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Abstract

We introduce the notion of predicted decrease approximation (PDA) for constrained convex
optimization, a flexible framework which includes as special cases known algorithms such as gener-
alized conditional gradient, proximal gradient, greedy coordinate descent for separable constraints
and working set methods for linear equality constraints with bounds. The new scheme allows the
development of a unified convergence analysis for these methods. We further consider a partially
strongly convex nonsmooth model and show that dual application of PDA-based methods yields
new sublinear convergence rate estimates in terms of both primal and dual objectives. As an ex-
ample of an application, we provide an explicit working set selection rule for SMO-type methods
for training the support vector machine with an improved primal convergence analysis.

Keywords: Primal-dual methods, approximate linear oracles, conditional gradient algorithm, work-
ing set methods

1 Introduction

1.1 Context

Linear oracle based methods, such as the conditional gradient algorithm, are arguably among the
simplest methods to tackle problems consisting of minimizing smooth functions over compact convex
sets. Indeed, such methods amount to solving a sequence of linear programs over the constraint
set [14, 11, 23, 13]. This simplicity translates into O(1/k) convergence rates (k being the iteration
counter) which are not improvable in general [6, 16]. Despite its apparent simplicity, it was shown
in recent works that linear oracle based methods have a very elegant interpretation in the context of
convex duality [3] and allow for stronger primal-dual convergence results [16].

In view of this situation, a legitimate question is whether these nice convergence properties can
be generalized to more complicated models, as well as more advanced methods such as proximal
splitting methods or working set-based methods for constrained optimization. Our starting point
will be to take a new look at the conditional gradient algorithm and treat it as an analytical tool
that will enable us to analyze convergence properties of more advanced methods.

1.2 Contributions

Our main idea is to ensure that an algorithmic step is “at least as good” as a conditional gradient
step. This is the concept of “predicted decrease” which is central in this work and is very much
related to the inexact oracle with multiplicative error already presented in [21, 20] in the context of
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conditional gradient and in [7, 15] in the context of support vector machines. As a first step, we show
that this concept of predicted decrease is general enough to encompass a variety of descent methods
for problems of the form

min
y∈Rd

{F (y) +G(y)} ,

where F is smooth and convex and G is a closed, convex with compact domain. Our framework
allows to unify the convergence analysis of generalized conditional gradient, proximal gradient, greedy
coordinate descent for separable constraints and working set methods for linear equality constraints
with bounds. For each of these methods, the analysis is based on the same concept of predicted
decrease leading to explicit sublinear rates.

As a second step we focus on the partially strongly convex, nonsmooth problem

min
x∈Rn

{f(Ax) + g(Bx)} ,

where f is strongly convex, g is convex and globally Lipschitz, A and B are matrices where A has
full row rank. We consider the application of a predicted decrease approximation method to the dual
of this problem. Our analysis yields an O(1/k) rate of convergence in terms of both primal and dual
sequences. These results are original up to our knowledge.

As for practical applications in data analysis, we show that our results translate into improved
convergence guaranties in term of primal sequence for the application of SMO-type working set
methods [27, 28, 17] to the training of a Support Vector Machine (SVM) [10]. These algorithms
take advantage of the structure of the SVM dual quadratic program and allow to perform iterative
search with extremely sparse updates–only two coordinates are updated at each iteration. This
results in extremely cheap iterations, linear of the size of the dataset, and constitutes one of the
most widely used algorithm for SVM training. Convergence rates for these types of algorithms are
very scarse in the litterature. We provide an O(1/k) rate of convergence rate for the primal sequence
which is the quantity of interest in practice. This improves uppon the O(1/

√
k) rate which is, up to

our knowledge, the best known rate in term of primal suboptimality for these types of working set
methods [15].

1.3 Relations with previous works

SMO-type working set methods for SVM training. See [33, Section 6.2] for an overview
and [8] for implementation details and extensions to broader machine learning settings [12, 35, 30].
Typical convergence results for the dual SVM problem rely on a concept that is directly related to
our predicted decrease [15, 31] and yields an O(1/k) convergence rate estimate in terms of the dual
SVM objective. Interestingly, primal convergence guaranties for these approaches are very scarce in
the literature. In this respect, our result improves upon available results given in [15, 25, 24]. On
the practical side, we specify a new working set selection rule for the dual SVM problem which is
completely explicit and whose complexity is linear in the number of training examples.

Box plus linear equality constraints. This model generalizes that of the dual SVM to larger
number of linear equality constraints [25, 33, 2]. A byproduct of our analysis provides a working set
selection based on the fundamental theorem of linear programming. The additional computational
cost compared to a single call to the linear oracle of the conditional gradient method is proportional
to the dimension. This leads to a search direction which has the same sparsity level as the number
of linear equalities while retaining a multiplicative error inversely proportional to the dimension. A
similar but less explicit construction was proposed in [25] for the same model.
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Approximate linear oracle methods. As we consider linear oracle based methods as our basic
analytical tool, some parts of the technical machinery involved in the convergence analysis is inspired
by known results for such methods. In particular, our convergence analysis utilizes the artificial
introduction of the step size proposed in [21], and non-uniform averaging schemes for primal sequence
computation [22, 1, 21]. The analysis that we propose extends to more general models and allows to
treat partially strongly convex primal problems.

1.4 Organization of the paper

We introduce the “Predicted Decrease Approximation” (PDA) framework in Section 2 where we
show that this scheme encompasses many algorithms as special cases including the proximal gradient
method and working set methods for linear equality constrained models. We also give a first sublinear
convergence rate estimate. In Section 3, we introduce our partially strongly convex primal model
and investigate the application of our PDA framework to the Lagrangian dual. This yields sublinear
convergence rates in terms of primal and dual objective sequences. We demonstrate numerically in
Section 4 the efficiency of the proposed approach to a synthetic 1D inpainting problem and SVM
training.

1.5 Notation

For any two vectors x,y ∈ Rn, [x,y] denotes the line segment between them, which is defined by
[x,y] = {λx + (1 − λ)y : 0 ≤ λ ≤ 1}. For a given vector x, xi denotes its ith entry. For a vector
v ∈ RK , the norm ‖v‖ is the l2 norm, while for a given matrix A ∈ Rm×n, ‖A‖ stands for the spectral
norm of A. The vector ei is ith vector of the canonical basis, meaning that its ith component is
one, while all other components are zeros. The n × n identity matrix is denoted by In, where the
subscript will be omitted whenever the dimension is clear from the context. For any two vectors x,y
of the same dimension, x ◦ y denotes their componentwise product (or Hadmard product), which
can also be expressed as diag(y)x where for a vector y, diag(y) denotes the square diagonal matrix

whose diagonal elements are the entries of y. We denote by y† as the vector for which y†i = 1/yi
whenever yi 6= 0 and y†i = 0 otherwise. For a matrix A, im(A) denotes its image space (the subspace
spanned by its columns). The l0 norm of a vector (which is actually not a norm) is the number of
nonzero elements in x, that is, ‖x‖0 = #{i : xi 6= 0}. A function h : RK → R is called M -smooth if
it is continuously differentiable and its gradient is Lipschitz continuous with constant M :

‖∇h(x)−∇h(y)‖ ≤M‖x− y‖ for all x,y ∈ RK .

An extended real-valued function h : RK → (−∞,∞] is called µ-strongly convex (µ > 0 being a
parameter) if h(·)− µ

2‖ · ‖
2 is convex. Given a function f : Rn → (−∞,∞], the convex conjugate is

the function
f∗(y) = max

x∈Rn
{〈x,y〉 − f(x)} .

We also use standard notations from convex analysis as in [29].

2 The Predicted Decrease Approximation (PDA) method

Consider the composite model
min
y∈Rd
{H(y) ≡ F (y) +G(y)}, (2.1)

where the following assumption is made throughout this section

Assumption 1.
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• F : Rd → R is L-smooth and convex over Rd.

• G : Rd → (−∞,∞] is a proper closed convex function with a compact domain.

It follows from Assumption 1 that problem (2.1) consists of minimizing a proper convex closed
function over a compact domain and thus has a finite optimal value, denoted by H∗, which is
attained. When G is an indicator of a compact convex set, problem (2.1) amounts to minimize a
smooth function over a compact set. The optimization model (2.1) allows for more general nonsmooth
convex functions G. We will denote the diameter of domG by

diam(domG) = max
x,y∈domG

‖x− y‖. (2.2)

An important mathematical quantity that will be used throughout the analysis of the method is the
optimality measure defined by

S(y) ≡ max
p
{〈∇F (y),y − p〉+G(y)−G(p)} .

Using the definition of the convex conjugate of a function, the optimality measure can be rewritten
as

S(y) = G(y) +G∗(−∇F (y)) + 〈∇F (y),y〉. (2.3)

By Fenchel’s inequality S(y) ≥ 0 for any y ∈ domG, and by the conjugate subgradient theorem [29,
Theorem 23.5], we have that S(y) = 0 holds if and only if −∇F (y) ∈ ∂G(y), that is, if and only if
y is an optimal solution of (2.1). It is also known (see e.g., [4]) that

H(y)−H∗ ≤ S(y) (2.4)

for any y ∈ domG, hence the name “optimality measure”. We will also use the notation

p(y) ∈ argminp {〈∇F (y),p〉+G(p)} , (2.5)

where we will assume throughout the paper that when the optimum is attained at multiple points,
there is an arbitrary but fixed choice p(y) for each y. With this notation, we can write

S(y) = 〈∇F (y),y − p(y)〉+G(y)−G(p(y)).

