
A First Order Method for Solving Convex Bi-Level
Optimization Problems

Shoham Sabach∗ Shimrit Shtern†

March 22, 2017

Abstract

In this paper we study convex bi-level optimization problems for which the inner
level consists of minimization of the sum of smooth and nonsmooth functions. The
outer level aims at minimizing a smooth and strongly convex function over the optimal
solutions set of the inner problem. We analyze a first order method which is based on
an existing fixed-point algorithm. Global sublinear rate of convergence of the method
is established in terms of the inner objective function values.

1 Introduction

In this paper we are interested in the following bi-level optimization problem (where we
use the terminology of inner and outer levels). The outer level is given by the following
constraint minimization problem

min
x∈X∗

ω (x) , (MNP)

where ω is a strongly convex and differentiable function while X∗ is the, assumed nonempty,
set of minimizers of the inner level problem, which is the classical convex composite model,
given by

min
x∈Rn
{ϕ (x) := f (x) + g (x)} , (P)

where f is a continuously differentiable function and g is an extended valued (possibly
nonsmooth) function, see next section for precise assumptions. We denote the unique
optimal solution of problem (MNP) by x∗mn, following the notation used in [2].

The most known indirect method (the meaning of direct and indirect method will
be made precise in the following lines) for solving problem (MNP) is by the well-known
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Tikhonov regularization [14] which suggests solving the following alternative regularized
problem, for some λ > 0,

min
x∈Rn
{ϕλ (x) := ϕ (x) + λω (x)} . (Qλ)

In [8] the authors treat the case that g is an indicator function of a closed and convex
set X, and show that under some restrictive conditions including X being a polyhedron,
there exists a small enough λ∗ > 0 such that the optimal solution of problem (Qλ∗) is the
optimal solution of problem (MNP), see [8, Theorem 9]. However, in practice, even for
this specific case, the value of λ∗ is unknown, and so (Qλ) must be solved for a sequence
of regularizing parameters {λk}k∈N for which λk → 0 as k → ∞. In [13] Solodov showed
that, provided that

∑∞
k=1 λk = ∞ and g is again an indicator function of a closed and

convex set, there is no need to find the optimal solution of problem (Qλk), k ∈ N, and it is
sufficient to approximate its solution by performing single projected gradient step on ϕλk
for all k ∈ N. In the case that both f and ω are differentiable with Lipschitz continuous
gradients, the generated sequence converges to the optimal solution of problem (MNP),
even if ω is not strongly convex. Thus, the algorithm suggested in [13] provides a direct
method for solving problem (MNP). Another direct approach to solve problem (MNP) is
the Hybrid Steepest Descent Method (HSDM) presented in [16, Section 17.3.2], which was
proved to converge to the optimal solution of problem (MNP) provided that λk → 0 as
k → ∞ and

∑∞
k=1 λk = ∞. In [11], an extension of the HSDM is suggested for the case

where g (·) := 0 and ω is not necessarily differentiable or strongly convex but has bounded
subgradients on the optimal set.

The major missing part of these papers is that while convergence was proven the conver-
gence rates of these algorithms are unknown. Very recently, a new direct first order method
for solving problem (MNP), called the Minimal Norm Gradient (MNG) was proposed in
[2], for which the authors proved an O(1/

√
k) rate of convergence result, in terms of the

inner objective function values. Even though the authors of [2] deal with the specific case
of problem (P) for which the nonsmooth function g is assumed to be an indicator function
of a nonempty, closed and convex set, it seems that their analysis carries over even in the
more general setting of this paper, that is, for any convex and extended valued function g.
The MNG method is based on the cutting plane idea which means that at each iteration of
the algorithm two specific half-spaces are constructed and then a minimization of the outer
objective function ω over the intersection of these half-spaces is solved (see more detail in
Section 2.2). In some cases, computing a solution to this minimization task can be done
analytically. However, for some choice of outer function ω obtaining a solution might be
computationally expensive and require an additional nested algorithm to approximate its
solution.

