both algorithms satisfy

(3.14) Df (xn+1, xn) +Df (xn, x0) ≤ Df (xn+1, x0) .

In Algorithm (3.5) it follows from the definition of Qn and Proposition 2.5(ii) that

projfQn
(x0) = xn. Since xn+1 ∈ Qn, it follows from Proposition 2.5(iii) that

Df

(
xn+1,projfQn

(x0)
)

+Df

(
projfQn

(x0) , x0

)
≤ Df (xn+1, x0)

and therefore (3.14) holds. In Algorithm (3.6) it follows from the fact that xn+1 =

projfHn+1
(x0) ∈ Hn+1 ⊂ Hn and again from Proposition 2.5(iii) we get that

Df

(
xn+1,projfHn

(x0)
)

+Df

(
projfHn

(x0) , x0

)
≤ Df (xn+1, x0)

and therefore (3.14) holds.

Therefore the sequence {Df (xn, x0)}n∈N is increasing and since it is also bounded

(see Lemma 3.2), limn→∞Df (xn, x0) exists. Thus from (3.14) it follows that

(3.15) lim
n→∞

Df (xn+1, xn) = 0.
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Since {xn}n∈N is bounded (see Lemma 3.2), Proposition 2.4 now implies that

limn→∞ (xn+1 − xn) = 0.

It follows from the definition of the Bregman distance (see (2.2)) that

Df (xn, xn + en) = f (xn)− f (xn + en)− 〈∇f (xn + en) , xn − (xn + en)〉

= f (xn)− f (xn + en) + 〈∇f (xn + en) , en〉 .

The function f is bounded on bounded subsets of X and therefore ∇f is also

bounded on bounded subsets of X (see [18, Proposition 1.1.11, p. 16]). In addition,

f is uniformly Fréchet differentiable and therefore f is uniformly continuous on

bounded subsets (see [1, Theorem 1.8, p. 13]). Hence, since limn→∞ en = 0, we

have that

(3.16) lim
n→∞

Df (xn, xn + en) = 0.

The three point identity (see (2.3)) now implies that

Df (xn+1, xn + en) = Df (xn+1, xn) +Df (xn, xn + en)

+ 〈∇f (xn)−∇f (xn + en) , xn+1 − xn〉 .

Since ∇f is bounded on bounded subsets of X, {xn}n∈N and {xn + en}n∈N are

bounded, limn→∞ (xn+1 − xn) = 0, (3.15) and (3.16) we get

(3.17) lim
n→∞

Df (xn+1, xn + en) = 0.

Next it follows from the inclusion xn+1 ∈ Cn (in the case of Algorithm (3.5)) or

xn+1 ∈ Hn (in the case of Algorithm (3.6)) that

Df (xn+1, yn) ≤ Df (xn+1, xn + en)

hence (3.17) leads to limn→∞Df (xn+1, yn) = 0. Since {yn}n∈N is bounded (see

Lemma 3.3), Proposition 2.4 now implies that

lim
n→∞

(yn − xn+1) = 0.

Therefore

‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − xn‖ → 0.

Since limn→∞ en = 0, it follows that

lim
n→∞

‖yn − (xn + en)‖ = 0.

Since f is uniformly Fréchet differentiable we get from Proposition 2.1 that

(3.18) lim
n→∞

‖∇f (xn + en)−∇f (yn)‖∗ = 0.
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Since f is uniformly Fréchet differentiable, it is also uniformly continuous (see [1,

Theorem 1.8, p. 13]) and therefore

lim
n→∞

|f (yn)− f (xn + en)| = 0.

Hence, from the definition of Bregman distance (see (2.2)), we get that

lim
n→∞

Df (yn, xn + en)(3.19)

= lim
n→∞

[f (yn)− f (xn + en)− 〈∇f (xn + en) , yn − (xn + en)〉] = 0.

Let u ∈ Z. From the three point identity (see (2.3)) we obtain that

Df (u, xn + en)−Df (u, yn) = Df (yn, xn + en)+〈∇f (xn + en)−∇f (yn) , yn − u〉 .

Since the sequence {yn}n∈N is bounded (see Lemma 3.3) we obtain from (3.18)

and(3.19) that

(3.20) lim
n→∞

(Df (u, xn + en)−Df (u, yn)) = 0.