We can interpret S(y) = 〈∇F (y),y〉 + G(y) − [〈∇F (y),p(y)〉+G(p(y))] as the predicted decrease
at y by the approximate function z 7→ 〈∇F (y), z〉 + G(z). The vector p(y) is important and is
being used for example in the so-called generalized conditional gradient method in which at each
iteration k, the vector p(yk) is computed and the next iteration is defined by the update rule
yk+1 = yk + tk(p(yk)− yk) for an appropriate stepsize tk (see [1, 4]). In this section we will define
a much broader class of methods that is related to a different vector whose predicted decrease is at
least a certain portion of the predicted decrease of p(y).

Definition 2.1 ( 1
γ -predicted decrease approximation). For γ ≥ 1 and ȳ ∈ domG, we say that a

vector u(ȳ) ∈ domG is a 1
γ -predicted decrease approximation (PDA) vector of H at ȳ if

1

γ
S(ȳ) ≤ 〈∇F (ȳ), ȳ − u(ȳ)〉+G(ȳ)−G(u(ȳ)). (2.6)

Note that for any γ′ ≥ γ ≥ 1, any 1
γ -PDA vector is also a 1

γ′ -PDA vector.
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We will sometimes refer to a 1
γ -PDA vector of H as a 1

γ -PDA vector of problem (2.1). The

constant 1
γ will be called the approximation factor. For the classical conditional gradient method (in

the special case where G is the indicator function of a compact convex set), this definition appeared
under the name “approximate linear oracle” with multiplicative error [20, 21] or “rate certifying
methods” in the context of SVM training [7, 15]. Although the definition is a simple generalization
of the concept of approximate linear oracles to composite models, the point of view is different – the
approximation does not necessarily comes from approximation errors, but from the fact that it allows
to ensure additional structure in the form of the update while maintaining desirable convergence
properties. For example it might be reasonable to construct u(·) requiring more computations than
p(·) if it ensures additional structural features. One trivial example of a PDA vector is the choice
u(ȳ) = p(ȳ), which is obviously a 1-PDA vector. However, in cases where additional properties are
required from the vector u(ȳ), other choices should be considered. For example, in some applications
(such as support vector machines [28, 33]), it is important to choose a vector u(ȳ) which is different
from ȳ by only a few coordinates, namely that u(ȳ) − ȳ is sparse. The next example shows that
when G is block-separable, we can always construct a 1

m -PDA vector (m being the number of blocks)
at any given vector ȳ, which is different from ȳ by only one coordinate.

Example 2.2 (separable nonsmooth parts). Consider a partition of the decision variables vector y
to m blocks:

y =


y1

y2
...

ym

 ,

where yi ∈ Rdi and d1 + d2 + · · · + dm = d. We define the matrices Ui ∈ Rd×di , i = 1, 2, . . . ,m for
which

(U1,U2, . . . ,Um) = Id.

Suppose that

G(y) =
m∑
i=1

Gi(yi), (2.7)

where by the properties of G given in Assumption 1, it follows that G1, G2, . . . , Gm are closed proper
and convex with compact domain. Let us define the following ith partial optimality measure for any
i = 1, 2, . . . ,m:

Si(y) = max
pi

{〈∇iF (y),yi − pi〉+Gi(yi)−Gi(pi)}

with ∇iF being the vector of partial derivatives of F corresponding to the ith block. Obviously,
S(y) =

∑m
i=1 Si(y) for any y ∈ domG. Now, suppose that ȳ ∈ domG, and let

ī ∈ argmaxi=1,2,...,mSi(ȳ). (2.8)

With this definition we have

S(ȳ) =
m∑
i=1

Si(ȳ) ≤ mSī(ȳ). (2.9)

Let zī ∈ dom (Gī) be given by

zī ∈ argminpī
{〈∇īF (y),pī〉+Gi(pī)},

so that in particular
Sī(ȳ) = 〈∇īF (ȳ), ȳī − zī〉+Gī(ȳī)−Gī(zī). (2.10)
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Define u(ȳ) = ȳ + Uī(zī − ȳī). Then u(ȳ) ∈ domG and

〈∇F (ȳ), ȳ − u(ȳ)〉+G(ȳ)−G(u(ȳ)) = 〈∇īF (ȳ), ȳī − zī〉+Gī(ȳī)−Gī(zī) = Sī(ȳ) ≥ 1

m
S(ȳ),

where the first equality uses (2.7) and the inequality follows from (2.9), establishing the fact that
u(ȳ) is indeed a 1

m -PDA vector.

2.1 The method

We will require the following standard notation (see e.g., [5]):

QL(y,x) ≡ F (x) + 〈∇F (x),y − x〉+
L

2
‖y − x‖2.

Below we describe the general form of the 1
γ -predicted decrease approximation ( 1

γ -PDA) method (for

some given γ ≥ 1). At each iteration k, the method constructs yk+1 out of the current iterate yk by
minimization of the exact original objective or the quadratic model QL over a set that contains the
line segment [yk,u(yk)], where u(yk) is a 1

γ -predicted decrease approximation vector of H at yk.

1
γ -predicted decrease approximation ( 1

γ -PDA) Method:

Initialization. y0 ∈ domG.
General Step. For k = 0, 1, . . .,

(i) – Choose u(yk)- a 1
γ -PDA vector of H at yk.

– Choose a compact set Xk for which [yk,u(yk)] ⊆ Xk.

(ii) Perform one of the following:

Local model update: yk+1 = argminy∈XkQLk
(y,yk) +G(y) (2.11)

Exact update: yk+1 = argminy∈XkF (y) +G(y) (2.12)

Remark 2.3. The description that has been made so far is formal and highlights the important mech-
anisms of the PDA framework. Therefore, the steps that have been described in the algorithm may
not reflect exactly the computational effort for each specific instance of the method. Two comments
are in order.

• Only Xk, and not u(yk), is required for computation in step (ii) and the only important property
of this set is the second condition in (i). In some settings (e.g. greedy coordinate descent), the
computation of u(yk) is also required but this is not necessarily the case and u(yk) could be
implicit and not computed in practice (e.g. proximal gradient algorithm). See also Section 2.2
for more details.

• In general, there is a tradeoff between steps (i) and (ii). Step (i) can be seen as a reduction
step which goal is to decrease the complexity of computing step (ii) or increase its efficiency in
term of reaching the global minimum. In many PDA-methods, the separation between steps (i)
and (ii) is not that clear and both steps can be mixed. The current presentation highlights the
different roles of each step, but does not necessarily reflect the practical implementation of the
algorithm.

We will sometimes refer to a 1
γ -PDA method as a PDA method with approximation factor 1

γ .

Note that from Definition 2.1 if γ′ ≥ γ ≥ 1, then a 1
γ -PDA method is also a 1

γ′ -PDA method. The
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local model update step can be equivalently written as a proximal gradient step:

yk+1 = prox 1
Lk
G+δ

Xk

(
yk − 1

Lk
∇F (yk)

)
, (2.13)

where for a given proper closed convex extended real-valued convex function h : Rn → (−∞,∞], the
proximal operator is defined by [26]

proxh(x) = argminu

{
h(u) +

1

2
‖u− x‖2

}
.

One element that is missing in the above description of the 1
γ -PDA method when local model updates

are chosen is the way the constants Lk are chosen. When the step involves an exact update, only
for the purpose of analytical proofs, we will artificially define Lk = L. When a local model update
is employed, then the underlying assumption on Lk is that

F (yk+1) ≤ QLk
(yk+1,yk). (2.14)

Two choices of Lk that warrant inequality (2.14) are

1. Lk ≡ L, where L is the global Lipschitz constant of ∇F (which exists thanks to Assumption
1).

2. Lk is chosen by a backtracking procedure. Specifically (see [5, FISTA with backtracking]),
we take η > 1 and L̄ > 0 (initial estimate of Lk) and at each iteration we pick the smallest
nonnegative integer ik for which (2.14) is satisfied with Lk = ηik L̄ and yk+1 given by (2.13).

Since (2.14) is satisfied with Lk ≥ L, we obtain that if the kth step uses the local model update with
backtracking, then

Lk ≤ max{ηL, L̄}. (2.15)

2.2 Special cases of the PDA method

The PDA method is actually a very general scheme and different choices of PDA vectors u(·) and
sets Xk can result in quite different methods – some are well known.

2.2.1 Generalized conditional gradient method

Taking u(y) ≡ p(y), Xk = [yk,u(yk)] and using the exact update scheme, we obtain that the PDA
method reduces to the generalized conditional gradient method with exact line search [1].

generalized conditional gradient
Initialization: y0 ∈ domG.
General step (k=0,1,. . . ):

• Compute p(yk) ∈ argminp

{
〈∇f(yk),p〉+G(p)

}
.