Inspired by [2] and motivated by the limitations of the MNG method (as discussed in
Section 2.2) we are interested in pursuing the research on bi-level optimization problems
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in the following way. We study and analyze a first order method1 for solving problem
(MNP) with a non-asymptotic O(1/k) global rate of convergence in terms of the inner
objective function values, which we call BiG-SAM. In addition to the improved rate of
convergence, BiG-SAM seems to be simpler and cheaper than the MNG method in the
following sense. The operation in the algorithm which relates to the inner problem is of the
same complexity as in the MNG method. On the other hand, the operation with respect
to the outer problem is very simple in our case, and consists of computing the gradient
of the objective function ω, in the MNG method two tasks are needed: computation of
the gradient of ω and a minimization of ω over the intersection of two half-spaces, whose
computational cost highly depend on the function ω, as discussed below (see Section 3.1).

Another contribution of this paper is the fact that BiG-SAM can also be used in situa-
tions for which the outer objective function ω is strongly convex but not necessarily smooth.
In this case, we show that BiG-SAM solves problem (MNP) but with respect to the Moreau
envelope of ω instead of ω itself. In this case we offer a new concept of measuring rate
of convergence. This property of BiG-SAM allows considering outer functions which are
not necessarily smooth and include, for example, functions with sparsity terms (see more
details in Section 4.1).

The paper is organized in the following way. In Section 2 we discuss the optimization
framework of the class of bi-level problems, then we give all notations and auxiliary results
that are needed for the forthcoming sections. We conclude this section with a short overview
of the MNG method developed in [2] (see Section 2.2). Section 3 is devoted to an algorithm
which forms the basis of BiG-SAM. We first discuss it in its generality for solving a certain
class of fixed-point problems (see Section 3.1) and then we specify it for solving the bi-
level problems described in Section 2.1. In Section 4 we prove rate of convergence results
of BiG-SAM. This section also includes our results in the case where the outer function
is not necessarily smooth. Section 5 contains numerical experiments comparing MNG to
BiG-SAM and showing its computational superiority in obtaining faster rates.

Throughout the paper we denote vectors by boldface letters. The notation 〈·, ·〉 is used
to denote the inner product of two vectors and ‖·‖ is the norm associated with this inner
product, unless stated otherwise.

2 Optimization Framework and Mathematical Tools

2.1 Convex Bi-Level Optimization

In this paper we are focusing on bi-level optimization problems which are formulated as
follows. We first discuss the inner level problem which is given by,

min
x∈Rn
{ϕ (x) := f (x) + g (x)} . (P)

1which is based on an existing algorithm, proposed in [15], for solving a certain class of fixed point
problems (see precise details in Section 3.1).
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The standing assumption on the functions of the inner level problem is recorded now.

Assumption A. (i) f : Rn → R is convex and continuously differentiable such that its
gradient is Lipschitz with constant Lf , that is,

‖∇f (x)−∇f (y)‖ ≤ Lf ‖x− y‖ , ∀ x,y ∈ Rn.

(ii) g : Rn → (−∞,∞] is proper, lower semicontinuous and convex.

(iii) The set X∗ of all optimal solutions of problem (P) is nonempty, that is, X∗ 6= ∅.

Problem (P), which consists of minimizing the sum of a smooth function f and a
possibly nonsmooth function g, is one of the most studied models in modern optimization
with a huge body of literature (see, for instance, [4] and the references therein). The basic
algorithm for solving problem (P) is the so called Proximal Gradient (PG) or proximal
forward-backward method (see [7, 12] for the origin of the algorithm and [3] for the rate of
convergence result including an accelerated version), which iteratively generates a sequence{
xk
}
k∈N starting from an arbitrary point x0 ∈ Rn via the following rule

xk+1 = proxtg
(
xk − t∇f

(
xk
))
, k ∈ N, (2.1)

for some step-size t > 0. The main operation of this algorithm is the computation of the
Moreau proximal mapping of a proper, lower semicontinuous and convex function h : Rn →
(−∞,∞] which is denoted and defined by

proxh (x) := argmin
u∈Rn

{
h (u) +

1

2
‖u− x‖2

}
. (2.2)