Thence from (3.20) we get that

lim
n→∞

(
Df (u, xn + en)−Df

(
u, SNn (xn + en)

))
= 0

for any u ∈ Z. From (2.9), (2.10), (3.7) and (3.13) we get that

Df

(
Sin (xn + en) , Si−1n (xn + en)

)
= Df

(
T in
(
Si−1n (xn + en)

)
, Si−1n (xn + en)

)
≤ Df

(
u, Si−1n (xn + en)

)
−Df

(
u, Sin (xn + en)

)
≤ Df (u, xn + en)−Df (u, yn) .

Hence from (3.20) we get that

(3.21) lim
n→∞

Df

(
Sin (xn + en) , Si−1n (xn + en)

)
= 0,

for any i = 1, . . . , N . Therefore from Proposition 2.4 and the fact that
{
Sin (xn + en)

}
n∈N

is bounded (see Lemma 3.3) we obtain that

(3.22) lim
n→∞

(
Sin (xn + en)− Si−1n (xn + en)

)
= 0,

for any i = 1, . . . , N . From the three point identity (see (2.3)) we get that

Df

(
Sin (xn + en) , xn + en

)
−Df

(
Si−1n (xn + en) , xn + en

)
= Df

(
Sin (xn + en) , Si−1n (xn + en)

)
+
〈
∇f (xn + en)−∇f

(
Si−1n (xn + en)

)
, Si−1n (xn + en)− Sin (xn + en)

〉
.

The sequence {xn}n∈N is bounded (see Lemma 3.2) and the sequence
{
Sin (xn + en)

}
n∈N

is bounded (see Lemma 3.3). Hence, from (3.21) and (3.22) we get that

(3.23) lim
n→∞

(
Df

(
Sin (xn + en) , xn + en

)
−Df

(
Si−1n (xn + en) , xn + en

))
= 0.
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Since

lim
n→∞

Df (yn, xn + en) = lim
n→∞

Df

(
SNn (xn + en) , xn + en

)
= 0

we obtain from (3.23) that

lim
n→+∞

Df

(
Sin (xn + en) , xn + en

)
= 0

for any i = 1, . . . , N . Proposition 2.4 and the fact that {xn + en}n∈N is bounded

(see Lemma 3.2) now implies that

(3.24) lim
n→+∞

(
Sin (xn + en)− (xn + en)

)
= 0

for any i = 1, . . . , N , that is,

lim
n→∞

(
Resfλi

nAi

(
Si−1n (xn + en)

)
− (xn + en)

)
= 0

for any i = 1, . . . , N . From the definition of the resolvent (see 2.4) it follows that

∇f
(
Si−1n (xn + en))

)
∈
(
∇f + λinAi

) (
Sin (xn + en)

)
hence

(3.25) ξin :=
1

λin

(
∇f

(
Si−1n (xn + en)

)
−∇f

(
Sin (xn + en)

))
∈ Ai

(
Sin (xn + en)

)
for any i = 1, . . . , N . Applying Proposition 2.1 to (3.22) we get that

lim
n→∞

∥∥∇f (Si−1n (xn + en)
)
−∇f

(
Sin (xn + en)

)∥∥
∗ = 0.

Now let {xnk
}k∈N be a weakly convergent subsequence of {xn}n∈N and denote

its weak limit by v. Then from (3.24) it follows that
{
Sink

(xnk
+ enk

)
}
k∈N, i =

1, . . . , N , also converges weakly to v. Since lim infn→∞ λin > 0, it follows from

(3.25) that

lim
n→+∞

ξin = 0∗

for any i = 1, . . . , N . From the monotonicity of Ai it follows that〈
η − ξin, z − Sink

(xnk
+ enk

)
〉
≥ 0,

for all (z, η) ∈ graph (Ai) and for all i = 1, . . . , N . This, in turn, implies that

〈η, z − v〉 ≥ 0

for all (z, η) ∈ graph (Ai) for any i = 1, . . . , N . Therefore, using the maximal

monotonicity of Ai, we now obtain that v ∈ A−1i (0∗) for each i = 1, 2, . . . , N . Thus

v ∈ Z and this proves the result. �

Lemma 3.5. The sequence {xn}n∈N which is generated by Algorithm (3.5) or

(3.6) converges strongly to projfZ (x0).
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Proof. In order to prove the result we will use Proposition 2.6. Let ũ =

projfZ (x0). In both algorithms we have that Df (xn+1, x0) ≤ Df (ũ, x0). Indeed,

in Algorithm (3.5) we have that xn+1 = projfCn∩Qn
(x0) and Z is contained in

Cn
⋂
Qn. In Algorithm (3.6) we have that xn+1 = projfHn+1

(x0) and Z is contained

in Hn+1.