• Set yk+1 = yk + tk(p(yk)− yk) where

tk ∈ argmint∈[0,1]H(yk + t(p(yk)− yk)).

The above method is a PDA method with approximation factor 1. Note that if we change the
choice of Xk to Xk = {yk + t(p(yk)− yk) : t ≥ 0}, then the PDA method amounts to a variation of
the generalized conditional gradient method in which larger stepsizes can be taken. Specifically, the
stepsize in this setting is given by

tk ∈ argmint≥0{H(yk + t(p(yk)− yk)) : yk + t(p(yk)− yk) ∈ domG}.

Obviously, since Xk still contains p(yk), it follows that the approximation factor is still 1.
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2.2.2 Proximal gradient method

Taking u(y) ≡ p(y), Xk = Rd and using the local model update, we obtain the proximal gradient
method [5, 9].

proximal gradient
Initialization: y0 ∈ domG.
General step (k=0,1,. . . ):

• compute

yk+1 = prox 1
Lk
G

(
yk − 1

Lk
∇F (yk)

)
,

where Lk satisfies the condition (2.14).

The above description of the proximal gradient method encompasses both a constant stepsize
scheme where Lk = L for any k, as well as a backtracking scheme that guarantees the validity of the
inequality (2.14). The approximation factor of the method is 1.

2.2.3 Hybrid proximal gradient/generalized conditional gradient

Since the strategy for choosing u(yk) and Xk at each iteration can be different, one can construct
a 1-PDA method that chooses at each iteration to either employ a generalized conditional gradient
step or a proximal gradient step.

2.2.4 Greedy coordinate descent for separable problems

Back to the setting of Example 2.2, assume that G is separable and has the form (2.7). Let us
consider the following two choices for the set Xk:

X̄k = {ȳ1} × {ȳ2} × · · · {ȳī−1} × [ykī ,pī(y
k)]× {ȳī+1} × · · · × {ȳm},

X̃k = {ȳ1} × {ȳ2} × · · · {ȳī−1} × domGī × {ȳī+1} × · · · × {ȳm}.

The general form of the resulting method, which uses a greedy-type index selection strategy is now
described.

greedy coordinate descent
Initialization: y0 ∈ domG.
General step (k = 0, 1, . . .):

• Compute
ī ∈ argmaxi=1,2,...,mSi(y

k),

where
Si(y

k) = 〈∇Fi(yk),yki − pi(y
k)〉+Gi(y

k
i )−Gi(pi(yk))

with
pi(y

k) ∈ argminpi
{〈∇Fi(yk),pi〉+Gi(pi)}.

• Core step: Compute yk+1.

The update formula of yk+1 (“core step”) depends on the specific choice of Xk and the type of
update rule (exact/local model). Some options are given below.
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• greedy block conditional gradient (Xk = X̄k, exact update)

yk+1 = yk + tkUī(pī(y
k)− ykī ),

where tk ∈ argmin0≤t≤1H
(
yk + tUī(pī(y

k)− yk
ī
)
)
.

• greedy block minimization (Xk = X̃k, exact update)

yk+1
i

{
= yk

i , i 6= ī,
∈ argminyī

{
F (yk + Uī(yī − yk

ī
)) +Gī(yī) : yī ∈ domGī

}
, i = ī.

(2.16)

• greedy block projected-gradient (Xk = X̃k, local model step)

yk+1
i =

{
yki , i 6= ī,

prox 1
Lk
Gī

(
yk
ī
− 1

Lk
∇īF (yk)

)
, i = ī.

As shown in Example 2.2, all these methods are 1
m -PDA methods.

2.2.5 Block descent method for linearly constrained problems

In this section we consider instances of the general model (2.1) in which the constraints are the
intersection of linear equalities and bound constraints, see also [25, 33, 2]. These models admit
extensions of the working set methods originally developed for the dual of the SVM training problem
(“SMO-type methods”) [27, 28, 17], see also [8] and references therein. We present a new working
set selection rule based on the 1

γ -PDA framework and then comment on the application to the dual
SVM problem.

Model and construction of PDA: Suppose that G(y) ≡ δC(y), where

C = {y ∈ Rd : Dy = b, ` ≤ y ≤ u},

with D ∈ Rm×d,b ∈ Rm and `,u ∈ Rd are two vectors satisfying ` ≤ u (inequalities between vectors
are understood coordinatewise). In this case, problem (2.1) takes the form

min F (y)
s.t. Dy = b,

` ≤ y ≤ u.
(2.17)

The vector p(y) is obviously a 1-PDA vector of the problem at y. The question is whether we can
find a PDA vector with an appropriate approximation factor, which is different from y by only a
few components, thus enabling sparse updates. For that, we introduce below a procedure, termed
sparseDir, which, for a given point ȳ ∈ C, finds a direction vector ds(ȳ) ∈ Rd that will be shown in
Lemma 2.5 to satisfy that (i) it has at most m+ 1 nonzero elements and (ii) ȳ + ds(ȳ) is a 1

d -PDA
vector of problem (2.17) at ȳ.

sparseDir has three main steps. The first is based on a regular general conditional gradient step
which allows to find a dense 1-PDA vector. The second one is a reduction step. It consists in finding
basic feasible solution of a certain linear program while not decreasing a given objective function
(this is standard in linear programming). The linear program is designed such that the resulting
basic feasible solutions are sparse. The last step is the construction of a sparse PDA vector from the
solution of the linear program.
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spraseDir
Input: ȳ ∈ C.
Output: ds(ȳ) ∈ Rd.
Algorithm:

(i) Set

r = p(ȳ)− ȳ,

D̃ = Ddiag(r), (2.18)

c = r ◦ ∇F (ȳ).

(ii) Compute v̄, a basic feasible solution of the linear system

D̃v = 0,

〈1,v〉 ≤ ‖r‖0, (2.19)

v ≥ 0.

such that
〈c, v̄〉 ≤ 〈c, r† ◦ r〉. (2.20)

(iii) If ‖r‖0 = 0, set ds(ȳ) := 0. Otherwise set

ds(ȳ) :=
1

‖r‖0
r ◦ v̄. (2.21)

Remark 2.4 (Validity of the procedure). The set of solutions of (2.19) is nonempty and bounded.
The boundedness follows from the constraints 〈1,v〉 ≤ ‖r‖0,v ≥ 0. The feasibility of (2.19) follows
by the fact that the vector v = r† ◦ r is feasible. Indeed, since Dp(ȳ) = Dȳ = b, we have

D̃(r† ◦ r) = Ddiag(r)(r† ◦ r) = Dr = D(p(ȳ)− ȳ) = 0.

Furthermore, it can be easily checked that
〈
1, r† ◦ r

〉
= ‖r‖0 and r† ◦r ≥ 0, establishing the feasibility

of r† ◦ r. The fundamental theorem of linear programming [18] (with objective 〈c, ·〉 and constraints
(2.19)) ensures that there exists a basic feasible solution of system (2.19) for which (2.20) is satisfied.

Given a vector y, define
us(y) = y + ds(y). (2.22)

We will now show that us(y) is a 1
d -PDA vector of problem (2.17) at y, which is different from y by

at most m+ 1 elements.

Lemma 2.5. Fix y ∈ C. Then us(y) given by (2.22) satisfies

(a) ‖us(y)− y‖0 ≤ m+ 1.

(b) us(y) is a 1
d -PDA vector of problem (2.17) at y.

Proof. By (2.22), us(y)− y = ds(y), where ds(y) is either 0, or given by (2.21):

ds(y) =
1

‖r‖0
v̄ ◦ r (2.23)

with r = p(y)− y and v̄ being a basic feasible solution of (2.19) satisfying

〈c, v̄〉 ≤ 〈c, r† ◦ r〉,
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where
c = r ◦ ∇F (y). (2.24)

The case where ‖r‖0 = 0 is trivial since in this case y is an optimal solution of problem (2.17), and
hence S(y) = 0, implying that the PDA condition (2.6) is satisfied. Assume then that ds(y) is given
by (2.23). Since v̄ is a basic feasible solution of (2.19), it has at most m+1 nonzero elements. Hence,
us(y)− y = ds(y) has at most m+ 1 nonzero elements, proving (a).
To prove (b), we begin by establishing the feasibility of us(y) with respect to problem (2.17). We
have 〈1, v̄〉 ≤ ‖r‖0, v̄ ≥ 0, and therefore, 0 ≤ v̄

‖r‖0 ≤ 1. Combining this with the obvious inequalitites

` ≤ p(y) ≤ u and `− y ≤ 0 ≤ u− y, it follows that

`− y ≤ v̄

‖r‖0
◦ (`− y) ≤ v̄

‖r‖0
◦ (p(y)− y)︸ ︷︷ ︸
ds(y)

≤ v̄

‖r‖0
◦ (u− y) ≤ u− y, (2.25)

and thus
` ≤ us(y) = y + ds(y) ≤ u. (2.26)

In addition,

Dus(y) = Dy + Dds(y) = b +
1

‖r‖0
D(v̄ ◦ r) = b +

1

‖r‖0
Ddiag(r)v̄ = b +

1

‖r‖0
D̃v̄ = b + 0 = b,

which combiend with (2.26) implies that us(y) ∈ C. We are left with the task of showing that
inequality (2.6) is satisfied with γ = d and G = δC . For that, note that (recalling (2.24))

〈c, v̄〉 ≤ 〈c, r† ◦ r〉 = 〈∇F (y) ◦ r, r† ◦ r〉 = 〈∇F (y), r〉 = 〈∇F (y),p(y)− y〉 = −S(y). (2.27)

Finally,

〈∇F (y),y − us(y)〉 = −〈∇F (y),ds(y)〉 by (2.22)
= − 1

‖r‖0 〈∇F (y), v̄ ◦ r〉 by (2.23)

= − 1
‖r‖0 〈r ◦ ∇F (y), v̄〉

= − 1
‖r‖0 〈c, v̄〉 by (2.24)

≥ 1
‖r‖0S(y) by (2.27)

≥ 1
dS(y), ‖r‖0 ≤ d

establishing the fact that us(y) is a 1
d -PDA vector of problem (2.17) at y.