The PG method can also be seen as a fixed-point algorithm where the iterated mapping is
given (using the notation of [2]) by

Tt (x) := proxtg (x− t∇f (x)) , (2.3)

and is called the prox-grad mapping. In the case where g is the indicator function δX of
a set X, defined to be zero on X and +∞ on Rn \ X, the prox-grad mapping coincides
with the proj-grad mapping (which is discussed in [2, 10]), since in this case the proxi-
mal mapping of g is exactly the orthogonal projection onto X. The prox-grad mapping
possesses the following two important properties which are relevant to our analysis (see
[1, Proposition 12.27, Page 176] and [4, Section 2.3.2, Page 48]). The second property
characterizes the set of all fixed points of Tt, which is denoted by Fix(Tt) and defined by
Fix(Tt) = {x ∈ Rn : Tt (x) = x}.

Lemma 1. (i) The prox-grad mapping Tt is nonexpansive for all t ∈ (0, 1/Lf ], that is,

‖Tt (x)− Tt (y)‖ ≤ ‖x− y‖ , ∀ x,y ∈ Rn. (2.4)
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(ii) Fixed points of the prox-grad mapping Tt are optimal solutions of problem (P) and
vice versa, that is,

x ∈ X∗ ⇔ x = Tt (x) = proxtg (x− t∇f (x)) . (2.5)

Therefore, we have that Fix(Tt) = X∗ for all t > 0.

The following result will be essential for the rate of convergence analysis presented in
Section 4 (cf. [3, Lemma 2.3, Page 190]).

Proposition 1. Suppose that Assumption A holds true. Let x ∈ Rn and denote x+ =
Tt (x). Then, for any t ≤ 1/Lf and u ∈ Rn, we have

ϕ
(
x+
)
− ϕ (u) ≤ 1

t

〈
x− x+,x− u

〉
− 1

2t

∥∥x− x+
∥∥2 . (2.6)

To conclude the discussion on the inner problem (P), we note that it is well-known
that the PG method has an O(1/k) rate of convergence in terms of the objective function
values ϕ (see [3]). In this respect, the method proposed in this paper shares the same rate
of convergence as the PG method while capable of solving the more complicated bi-level
problem described in detail now.

We now turn to discuss the outer problem. As mentioned in the introduction, the outer
problem is given by the following convex constrained problem

min
x∈X∗

ω (x) , (MNP)

where X∗ is the optimal solution set of problem (P). Here, using the same terminology as
in [2], we refer to this outer problem as the Minimal Norm Problem (MNP). The standing
assumption on the objective function ω of problem (MNP) is recorded now.

Assumption B. (i) ω : Rn → R is strongly convex with parameter σ > 0.

(ii) ω is a continuously differentiable function such that ∇ω is Lipschitz continuous with
constant Lω.

It should be noted that Assumption B(i) here is slightly stronger than the corresponding
assumption given in [2, Page 27], since we do not only assume differentiability of ω, as
assumed in [2], but additionally assume that its gradient is Lipschitz continuous. However,
in practice, most of the interesting examples of ω do satisfy this additional assumption.

A function that would be essential in our paper is the well-known Moreau envelope of
a given function ω, which is denoted by Msω, and defined by

Msω (x) = min
u∈Rn

{
ω (u) +

1

2s
‖u− x‖2

}
. (2.7)
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It is well-known that Msω is continuously differentiable on Rn with an 1/s-Lipschitz con-
tinuous gradient (see [1, Proposition 12.29, Page 176]), which is given by

∇Msω (x) =
1

s
(x− proxsω (x)) . (2.8)

Another property of the Moreau envelope that plays a central role in this paper is that, if
the corresponding function ω is strongly convex then its Moreau envelope is also strongly
convex as recorded in the following result (for completeness, the proof given in Appendix
A).