Therefore Proposition 2.6 implies that {xn}n∈N converges strongly to ũ, as

claimed. �

4. Equilibrium Problem

Let K be a closed and convex subset of X, and let g : K ×K → mathbbR be

a bifunction satisfying the following conditions [12, 26]:

(C1) g (x, x) = 0 for all x ∈ K;

(C2) g is monotone, i.e., g (x, y) + g (y, x) ≤ 0 for all x, y ∈ K;

(C3) for all x, y, z ∈ K,

lim sup
t↓0

g (tz + (1− t)x, y) ≤ g (x, y) ;

(C4) for each x ∈ K, g (x, ·) is convex and lower semicontinuous.

The equilibrium problem corresponding to g is to find x̄ ∈ K such that

(4.1) g (x̄, y) ≥ 0 ∀y ∈ K.

The solution set of (4.1) is denoted by EP (g).

It is well known that many interesting and complicated problems in nonlinear

analysis, such as complementarity, fixed point, Nash equilibria, optimization, saddle

point and variational inequality, can be reformulated as equilibrium problem (see,

for instance, [12]). There are several papers available in the literature which are

devoted to this problem. Most of them deal with conditions for the existence of

solution (see, for example, [30, 32]). However, there are only a few papers that

deal with iterative procedures for solving equilibrium problems in finite as well as

infinite-dimensional spaces (see, for instance, [26, 31, 39, 40, 41, 47, 48]).

The resolvent of a bifunction g : K ×K → R [26] is the operator Resfg : X →
2K , defined by

Resfg (x) = {z ∈ K : g (z, y) + 〈∇f (z)−∇f (x) , y − z〉 ≥ 0∀y ∈ K} .

A function f is said to be supercoercive if lim‖x‖→∞ (f (x) / ‖x‖) = +∞. Now we

list several properties of the resolvent of bifunctions.

Proposition 4.1 (cf. [39, Lemmas 1 and 2. pp. 130-131]). Let f : X →
(−∞,+∞] be a supercoercive Legendre function. Let K be a closed and convex

subset of X. If the bifunction g : K ×K → R satisfies conditions (C1)–(C4), then:

(i) dom Resfg = X;
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(ii) Resfg is single-valued;

(iii) Resfg is a BFNE operator;

(iv) the set of fixed points of Resfg is the solution set of the corresponding

equilibrium problem, i.e., F
(

Resfg

)
= EP (g);

(v) EP (g) is a closed and convex subset of K.

Let g : K ×K → R be a bifunction and define the mapping Ag : X → 2X
∗

in

the following way:

(4.2) Ag (x) :=

{
{ξ ∈ X∗ : g (x, y) ≥ 〈ξ, y − x〉 ∀y ∈ K} , x ∈ K

∅ , x /∈ K.

In the following result we show that under some properties of the function f we

can generate maximal monotone operator Ag from the bifunction g.

Proposition 4.2. Let f : X → (−∞,+∞] be a supercoercive, Legendre,

Fréchet differentiable and totally convex function. Let K be a closed and convex

subset of X and assume that the bifunction g : K × K → R satisfies conditions

(C1)–(C4), then:

(i) EP (g) = A−1g (0∗);

(ii) Ag is maximal monotone mapping;

(iii) Resfg = ResfAg
.

Proof. (i) If x ∈ K then from the definition of the mapping Ag (see (4.2))

and (4.1) we get that

x ∈ A−1g (0∗)⇔ g (x, y) ≥ 0 ∀y ∈ K ⇔ x ∈ EP (g) .

(ii) We first prove that Ag is monotone mapping. Let (x, ξ) and (y, η) belong to

the graph of Ag. By definition of the mapping Ag (see (4.2)) we get that

g (x, z) ≥ 〈ξ, z − x〉 and g (y, z) ≥ 〈η, z − y〉

for any z ∈ K. In particular we have that

g (x, y) ≥ 〈ξ, y − x〉 and g (y, x) ≥ 〈η, x− y〉 .