PDA-based algorithms: Based on the 1
d -PDA vector us(y), we can define a variety of 1

d -PDA
methods depending on the choice of (i) the sets Xk and (ii) the update step (exact/local model).
Below we describe four options. At iteration k, all the methods begin by computing us(y

k). The
first two possibilities fully exploit us(y

k), and they actually resort to line search. The last options
only use the information on the support of ds(y

k), and utilize the set of indices

Jk = {i : us(y
k)i = yki }.

• line segment minimization (Xk = [yk,us(y
k)], exact update)

yk+1 = yk + tk(us(y
k)− yk),

where tk ∈ argmin0≤t≤1F (yk + t(us(y
k)− yk)).

11



• ray minimization (Xk = {yk + t(us(y
k)− yk) : t ≥ 0}, exact update)

yk+1 = yk + tk(us(y
k)− yk),

where tk ∈ argmint≥0{F (yk + t(us(y
k)− yk)) : ` ≤ yk + t(us(y

k)− yk) ≤ u}.

• block exact minimization (Xk = {y ∈ C : yi = yki , i ∈ Jk}, exact update)

yk+1 ∈ argmin{F (y) : y ∈ C,yi = yki , i ∈ Jk}.

• block projected gradient (Xk = {y ∈ C : yi = yki , i ∈ Jk}, local model update)

yk+1 = PXk

(
yk − 1

Lk
∇F (yk)

)
.

Rank reduction. Given p(ȳ), computing v̄ as given by step (ii) of sparseDir can be done by
finding a basic feasible optimal solution of the auxiliary linear program (2.19). This may be a
prohibitive additional cost in many settings. Alternatively, it is possible to compute v̄ by a classical
rank reduction technique. As outlined in Remark 2.4, v = r† ◦ r is always feasible for the auxiliary
linear program. Starting with v, it is possible to find s 6= 0 with support included in that of v, such
that D̃s = 0, 〈s,1〉 = 0 and 〈s, c〉 ≤ 0 using Gaussian elimination in O(m3) operations. One can
then preform a step in the direction s to remove a coordinate from the support of v. After at most
d iterations of this procedure, a basic feasible solution for the auxiliary program is found. The total
cost for this rank reduction is O(dm3) which remains linear in the dimension of the problem.

Application to the dual SVM. One important motivation for this type of working set techniques
is that they provide scalable algorithms for solving the SVM dual problem (see Section 4.2). In this
case, the dimension of the problem is equal to the number of examples in the training set and we
have only one linear equality constraint in C. This motivates the use of SMO-type working set
methods which update only pairs of variables at each iterations. The 1

d -PDA construction that we
propose in this section can be used here. The most costly steps of the working set selection rule
that we propose here are the computation of p(ȳ) and the computation of a basic feasible solution
of the auxiliary linear program. As we have seen in the previous paragraph, the latter can be done,
given p(ȳ), in linear time in d, the dimension of the problem. For the dual SVM, the computation
of p(ȳ) is a fractional knapsack problem which can be solved in a number of operations which is
linear in the dimension (see Section 4.2). This, combined with the previous rank reduction scheme,
gives a completely explicit construction of a 1

d -PDA vector for the dual SVM whose construction has
complexity which is linear in the number of examples. A similar but much less explicit construction
was proposed in [25] for the same model.

2.3 Sublinear rate of convergence analysis

In this section we prove a sublinear rate of convergence of the 1
γ -PDA method. The analysis is

based on the artificial introduction of the diminishing stepsize, tk = 2γ/(k + 2γ), which is due to
[21]. We begin with the following recursion that characterizes sequences produced by the 1

γ -PDA
algorithm. The arguments behind the proof of the lemma have become fairly standard in the analysis
of conditional gradient-type methods.

Lemma 2.6. Let {yk}k≥0 be the sequence generated by the 1
γ -PDA method. Fix an arbitrary sequence

{tk}k≥0 such that for any k ≥ 0, we have 0 ≤ tk ≤ 1. Then for any k ≥ 0, we have

H(yk+1) ≤ H(yk)− tk
γ
S(yk) +

LkD
2

2
t2k,

where D = diam(domG).
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Proof. Using Definition 2.1, for any k ≥ 0, define uk = u(yk) ∈ Xk as the 1
γ -PDA vector that

satisfies

[yk,uk] ⊆ Xk,

1

γ
S(yk) ≤ 〈∇F (yk),yk − uk〉+G(yk)−G(uk). (2.28)

We have

min
y∈Xk

{
QLk

(y,yk) +G(y)
}
≤ min

y∈[yk,uk]

{
QLk

(y,yk) +G(y)
}

= min
0≤t≤1

{
QLk

(tuk + (1− t)yk,yk) +G(tuk + (1− t)yk)
}

≤ QLk
(tku

k + (1− tk)yk,yk) +G(tku
k + (1− tk)yk)

= F (yk) + tk〈∇F (yk),uk − yk〉+ t2k
Lk
2
‖yk − uk‖2 +G(tku

k + (1− tk)yk)

≤ F (yk) +G(yk) + tk

(
〈∇F (yk),uk − yk〉+G(uk)−G(yk)

)
+ t2k

Lk‖yk − uk‖2

2
(2.29)

≤ F (yk) +G(yk)− tk
γ
S(yk) + t2k

LkD
2

2
, (2.30)

where the convexity of G was used in (2.29), and (2.30) follows by (2.28) and the definition of the
diameter. Finally, note that for both rules (2.11) or (2.12) we have

F (yk+1) +G(yk+1) ≤ min
y∈Xk

[
QLk

(y,yk) +G(y)
]
. (2.31)

Indeed, since in the exact minimization step we have Lk ≡ L, it follows that in this case

F (y) ≤ QLk
(y,yk) for any y ∈ Xk,

and hence also that
F (y) +G(y) ≤ QLk

(y,yk) +G(y) for any y ∈ Xk. (2.32)

Taking the minimum of both sides over y ∈ Xk will yield (2.31). In the local model update setting,
using (2.14), we can write

F (yk+1) +G(yk+1) ≤ QLk
(yk+1,yk) +G(yk+1) = min

y∈Xk

[
QLk

(y,yk) +G(y)
]
,

which is the same as (2.31). Finally, combining (2.30) and (2.31), the desired result follows.

We now need one technical lemma in order to prove the sublinear convergence rate.

Lemma 2.7. Suppose that γ ≥ 1 and C ≥ 0. Let {ak}k≥0 and {bk}k≥0 be two sequences such that
0 ≤ ak ≤ bk for any k ≥ 0. Set tk = 2γ

k+2γ , and assume in addition that

ak+1 ≤ ak −
tk
γ
bk +

C

2
t2k. (2.33)

Then for any k ≥ 0,∑k
i=0 (bi − ai) (i+ 2γ − 1)∑k

i=0(i+ 2γ − 1)
+ ak+1 ≤

2γ

k + 2γ

(
2γ − 2

k + 1
a0 + Cγ

)
. (2.34)
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Proof. From inequality (2.33) and the definition of tk, we get that for any i ≥ 0

bi − ai ≤
(
γ

ti
− 1

)
ai −

γ

ti
ai+1 +

Cγ

2
ti =

i+ 2γ − 2

2
ai −

i+ 2γ

2
ai+1 +

Cγ2

i+ 2γ
. (2.35)

Multiplying inequality (2.35) by i+ 2γ − 1 ≥ 0, we get

(bi − ai)(i+ 2γ − 1) ≤ (i+ 2γ − 2)(i+ 2γ − 1)

2
ai −

(i+ 2γ)(i+ 2γ − 1)

2
ai+1 + Cγ2 i+ 2γ − 1

i+ 2γ

≤ (i+ 2γ − 2)(i+ 2γ − 1)

2
ai −

(i+ 2γ)(i+ 2γ − 1)

2
ai+1 + Cγ2. (2.36)

Summing inequality (2.36) for i = 0, 1, . . . , k gives

k∑
i=0

(bi − ai)(i+ 2γ − 1) ≤ (2γ − 2)(2γ − 1)

2
a0 −

(k + 2γ)(k + 2γ − 1)

2
ak+1 + Cγ2(k + 1). (2.37)

Dividing both sizes of (2.37) by k+1
2 (k + 2γ) ≥ 0, yields for any k ≥ 0,∑k

i=0(bi − ai)(i+ 2γ − 1)
k+1

2 (k + 2γ)
+
k + 2γ − 1

k + 1
ak+1 ≤

2γ

k + 2γ

(
(2γ − 2)(2γ − 1)

2γ(k + 1)
a0 + Cγ

)
≤ 2γ

k + 2γ

(
2γ − 2

k + 1
a0 + Cγ

)
. (2.38)

Inequality (2.34) now follows by the fact that k+2γ−1
k+1 ≥ 1 (since γ ≥ 1), and the relation

k∑
i=0

(i+ 2γ − 1) =
k + 1

2
(k + 4γ − 2) ≥ k + 1

2
(k + 2γ),

where the inequality also follows by the fact that γ ≥ 1.