Proposition 2. Let ω : Rn → (−∞,∞] be a strongly convex function with strong con-
vexity parameter σ and let s > 0. Then, the Moreau envelope Msω is strongly convex with
parameter σ/ (1 + sσ).

See Section 4.1 for more details on the Moreau envelope relevant for our discussion.

A mapping S : Rn → Rn is said to be β-contraction if there exists β < 1 such that

‖S (x)− S (y)‖ ≤ β ‖x− y‖ , ∀ x,y ∈ Rn.

For functions ω which satisfy Assumption B we have the following result which is crucial for
our derivations. Although this result seem to be classic, we did not find an exact reference
for its proof and therefore, for the sake of completeness, we provide a proof in Appendix B.

Proposition 3. Suppose that Assumption B holds. Then, the mapping defined by Ss =
I − s∇ω, where I is the identity operator, is a contraction for all s ≤ 2/ (Lω + σ), that is,

‖x− s∇ω (x)− (y − s∇ω (y))‖ ≤
√

1− 2sσLω
σ + Lω

‖x− y‖ , ∀ x,y ∈ Rn. (2.9)

We now conclude this section by giving a short overview on the MNG method developed
in [2].

2.2 The Minimal Norm Gradient Method

The MNG method of [2] was designed to tackle bi-level optimization problems for which
g (·) := δX (·). In this case ϕ (x) = f (x), for all x ∈ X.

Each iteration of the MNG method consists of three main computational tasks.

(i) Computing the proj-grad mapping Tt in order to construct the first half-space.

(ii) Computing the gradient of ω, which is needed to construct the second half-space.

(iii) Minimizing ω over the intersection of these two half spaces.
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The first two tasks are standard in first order methods and consist of computing gradient
and projections. On the other hand, the third task (which depends on ω) is more involved
and might requires a nested optimization algorithm . Thus, in many scenarios, we end up
with nested schemes which implies that: (i) there is accumulation of computational error
in each step, and (ii) the stopping criteria of the nested algorithm at each iteration is not
well- defined. Therefore, the third task determines the computational complexity of the
entire method, and thus the applicability of the MNG method for certain implementation.

In the case where ω (·) := ‖·‖2Q, where Q is a positive definite matrix, the computation
is easy and given by an explicit formula as noted in [2, Example 1, Page 36], although it
may require some decomposition and inversion of matrix Q (see Section 5 for more details).

The main result derived in [2] (cf. [2, Theorems 4.1 and 4.2, Pages 37 and 39]) is valid
when Assumptions A and B hold and when g (·) := δX (·). As we already mentioned, in
[2] the authors did not assume that ∇ω is Lipschitz continuous, only continuously differ-
entiable. We state here the following result which deals with the case where the Lipschitz
constant Lf of ∇f is known (for a backtracking version see [2]).

Proposition 4. Let
{
xk
}
k∈N be the sequence generated by the MNG method. Then, the

sequence
{
xk
}
k∈N converges to the optimal solution x∗mn of problem (MNP) and, for any

k ∈ N, we have that

min
1≤l≤k

ϕ
(
T1/Lf

(
xl
))
− ϕ (x∗mn) ≤ ρLf ‖x0 − x∗mn‖

2

√
k

,

where ρ = 1 if X = Rn and ρ = 4/3 otherwise.

It should be noted that the MNG method is not a feasible method in the sense that
xk, k ∈ N, does not necessarily belongs to the constraint set X and therefore the rate of
convergence result is obtained on the feasible sequence

{
T1/Lf

(
xk
)}

k∈N, k ∈ N. Further-
more, though in the original paper the authors only discuss the case where g (·) := δX (·)
the result can actually be extended to the more general case given in the introduction.