From Condition (C2) we obtain that

0 ≥ g (x, y) + g (y, x) ≥ 〈ξ − η, y − x〉

that is 〈ξ − η, x− y〉 ≥ 0 which means that Ag is monotone mapping (see (2.5)).

In order to show that Ag is maximal monotone mapping it is enough to show

that ran (Ag +∇f) = X∗ (see [11, Corollary 2.3, p. 3]). Let ξ ∈ X∗, from [19,

Proposition 2.3, p. 39] and [50, Theorem 3.5.10, p. 164] we get that f is cofinite,

that is, dom f∗ = X∗ and therefore ran∇f = int dom f∗ = X∗ which means that

∇f is surjective. Then there exists x ∈ X such that ∇f (x) = ξ. From Proposition
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4.1(i) we know that the resolvent of g has full domain and therefore from the

definition of Resfg we get that

g
(

Resfg (x) , y
)

+
〈
∇f

(
Resfg (x)

)
−∇f (x) , y − Resfg (x)

〉
≥ 0

for any y ∈ K, that is,

g
(

Resfg (x) , y
)
≥
〈
∇f (x)−∇f

(
Resfg (x)

)
, y − Resfg (x)

〉
for any y ∈ K. This shows that ∇f (x) − ∇f

(
Resfg (x)

)
∈ Ag

(
Resfg (x)

)
(see

(4.2)). Therefore

(4.3) ξ = ∇f (x) ∈ (∇f +Ag)
(

Resfg (x)
)

which means that ξ ∈ ran (Ag +∇f). This completes the proof.

(iii) As we noted in the Preliminaries (Subsection 2.3) the resolvent, ResfAg
, of

a maximal monotone mapping Ag is single valued. From Proposition 4.1(ii) the

resolvent Resfg is single valued too. Now we obtain from (4.3) that

ResfAg
= (Ag +∇f)

−1 ◦ ∇f = Resfg

as asserted. �

As we have seen in Proposition 4.1(i) and (iii) the operator A = Resfg is BFNE

and with full domain, therefore, from [11, Proposition 5.1, p. 7] the mapping

B = ∇f ◦A−1−∇f is maximal monotone. This fact also follows from Proposition

4.2(ii) where we proved that Ag is maximal monotone mapping. Therefore B = Ag,

indeed, from Proposition 4.2(iii)

B = ∇f ◦
(

Resfg

)−1
−∇f = ∇f ◦

(
ResfAg

)−1
−∇f = Ag.

Based on Algorithms 3.5 and 3.6 we propose two methods for solving system of

finite number of equilibrium problems.

Theorem 4.1. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X. Let gi : Ki ×Ki → R, i = 1, 2, . . . , N , be N bifunctions that satisfy

conditions (C1)–(C4) such that E :=
⋂N
i=1EP (gi) 6= ∅. Let f : X → R be a

supercoercive Legendre function which is bounded, uniformly Fréchet differentiable

and totally convex on bounded subsets of X. Then, for each x0 ∈ X, the sequence

{xn}n∈N which is generated by Algorithms (3.5) or (3.6) with

yn = Resf
λN
n gN
· · ·Resfλ1

ng1
(xn + en)

is well defined. If the sequence of errors {en}n∈N ⊂ X satisfies limn→∞ en = 0 and

for each i = 1, 2, . . . , N , lim infn→∞ λin > 0, then the sequence {xn}n∈N converges

strongly to projfE (x0) as n→∞.
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5. Convex Feasibility Problems

Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex subsets of X. The

convex feasibility problem (CFP) is to find an element in the assumed nonempty in-

tersection
⋂N
i=1Ki (see [2]). It is clear that F

(
projfKi

)
= Ki for any i = 1, 2, . . . , N .

Based on Algorithms 3.5 and 3.6 we propose two methods for solving the convex

feasibility problem.