We will now utilize Lemma 2.7 to show the sublinear rate of convergence of the sequence of
function values generated by the 1

γ -PDA method. By Lemma 2.6 and (2.15) it follows that relation

(2.33) holds with ak = H(yk)−H∗, bk = S(yk) and C = K, where K is chosen as follows:

K =

{
L · diam(domG)2, exact minimization, or local model with constant stepsize,
max{ηL, L̄} · diam(domG)2, local model with backtracking.

(2.39)
By (2.4) we also have that ak ≤ bk for all k ≥ 0. We can thus invoke Lemma 2.7 and obtain the

following result.

Lemma 2.8. Let {yk}k≥0 be the sequence generated by 1
γ -PDA method. Then for any k ≥ 0∑k

i=0

(
S(yi)− [H(yi)−H∗]

)
(i+ 2γ − 1)∑k

i=0(i+ 2γ − 1)
+H(yk+1)−H∗ ≤ 2γ

k + 2γ

(
2γ − 2

k + 1
(H(y0)−H∗) +Kγ

)
,

(2.40)
where K is given in (2.39).

Since S(yi) ≥ H(yi) −H∗, we can deduce the sublinear rate of convergence of the sequence of
function values generated by 1

γ -PDA method.
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Theorem 2.9. Let {yk}k≥0 be the sequence generated by the 1
γ -PDA method. Then for any k ≥ 0

H(yk+1)−H∗ ≤ 2γ

k + 2γ

(
2γ − 2

k + 1
(H(y0)−H∗) +Kγ

)
,

where K is given in (2.39).

Remark 2.10 (Dependancy in γ). It can be seen that the rate given in Theorem 2.9 is increasing
as a function of γ. This is consistent with the fact that a 1

γ -PDA method is also a 1
γ′ -PDA method

for any γ′ ≥ γ ≥ 1 and highlights the influence of the degree of approximation of the method.

3 The dual-based γ-PDA method

3.1 Model, duality and basic properties

In this section we will present and analyze a method that employs the 1
γ -PDA framework on a dual

problem. The primal optimization model that will be analyzed has the form

p̄ ≡ min
x∈Rn

{f(Ax) + g(Bx)} , (3.1)

where A ∈ Rr×n and B ∈ Rq×n. We will make the following standing assumption on the problem’s
data.

Assumption 2.

(A) A has full row rank

(B) f : Rr → R ∪ (−∞,∞] is proper closed and µ-strongly convex.

(C) g : Rq → R is closed, convex and has a Lipschitz constant Lg.

(D) dom g∗ is closed.

(E) One of the following holds:

(i) g is polyhedral and im(AT ) ∩BTdom(g∗) is nonempty.

(ii) im(AT )∩BT ridom(g∗) is nonempty, where ridom(g∗) is the relative interior of the domain
of g∗.

Several properties can be readily deduced from Assumption 2:

• f∗ : Rr → R is convex and 1
µ -smooth (by (B)).

• g∗ : Rq → (∞,∞] is proper closed and convex and its domain is contained in a ball of radius
Lg centered at the origin (by (C)).

• If (E.i) is satisfied, then g∗ is also polyhedral and dom g∗ is a polytope.

Under Assumption 2, problem (3.1) does not fit the general model (2.1) that can be tackled using
PDA methods. We will tackle problem (3.1) through duality, and at the same time explore primal-
dual properties of PDA methods. The Lagrangian dual of problem (3.1) can be written as

q̄ ≡ max −f∗(w)− g∗(z)
s.t. ATw + BT z = 0,

w ∈ Rr, z ∈ Rq.
(3.2)
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Remark 3.1 (Derivation of the dual). We artificially introduce additional variables and equality
constraints x1 = Ax and x2 = Bx in problem (3.1). The Lagrangian function then has the form

L(x,x1,x2; w, z) = f(x1) + g(x2) + 〈w,Ax− x1〉+ 〈z,Bx− x2〉
= f(x1)− 〈w,x1〉+ g(x2)− 〈z,x2〉+

〈
ATw + BT z,x

〉
.

Expression (3.2) follows by partial minimization of the Lagrangian with respect to x1, x2 and x.

We will denote the feasible set of problem (3.2) by X:

X ≡
{

(w, z) : z ∈ dom(g∗), ATw + BT z = 0
}
.

Some elementary arguments can be used to show the compactness of X.

Lemma 3.2. X is compact.

Proof. The closedness of X follows by the closedness of dom g∗. Moreover, for any (w, z) ∈ X, we
have z ∈ dom g∗ and hence in particular

‖z‖ ≤ Lg. (3.3)

In addition, by the relation ATw = −BT z, it follows that

wTAATw = ‖ATw‖2 = ‖BT z‖2 ≤ ‖B‖2L2
g,

which implies that

‖w‖2 ≤
‖B‖2L2

g

λmin(AAT )
.

Combining this with (3.3) implies that X is bounded, and the compactness is established.

The next lemma shows, using general duality theory, that the optimal values of the primal-dual
pair of problems (3.1) and (3.2) are the same, and the optimal values of both problems are attained.

Lemma 3.3. The optimal values, p̄ and q̄, of problems (3.1) and (3.2) are finite, attained and equal.

Proof. Problem (3.2) consists of maximizing an upper semicontinuous function over a nonempty
compact set (Lemma 3.2), and hence its optimal value is attained. In addition, by duality theory
[29], it follows that under the regularity condition (E) in Assumption 2, the optimal value of problem
(3.1) is the same as the optimal value of problem (3.2), and that the minimum is attained.

We will also consider in our analysis the matrix

P ≡ AT (AAT )−1A. (3.4)

This matrix is associated with the orthogonal projection operator on the row space of A in the sense
that (see [32, Section 3.3])

Px = argminy

{
‖x− y‖ : y ∈ im(AT )

}
.

A useful property of the matrix P is described in the following lemma.

Lemma 3.4. For any v ∈ Rn and w ∈ Rr, v = ATw if and only if v = Pv and w = (AAT )−1Av.

Proof. If v = ATw, then Pv = AT (AAT )−1AATw = ATw = v. In addition, since v = ATw, then
w is the solution of the least squares problem minu ‖v −ATu‖2, meaning that w = (AAT )−1Av.
Conversely, if v = Pv and w = (AAT )−1Av, then ATw = AT (AAT )−1Av = Pv = v.
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By Lemma 3.4, the equality BT z + ATw = 0 holds if and only if (I − P)BT z = 0 and w =
−(AAT )−1ABT z, and thus the dual problem can be recast as

max −f∗(−(AAT )−1ABT z)− g∗(z)
s.t. (I−P)BT z = 0,

z ∈ Rq,
(3.5)

or in minimization form:
min f∗(−(AAT )−1ABT z) + g∗(z)
s.t. (I−P)BT z = 0,

z ∈ Rq.
(3.6)

By the fact that the optimal value of the dual problem (3.2) is finite and attained, it follows that
this is also the case for problem (3.6). In addition, since we passed from a maximum to a minimum
problem by multiplying the objective function by −1, it follows that the optimal value of problem
(3.6) is −q̄.

Problem (3.6) fits the general model (2.1) with

F (z) = F1(z) ≡ f∗(−(AAT )−1ABT z),

G(z) = G1(z) ≡ g∗(z) + δ{p:(I−P)p=0}(z).

Thus, problem (3.6) can be written as

min
z∈Rq
{H1(z) ≡ F1(z) +G1(z)}. (3.7)

The optimality measure associated with (3.7) is given by

S1(z) = max
p
{〈∇F1(z), z− p〉+G1(z)−G1(p)} . (3.8)

3.2 The dual-based 1
γ
-PDA method

The specific choice F = F1 and G = G1 satisfies the assertions in Assumption 1 with

L =
‖(AAT )−1ABT ‖2

µ
, (3.9)

and we can thus invoke the 1
γ -PDA method to solve problem (3.6). Below we describe the dual-based

1
γ -PDA method, along with a specification of the primal sequence {xk}k≥0.
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Dual-Based 1
γ -PDA Method:

Initialization. Pick z0 satisfying (I−P)BT z0 = 0, z0 ∈ dom g∗.
General Step. For k = 0, 1, 2 . . .,

(i) – Choose u(zk)- a 1
γ -PDA vector of H1 at zk.