Our main goal in this paper is to study a different algorithm for solving bi-level optimiza-
tion problems, than the MNG method, for which we prove a rate of convergence in terms of
the inner objective function values that is superior to the rate of the MNG method (given
in Proposition 4 above). In addition to complexity aspect, the studied method, which is
discussed in the next section, is simpler and capable of tackling bi-level problems for which
the outer objective function is not necessarily smooth. This attractiveness is mainly due to
the fact that the studied method does not require the minimization of the outer objective
function ω over two half-spaces as needed in the MNG method.
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3 The Sequential Averaging Method

3.1 The General Framework

Our approach here is based on taking an existing algorithm, that we call Sequential Aver-
aging Method (SAM), which was developed in [15] for solving a certain class of fixed-point
problems (see precise details below), and determining how it can be used in the setting of
bi- level optimization problems as described in Section 2. It should be noted that in [15]
it is already proved that SAM generates a sequence which converges to a solution of the
corresponding fixed-point problem. Now we will discuss in detail the method proposed in
[15].

The problem of main interest in [15] is finding a fixed-point of the nonexpansive mapping
T , that is, x∗ ∈ Fix(T ), which also satisfies certain property with respect to a contraction
mapping S over all points which belong to Fix(T ). This property is formulated using the
following variational equality

〈x∗ − S (x∗) ,x− x∗〉 ≥ 0, ∀ x ∈ Fix(T ). (3.1)

This means that the problem here is to find a fixed-point of the mapping T which is “better”
than all other fixed-points of T in the sense of inequality (3.1).

The SAM iteratively generates a sequence
{
xk
}
k∈N starting from any x0 ∈ Rn by

averaging the two mappings S and T in the following way

xk = αkS
(
xk−1

)
+ (1− αk)T

(
xk−1

)
,

where {αk}k∈N is a well-chosen sequence of real numbers from (0, 1] which satisfies the
following assumption.

Assumption C. Let {αk}k∈N be a sequence of real numbers in (0, 1] which satisfies
limk→∞ αk = 0,

∑∞
k=1 αk =∞ and limk→∞ αk+1/αk = 1.

It should be noted that Assumption C holds true for several choices of sequences {αk}k∈N
which include, for example, αk = α/k, k ∈ N for any choice of α ∈ (0, 1].

The following lemma summarizes the main known results on SAM, which were proved
in [15, Theorem 3.2] and formed the basis for this paper.

Lemma 2. Assume that S : Rn → Rn is a β-contraction and that T : Rn → Rn is
nonexpansive mapping, for which Fix(T ) 6= ∅. Let

{
xk
}
k∈N be the sequence generated by

SAM. If Assumption C holds true, then the following assertions are valid.

(i) The sequence
{
xk
}
k∈N is bounded, in particular, for any x̃ ∈ Fix(T ) we have, for all

k ∈ N, that ∥∥xk − x̃
∥∥ ≤ Cx̃ := max

{∥∥x0 − x̃
∥∥ , 1

1− β
‖(I − S) x̃‖

}
. (3.2)
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Moreover, for all k ∈ N, we also have that∥∥T (xk)− x̃
∥∥ ≤ Cx̃ and

∥∥S (xk)− S (x̃)
∥∥ ≤ βCx̃.

(ii) The sequence
{
xk
}
k∈N converges to some x∗ ∈ Fix(T ).

(iii) The limit point x∗ of
{
xk
}
k∈N, which the existence is ensured by (ii), satisfies the

following variational inequality

〈x∗ − S (x∗) ,x− x∗〉 ≥ 0, ∀ x ∈ Fix(T ). (3.3)

We conclude this part by highlighting and streamlining our contributions in this paper,
which go beyond convergence of SAM as recorded in Lemma 2.