Theorem 5.1. Let Ki, i = 1, 2, . . . , N , be N nonempty, closed and convex

subsets of X such that K :=
⋂N
i=1Ki 6= ∅. Let f : X → R be a Legendre function

which is bounded, uniformly Fréchet differentiable and totally convex on bounded

subsets of X. Then, for each x0 ∈ X, the sequence {xn}n∈N which is generated by

Algorithms (3.5) or (3.6) with

yn = projf
λN
n ,KN

· · · projfλ1
n,K1

(xn + en)

is well defined. If the sequence of errors {en}n∈N ⊂ X satisfies limn→∞ en = 0 and

for each i = 1, 2, . . . , N , lim infn→∞ λin > 0, then the sequence {xn}n∈N converges

strongly to projfK (x0) as n→∞.

6. Particular Cases

6.1. Uniformly Smooth and Uniformly Convex Banach Spaces. In this

subsection we assume that X is a uniformly smooth and uniformly convex Banach

space. For instance, we assume that X = `p or X = Lp with p ∈ (1,+∞) and

f (x) = (1/p) ‖x‖p. In this case the function f is Legendre (see [4, Lemma 6.2,

p.24]) and uniformly Fréchet differentiable on bounded subsets of X. According to

[?, Corollary 1(ii), p. 325], f is sequentially consistent since X is uniformly convex

and hence f is totally convex on bounded subsets of X. Therefore our result holds

in this setting. This means that our algorithms are more flexible than previous

algorithms because they leave us the freedom of fitting the function f to the nature

of the mapping A and of the space X in ways which make the application of

these algorithms simpler. These computations can be simplified by an appropriate

choice of function f than those required in other algorithms, which correspond to

f (x) = (1/2) ‖x‖2.

6.2. Hilbert Spaces. In this subsection we assume that X is a Hilbert space.

We also assume that the function f is equal to (1/2) ‖·‖2. It is well known that in

this case X = X∗ and ∇f = I, where I is the identity operator. Now we list our

main notions under these assumptions.

(1) The Bregman distance Df (x, y) and the Bregman projection projfK be-

come (1/2) ‖x− y‖2 and the metric projection PK , respectively.
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(2) The class of BFNE operators become the class of firmly nonexpansive

operators: recall that in this setting an operator T : K → K is called

firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉

for any x, y ∈ K.

(3) The resolvent ResfA of a mapping A become the classical resolvent RA =

(I +A)
−1

.

Now our Algorithms (3.5) and (3.6) take the following form:

(6.1)



x0 ∈ X,

yn =
(
I + λNn AN

)−1 · · · (I + λ1nA1

)−1
(xn + en) ,

Cn =
{
z ∈ X : ‖z, yn‖2 ≤ ‖z, xn + en‖2

}
,

Qn = {z ∈ X : 〈x0 − xn, z − xn〉 ≤ 0} ,

xn+1 = PCn∩Qn (x0) , n = 0, 1, 2, . . . ,

and

(6.2)



x0 ∈ X,

H0 = X,

yn =
(
I + λNn AN

)−1 · · · (I + λ1nA1

)−1
(xn + en) ,

Hn+1 =
{
z ∈ Hn : ‖z, yn‖2 ≤ ‖z, xn + en‖2

}
,

xn+1 = P fHn+1
(x0) , n = 0, 1, 2, . . . .

These algorithms seems to be even new in this setting. For instance, one can find

algorithms for finding common zeroes of finitely many maximal monotone mappings

in Hilbert space, see [6]. In Algorithm (6.1) we should compute the orthogonal

projection onto the intersection of two half-spaces. This is a simple task, since the

orthogonal projection onto the intersection of two halfspaces (see [8, Section 28.3]):

T = {x ∈ Rn : 〈a1, x〉 ≤ b1, 〈a2, x〉 ≤ b2} (a1, a2 ∈ Rn, b1, b2 ∈ R)

is given by the following explicit formula:

PT (x) =


x, α ≤ 0 and β ≤ 0,

x− (β/ν) a2, α ≤ π (β/ν) and β > 0,

x− (α/µ) a1, β ≤ π (α/µ) and α > 0,

x+ (α/ρ) (πa2 − νa1) + (β/ρ) (πa1 − µa2) , otherwise,

where here

π = 〈a1, a2〉, µ = ‖a1‖2 , ν = ‖a2‖2 , ρ = µν − π2
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and

α = 〈a1, x〉 − b1 and β = 〈a2, x〉 − b2.

In our case

a1 = xn − yn, b1 =
(
‖xn‖2 − ‖yn‖2

)
/2, a2 = x0 − xn, b2 = 〈x0 − xn, xn〉 .
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