– Choose a compact set Zk for which [zk,u(zk)] ⊆ Zk.

(ii) Perform one of the following:

Local model update: zk+1 = prox 1
Lk
G1+δ

Zk

(
zk − 1

Lk
∇F1(zk)

)
Exact update: zk+1 = argminz∈ZkF1(z) +G1(z)

(iii) Set wk = −(AAT )−1ABT zk and compute sk by one of the following formulas:

Averaging: sk =
1∑k

i=0 (i+ 2γ − 1)

k∑
i=0

(i+ 2γ − 1)∇f∗(wi)

Best iterate: sk = ∇f∗(wk0), k0 ∈ argmini=0,1,...k{S1(zi)−H1(zi)}

(iv) Compute

xk ∈ argminx

{
g(Bx) : Ax = sk

}
. (3.10)

Remark 3.5 (Primal sequence). Steps (iii) and (iv) are only required if we are interested in esti-
mating a primal sequence, {xk}k≥0. In this case, step (iv) needs to be preformed only at the last
iteration. The second option in step (iii) requires the evaluation of S1 which is given in (3.8). Many
examples of PDA methods rely on this evaluation in order to compute predicted decrease directions
(generalized conditional gradient, greedy coordinate descent and block descent for linearly constrained
problems). Therefore, in these cases the computation of S1 can be reused in this step.

Remark 3.6 (Primal feasibility). Note that since ∇f∗(v) ∈ dom f for any v, it follows by the
definition of sk and the convexity of f that sk ∈ dom f for any k. By the definition of xk, we have
Axk ∈ dom f , implying that the dual-based 1

γ -PDA method is a primal feasible method, which is
actually not a common situation in dual-based methods.

Remark 3.7 (Online computation). In the case of averaging, sk satisfies the recurrence relation

sk = (1−wk)sk−1 +wk∇f∗(wk) for any k ≥ 1, where wk = 2(k+2γ−1)
(k+1)(k+4γ−2) and is therefore amenable

to efficient online computation.

3.3 Convergence analysis

Convergence of the dual objective function evaluated at the sequence of dual variables can be deduced
by Theorem 2.9. However, in many cases (like in the examples discussed in Section 4), we are
interested in the rate of convergence of the sequence of primal function values, {f(Axk)+g(Bxk)}k≥0

to the optimal value p̄. To accomplish this task, we will investigate the optimality measure given in
(3.8). The following key theorem shows a representation of the optimality measure that will enable
us later on to obtain a rate of convergence of the dual-based 1

γ -PDA method.

Theorem 3.8. For any z ∈ dom g∗

S1(z) = min
Ax=∇f∗(w)

g(Bx) + f(∇f∗(w)) + g∗(z) + f∗(w)
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with w = −(AAT )−1ABT z.

In order to prove the theorem, we will need the following strong duality result.

Lemma 3.9. For any s ∈ Rr, we have

min
x∈Rn

g(Bx) = max
p∈Rq

〈
(AAT )−1s,ABTp

〉
− g∗(p)

s.t. Ax = s s.t. (I−P)BTp = 0
(3.11)

and both optimal values are finite and attained.

Proof. We begin by rewriting the left-hand problem in (3.11) as

min
u∈Rq ,x∈Rn

{g(u) : Bx = u,Ax = s}. (3.12)

The Lagrangian of the problem is

L(u,x; p,w) = g(u) + 〈p,Bx− u〉+ 〈w, s−Ax〉.

Minimizing with respect to u and x, we obtain the following dual problem:

max
p
{−g∗(p) + 〈w, s〉 : BTp−ATw = 0}. (3.13)

The feasible set of problem (3.13) is compact since dom g∗ is compact and the fact that the matrix
A has full row rank (see also the argument in the proof of Lemma 3.2). Therefore, since −g∗ is
upper semicontinuous, it follows that the maximum in problem (3.13) is attained. By the regularity
condition (E) in Assumption 2, it follows that strong duality holds meaning that the optimal values
of problems (3.12) and (3.13) are equal and the optimal value of (3.12) is attained. Invoking Lemma
3.4 with v = BTp, we obtain that the equality BTp −ATw = 0 is equivalent to (I − P)BTp = 0
and w = (AAT )−1ABTp, which readily implies that problem (3.13) can be reduced to

max
p
{−g∗(p) + 〈ABTp, (AAT )−1s〉 : (I−P)BTp = 0},

which proves the desired result.

Equipped with Lemma 3.9, we can now prove Theorem 3.8.

Proof of Theorem 3.8. Since

∇F1(z) = −(AAT )−1ABT∇f∗(−(AAT )−1ABT z),

it follows that S1 given by (3.8) can rewritten as

S1(z) = max
p:(I−P)BTp=0

{〈
−BAT (AAT )−1∇f∗(−(AAT )−1ABT z), z− p

〉
+ g∗(z)− g∗(p)

}
= max

p:(I−P)BTp=0

{〈
(AAT )−1∇f∗(−(AAT )−1ABT z),ABT (p− z)

〉
+ g∗(z)− g∗(p)

}
.

Invoking Lemma 3.9 with s = ∇f∗(−(AAT )−1ABT z), we obtain that S1 can be written as

S1(z) =

[
min

Ax=∇f∗(−(AAT )−1ABT z)
g(Bx)

]
+ g∗(z)−

〈
(AAT )−1∇f∗(−(AAT )−1ABT z),ABT z

〉
= min

Ax=∇f∗(w)
g(Bx) + g∗(z) + 〈∇f∗(w),w〉 ,

19



where w = −(AAT )−1ABT z. Since f is proper closed and convex,

〈∇f∗(w),w〉 = f(∇f∗(w)) + f∗(w).

Thus,
S1(z) = min

Ax=∇f∗(w)
g(Bx) + f(∇f∗(w)) + g∗(z) + f∗(w),

as asserted.

Theorem 3.10 (primal-dual convergence). Let {xk}k≥0 and {zk}k≥0 be the sequences generated by
the 1

γ -PDA method employed on problem (3.6). Then for any k, zk is dual feasible, xk is primal
feasible and

f(Axk) + g(Bxk) +H1(zk+1) ≤ 2γ

k + 2γ

(
2γ − 2

k + 1
(H1(z0) + p̄) + 4K̃γ

)
, (3.14)

where

K̃ =


‖(AAT )−1ABT ‖2

µ L2
g, exact minimization or local model with constant stepsize,

max
{
η ‖(AAT )−1ABT ‖2

µ , L̄
}
L2
g, local model with backtracking.

(3.15)

Proof. For any k ≥ 0 the vector zk is dual feasible by its construction and xk is primal feasible as
stated in Remark 3.6. Invoking Lemma 2.8, using the expression for L given in (3.9), the fact that
diam(dom (g∗)) ≤ 2Lg and the fact that H∗ = −q̄ = −p̄ (where H∗ is the optimal value of (3.7)), we
obtain for any k ≥ 0 (after cancelation of the constant term p̄, or H∗ in Lemma 2.8)∑k

i=0

(
S1(zi)−H1(zi)

)
(i+ 2γ − 1)∑k

i=0(i+ 2γ − 1)
+H1(zk+1) ≤ 2γ

k + 2γ

(
(2γ − 2)

k + 1
(H1(z0) + p̄) + 4K̃γ

)
. (3.16)

Using Theorem 3.8, setting wi = −(AAT )−1ABT zi, we have for any i = 0, 1, . . . , k

S1(zi)−H1(zi) = S1(zi)−
(
f∗(wi) + g∗(zi)

)
= min

Ax=∇f∗(wi)
g(Bx) + f(∇f∗(wi)) + f∗(wi) + g∗(zi)−

[
f∗(wi) + g∗(zi)

]
= min

Ax=∇f∗(wi)
g(Bx) + f(∇f∗(wi)). (3.17)

We now split the proof into two cases according to the construction of sk. First assume that we use
the averaging construction. In this case, we have sk = 1∑k

i=0(i+2γ−1)

∑k
i=0 (i+ 2γ − 1)∇f∗(wi). We

note that the function s 7→ minAx=s g(Bx) + f(s) is convex and hence, using (3.17),∑k
i=0

(
S1(zi)−H1(zi)

)
(i+ 2γ − 1)∑k

i=0(i+ 2γ − 1)
=

∑k
i=0

(
minAx=∇f∗(wi) g(Bx) + f(∇f∗(wi))

)
(i+ 2γ − 1)∑k

i=0(i+ 2γ − 1)

≥ min
Ax=sk

g(Bx) + f(sk)

= f(Axk) + g(Bxk).

This concludes the proof for the case where sk is given by averaging. Suppose now that sk is given
by keeping the best iterate, that is sk = ∇f∗(wk0) where k0 ∈ argmini=0,1,...k

{
S1(zi)−H1(zi)

}
. In

this case, using again (3.17),∑k
i=0

(
S1(zi)−H1(zi)

)
(i+ 2γ − 1)∑k

i=0(i+ 2γ − 1)
≥ S1(zk0)−H1(zk0)

= min
Ax=sk

g(Bx) + f(sk)

= f(Axk) + g(Bxk),
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and the proof is complete.

Remark 3.11. Recall that H1 is the opposite of the dual objective of problem (3.2). Thus, the
left-hand side of (3.14) is the difference between the objective of problem (3.1) evaluated at xk and
the objective of its dual problem (3.2) evaluated at (wk, zk), and can thus be considered as a duality
gap. In addition, the term H1(z0) + p̄ appearing in the right-hand side of (3.14) is the initial dual
suboptimality in (3.2).

Remark 3.12 (Constant refinement). The constants µ, Lg and matrix norms that appear in (3.15)
can be refined in specific instances. Indeed, the proof of Theorem 3.10 requires to consider the
smoothness modulus of f∗ and the diameter of dom (g∗) only restricted to sets of the form G1 + δZk ,
which for some specific choices of Zk can yield much better constants than µ and Lg (as for example
in Section 4.2). It is possible to propose even finer refinements using curvature constants that take
into account the geometry of the problem [16].

4 Applications and numerical illustration

We illustrate the relevance of the primal model (3.1) with two examples. The first one is a toy
one-dimensional inpainting problem, for which we would like to recover a piecewise constant signal
from partial noisy measurements. In the second example we consider binary classification with offset
and binary SVM with offset. For each of the problems we explicitly write the corresponding dual
1
γ -PDA method and show numerical results.

4.1 1D inpainting

4.1.1 Description of the problem

In the 1D inpainting problem, we assume that we are given noisy measurements of a subset of
components of a vector x̃ ∈ Rn. Specifically, we are given a function I : {1, 2, . . . , p} → {1, 2, . . . , n}
satisfying

1 = I(1) < I(2) < · · · < I(p) = n.

Note that we consider that the first and last entries of x0 are measured. Indeed, we will use the
canonical order on coordinates and focus on interpolation, and in particular on entries between the
two extreme measurements which we denote by 1 and n. The indices I(1), I(2), . . . , I(p) are exactly
the indices for which the noisy measurements of x̃ are given:

yj = x̃I(j) + εj , j = 1, 2, . . . , p, (4.1)

where εj can be viewed as noise or errors. The vector y ∈ Rp is given and we would like to
recover x̃ based on additional prior structure. We will denote the set of known indices by I =
{I(1), I(2), . . . , I(p)}. A different way to represent (4.1) is by defining a matrix A ∈ Rp×n by

Ai,j =

{
1, j = I(i),
0, else.

, i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , n}.

Using the matrix A, (4.1) becomes y ≈ Ax̃. In order to recover the lost measurements, we assume
that the original vector x̃ is piecewise constant. We can use the total variation norm as a structure
inducing prior to recover x̃. We consider the following penalized least-squares problem

min
x∈Rn

1

2
‖Ax− y‖2 + λ

n−1∑
i=1

|xi − xi+1|, (4.2)
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which can be rewritten as

min
x∈Rn

1

2
‖Ax− y‖2 + λ‖Bx‖1, (4.3)

where B ∈ R(n−1)×n, is such that for all i = 1, 2, . . . , n−1, Bi,i = 1, Bi,i+1 = −1, and all other entries
are zeros. Problem (4.3) is of the general form of the main model (3.1) with f(·) = 1

2‖ · −y‖2, g(·) =
λ‖ · ‖1. Thus, the dual problem as given in (3.6) takes the form

min 1
2‖ABT z + y‖2

s.t. (I−ATA)BT z = 0,
‖z‖∞ ≤ λ,

(4.4)

where here we used the fact that AAT = I (since the rows of A are different unit vectors). Further-
more, ATA is a diagonal matrix whose ith diagonal entry is 1 if i ∈ I (hence including 1 and n) and 0
otherwise. In addition, BT is of size n×(n−1) with BT

i,i−1 = −1 and BT
i,i = 1 for i = 2, 3, . . . , (n−1).

Combining these two facts, we have that the system of equality constraints in (4.4) is equivalent to
the system

zi = zi−1, ∀i 6∈ I. (4.5)

The specific form of these constraints makes it easy to construct a basis for the null space. We assume
that all elements of this basis are given by the columns of a matrix U and perform the change of
variables z = Uz̃. The matrix U can be chosen to be of the following form

U =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

where columns that contain several ones account for constraints of the form of (4.5) for several
consecutive indices not in I. The special example given here corresponds to I = {1, 2, 3, 7, 8, 9, 10}
and n = 10. The construction of U ensures that its columns form a basis of the null space of
(I − ATA)BT and that for any z̃, ‖Uz̃‖∞ = ‖z̃‖∞. Therefore, problem (4.4) is equivalent to the
problem

min
z̃

1

2

∥∥ABTUz̃ + y
∥∥2

(4.6)

s.t. ‖z̃‖∞ ≤ λ,

which is a box constrained problem that can be solved by various methods such as the conditional
gradient method or the proximal gradient method (which are 1-PDA methods) or one of the variants
of greedy coordinate descent method as explained in Section 2.2.4. We focus on methods which
yields primal convergence rates as described in Section 3.

4.1.2 Numerical simulation

We compare the conditional gradient, greedy block conditional gradient and projected gradient on
problem (4.6). All these methods can be viewed as 1

γ -PDA methods. The numerical criterion of
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interest is the duality gap. Theorem 3.10 provides a primal dual convergence rate estimate of O(1/k)
for the three methods. The analysis allows to reconstruct sequences of estimates for the primal
problem (4.2). We simulate a piecewise constant signal, remove some of its entries and add gaussian
noise. The simulation setting is illustrated in Figure 1. The comparative primal-dual convergence
is given in Figure 2. The sparse version of the conditional gradient method performs significantly
better than the traditional conditional gradient and slightly better than the traditional projected
gradient method. Furthermore, the averaging rule to reconstruct the primal sequence seems to help
a bit for the traditional conditional gradient while it tends to degrade performances for both greedy
block conditional gradient and projected gradient.
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Figure 1: Numerical simulation setting. The original one dimensional signal is in red. The observa-
tions consist in removing some part of the signal and adding noise (in green). The signal recovered
by the greedy block conditional gradient method is given in blue. Note that the fact that the gaps in
the recovered signal are smaller than in the original signal is an unavoidable effect of total variation
regularization.
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Figure 2: Comparative performances of the full conditional gradient, its greedy block version and
the projected gradient algorithm on the simplified dual problem (4.6). The comparison is in terms of
duality gap with (Gap AVG) and without (Gap) using the averaging rule for primal reconstruction.
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4.2 Binary classification with offset

4.2.1 Setting

Structural risk minimization is the process of estimating a decision function by minimizing a risk
term evaluated on an empirical dataset with a capacity control term [34]. We will focus on binary
classification with affine predictors. We have q datapoints, that is, for each i = 1, 2, . . . , q, we have a
vector of features si ∈ Rn and a binary output ti ∈ {−1, 1}. We are looking for a decision boundary
given by a pair (x, b) ∈ Rn × R of the form {a ∈ Rn : 〈x,a〉 = b}. This is done by minimizing a
penalized empirical risk.

min
x,b

1

2
‖x‖2 +

C

q

q∑
i=1

l(ti(〈x, si〉 − b)), (4.7)

where C > 0 is a given regularization parameter and l is a convex Lipschitz continuous and nonin-
creasing loss function from R to R with a nonzero derivative at the origin. Let S be the matrix whose
columns are the vectors tisi, i = 1, 2, . . . , q, and t be the vector whose entries are ti, i = 1, 2, . . . , q.
It is clear that problem (4.7) fits model (3.1) with f : Rn → R and g : Rq → R defined by

f(w) ≡ 1

2
‖w‖2, g(u) ≡ C

q

q∑
i=1

l(ui),

and A ∈ Rn×(n+1),B ∈ Rq×(n+1) given by

A =
(
In 0n×1

)
,B =

(
ST −t

)
, (4.8)

where 0a×b is the a× b zeros matrix for a, b ∈ N. To write explicitly the dual problem (3.6), we will
first compute the matrix P

P = AT (AAT )−1A =

(
In 0n×1

01×n 0

)
.

Therefore, we have the following equivalence:

(I−P)BT z = 0 iff tT z = 0. (4.9)

Also, since AAT = I, we have

−(AAT )−1ABT z = −ABT z = −
(
In 0n×1

)( S
−tT

)
z = −Sz. (4.10)

The conjugates of f and g are

f∗(y) =
1

2
‖y‖2, g∗(r) =

C

q

q∑
i=1

l∗
(qri
C

)
. (4.11)

Therefore, plugging (4.9), (4.10) and (4.11) into the general form of the dual problem (3.6), we obtain
that a dual of problem (4.7) in minimization form is

min 1
2zTSTSz + C

q

∑q
i=1 l

∗ ( qzi
C

)
s.t. tT z = 0.

(4.12)
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4.2.2 Support vector machine and SMO type algorithms

We will be particularly interested in the case of the SVM [10] for which l is the hinge loss, meaning
that l : z → max {1− z, 0}. In this case, l∗(z) ≡ z + ι−1≤z≤0, and thus (4.12) can be written as

min 1
2zTSTSz + 1T z,

s.t. −C
q ≤ zi ≤ 0, i = 1, 2, . . . , q

tT z = 0,

(4.13)

which corresponds to the usual expression the dual SVM problem (after making the change of vari-
ables z← −z) that consists of minimizing smooth objective function over a box with one additional
linear equality constraint. Active set methods rely on updates of pairs of variables in the dual
[27, 28, 17]. These algorithms are among the most popular for SVM training with offset because the
updates are very cheap and allow to consider large numbers of training points [8]. Since the method
we propose falls in this categorty of approaches, we restrict ourselves to this class of methods in the
theoretical discussion (Section 4.2.3) and numerical experiments (Section 4.2.4).

Since there is a single linear constraint in the dual, we can use the construction of Section 2.2.5
to build such a working set method that updates only pairs of dual variables at each iteration. The
interesting additional property here is that this constitutes a 1

q -PDA method and our theory applies.
Solving the linear oracle for the SVM can be viewed as a fractional knapsack problem. A naive
solution requires to sort a q dimensional vector and perform an exhaustive search (linear in q). This
problem can also be solved in O(q) operations with a weighted medians algorithm [19, Section 17.1].

To compute the primal sequence {(xk, bk)}k≥0 from the dual sequence {zk}k≥0, we use the formula
(3.10). We will consider the following two possibilities:

sk =

{
(averaging) − 1∑k

i=0(i+2q−1)

∑k
i=0(i+ 2q − 1)Szi,

(last iterate) − Szk,

xk = sk,

bk ∈ argminb∈R

q∑
i=1

l(ti(〈ski , si〉 − b)).

Note that, as outlined in Remark 3.7, the averaged sequence can be computed online without storing
the whole sequence of iterates. We can invoke Theorem 3.10 and obtain O(1/k) rates of convergence
for the averaging rule. For the other rule, we have the same rate for the best primal point estimated
so far. Note that we do not have primal convergence guaranties concerning the last iterate. We still
consider it here in order to investigate the effect of averaging.

4.2.3 Implications of Theorem 3.10 for binary SVM and relation to the literature

Theorem 3.10 ensures that after k iterations of any dual 1
q -PDA method, we find a set of primal

variables (xk, bk) and dual variables zk such that the difference between the primal objective evaluated
at (xk, bk) with the dual objective evaluated at zk+1 is of order O(1/k). In particular, (xk, bk)
achieves a training accuracy of order O(1/k). We emphasize that this training accuracy (or primal
suboptimality) is very relevant from a machine learning perspective. For the sake of clariy, we restrict
the discussion to active set methods which are widely used for SVM training [8]. In this context,
the closest results we could find in the literature are [15, Theorem 2] and [24, Corollary 3] which we
comment below.

• [15, Theorem 2] ensures that if zk is ε-suboptimal for problem (4.13), then the corresponding
primal variable as given by the last iterate rule is

√
ε-suboptimal for problem (4.12). They show

in addition that zk has dual suboptimality of order O(1/k) resulting in a O(1/
√
k) convergence
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rate for the primal variable in (4.7). Theorem 3.10 improves this result by showing a rate of
O(1/k) for both (4.7) and (4.13).

• [24, Corollary 3] ensures that if the duality gap is less than ε, then, the primal variables
corresponding to the last iterate are ε-optimal for the primal problem (4.12). This is relevant
since this quantity is often used as a stoping criterion. However, this analysis is somehow
incomplete since there is no explicit condition on k ensuring that the duality gap is less than ε.
Therefore the result cannot be directly translated in a convergence rate for the primal variable
sequence. Theorem 3.10 is stronger because it gives an explicit global rate of O(1/k) for both
(4.7) and (4.13).

The approximation factor of the method is 1
q where q is the number of datapoints. This translates

into a multiplicative constant of order of q2 in the rate of Theorem 3.10 which is a bit disapoiting
for large datasets. Note however that the squared diameter of the feasible domain in problem (4.13)

is not more than C2

q . Reading (3.14) with this in mind, we obtain a bound of the form

2

2 + k
q

(
2d0

k
q

+ C2K1

)
,

where d0 is the dual suboptimality at iteration 0 and K1 only depends on the singular values of B.
This shows that the global suboptimality is roughly inversely proportional to the ratio k

q which is quite
reasonable. Furthermore, as explained in Remark 3.12, it is possible to further refine the constants
appearing in (3.14), a process that will require further discussions on finding tighter estimates on
the scaling of C and singular values of S with increasing values of q. These specific considerations
are beyond the scope of this paper.

4.2.4 Numerical simulations

We consider training a linear SVM as given by (4.7) on a randomly generated dataset. The setting
is as follows

• The ambiant dimension is p = 20.

• We consider two classes sampled from unit Gaussian random variables with a shift in mean of
magnitude 2 (in euclidean norm).

• We vary the number of datapoints q ∈ {100, 200}, evenly spread in the two classes.

• We vary the regularization parameter C ∈ {10, 100, 1000}.

The main purpose is to illustrate the behaviour of the PDA framework in view of primal and dual
suboptimality. We will use a coordinate selection rule that we call WSS1, implemented in LIBSVM
[8], one of the most widely used SVM solvers, as a baseline. The only difference with PDA is
the coordinate selection rule, the rest of the algorithm being the same. Both selection rules are
combined with an exact block minimization step, which is a simple two-dimensional problem here.
Note that in this case, the cost of computing the PDA point of Section 2.2.5 is linear in q, the
number of training examples. Furthermore, Theorem 3.10 provides convergence guaranties for both
problems (4.7) and (4.13). For the WSS1 rule, the number of operations required is of the order of
q. Numerical results in term of evolution of the primal and the dual objective values as a function
of the iteration counter k are presented in Figure 3, which illustrate convergence of primal (with
and without averaging) and dual objective to the global optimum value. The main comment is
that the working set selection of the 1

q -PDA rule is competitive and at times superior to the WSS1
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Figure 3: Evolution of the primal and dual objectives with the number of iterations for the training
of the SVM on the toy dataset (see Section 4.2.4). PDA implements the update rule described
in section 2.2.5 and WSS1 is the coordinate selection rule of LIBSVM [8]. q is the total number of
datapoints and C is the regularization parameter of the SVM. For both coordinate selection rules, we
plot the value of the dual objective, the primal objective and the primal objective with the averaging
rule.

update rule in terms of primal suboptimality on this specific problem. Another important comment
is that the absolute performances depend on the parameters of the problem. The averaging rule for
the primal sequence reconstruction does not seem to bring a systematic practical advantage beyond
smoother primal convergence. An interesting remark is that the WSS1 rule provides in some cases a
better dual convergence while the primal convergence is worse compared to our PDA method. This
highlights the idea that better convergence in terms of dual objective function does not necessarily
translates into faster convergence in the primal.

5 Conclusion

This work builds upon the idea of predicted decrease approximation to provide a unified convergence
analysis for various existing decomposition algorithms for constrained convex optimization. We have
shown that a single result allows to treat as special cases the generalized conditional gradient method,
the proximal gradient method, and greedy coordinate descent method and working set method for
smooth problems with linear equality as well as bound constraints. Furthermore, we have shown
that the dual application of this approach leads to primal-dual convergence guaranties that hold
even if the primal model is only partially strongly convex. This lead to better convergence analysis
of SMO-type methods for the training of the SVM in terms of primal sequence suboptimality. To
conclude, we comment on the following aspects of the proposed analysis which relates our work to
broader considerations in optimization.
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• The overall algorithmic recipe leads to block decomposition methods for models involving non-
separable constraints. The price to pay is the requirement to consider larger blocks (larger
subsets of coordinates), but the convergence remains. Many questions are open in this respect.
Could this benefit to parallel computing architectures and distributed data settings? What
would be the practical and theoretical impact of introducing randomness in the block selection
process? Can we extend these results to more general non-separable settings.

• A general rule of thumb for nonsmooth convex optimization is that the optimal convergence
speed of subgradient methods is O(1/

√
k) for convex models and O(1/k) for strongly convex

models. The algorithmic framework we proposed takes advantage of partial strong convexity
to retain the convergence speed of strongly convex models while being only partially strongly
convex.

• The main mechanism in the proposed primal-dual analysis is to build a primal estimate based
on the knowledge of a dual feasible point. A property of the proposed approach is that both
primal and dual sequences are feasible. This is a difference in comparison to Lagrangian based
methods for which feasibility usually holds in an asymptotic and ergodic sense. In our work,
going from the dual to the primal requires an additional optimization step in order to ensure
primal dual convergence. This occurs because there is a certain level of undetermination in the
process of going back to the primal which requires special care. The level of undetermination
can be interpreted to be the same as the level of “non-strong convexity” in the primal model.
This draws an interesting connection between partial strong convexity in the primal and easiness
of switching from the dual to the primal.
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