(i) We prove that under a specific choice of parameters, SAM generates a sequence{
xk
}
k∈N for which the sequence of the gaps between the iterator and its mapping by

T , that is
{∥∥T (xk)− xk

∥∥}
k∈N, converges with the non-asymptotic rate of O(1/k).

This result gives a rate of convergence to a fixed point of T for the first time.

(ii) We study BiG-SAM for solving bi-level optimization problems, for which the functions
f , g and ω satisfy Assumptions A and B. For this variant, we prove an O(1/k) rate of
convergence for the sequence of inner objective function values (see details in Section
4). This result affirmatively answers the question raised in [2] about a first order
method for bi-level problems with an improved rate of convergence.

(iii) We show that BiG-SAM can be also applied in situations where the outer objective
function ω satisfies only Assumption B(i) but not B(ii), i.e., it is strongly convex but
not necessarily smooth. In this case we also prove a rate of convergence result in
terms of the inner objective function values (see details in Section 4.1).

3.2 SAM for Smooth Bi-level Optimization Problem

We begin this part by connecting the fixed-point problem discussed above with the bi-level
optimization problem described in Section 2.1. We will make this connection by linking the
mappings S and T with problems (MNP) and (P), respectively. We begin by connecting
the mapping T with problem (P).

First of all, as explained in Section 3.1, the mapping T and its fixed-point set Fix(T )
are the inner part in the fixed-point problem, in the sense that we want to find a fixed-point
of T which is “better” than any other points in Fix(T ) with respect to a criteria given by
the mapping S (see (3.1)). In the bi-level setting, the situation is similar, since the inner
problem (P) is actually the inner part and from all its optimal solutions, i.e., from the set
X∗, we would like to find the one which satisfies the additional criteria, being minimizer of
ω over X∗. Therefore, the following relations hold.
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(i) The mapping T and its fixed-point set Fix(T ) are related to problem (P) with the
composite function ϕ = f + g and the optimal solution set X∗.

(ii) The mapping S is related to problem (MNP) and the objective function ω.

From now on, we set the mapping T to be the prox-grad mapping defined in (2.3), that is,
for some t ∈ (0, 1/Lf ] we have

T (x) := Tt (x) = proxtg (x− t∇f (x)) . (3.4)

According to Lemma 1 and since Assumption A holds, we ensure that in this case T is
nonexpansive and Fix(T ) = X∗. We therefore fill all the requirements on the mapping T in
Lemma 2, and immediately obtain from Lemma 2(ii) that the sequence generated by SAM
(with any β-contraction S) converges to a point in X∗. Thus, the only remaining part is
to connect problem (MNP) with the criteria given in the variational inequality presented
in Lemma 2(iii).

Taking into account Proposition 3 and given that Assumption B holds, a natural choice
for the mapping S is as follows

S (x) := x− s∇ω (x) , (3.5)

where s ∈ (0, 2/ (σ + Lω)]. In this case we know, from Proposition 3, that S is a β-

contraction with β = (1− 2sLωσ/(Lω + σ))1/2.

Therefore, SAM for solving the bi-level optimization problems (P) and (MNP) is given
now.

Bi-level Gradient SAM (BiG-SAM)

(1) Input: t ∈ (0, 1/Lf ], s ∈ (0, 2/ (Lω + σ)], and {αk}k∈N satisfying Assumption C.

(2) Initialization: x0 ∈ Rn.

(3) General Step (k = 1, 2, . . .):

yk = proxtg
(
xk−1 − t∇f

(
xk−1

))
, (3.6)

zk = xk−1 − s∇ω
(
xk−1

)
, (3.7)

xk = αkz
k + (1− αk)yk. (3.8)

To conclude this section we would like to interpret the variational inequality given in
Lemma 2(iii) in the setting of bi-level optimization, in which S and T are given by (3.5)
and (3.4), respectively, for some t ∈ (0, 1/Lf ] and s ∈ (0, 2/ (Lω + σ)]. In the following
result we give the desired interpretation and prove that BiG-SAM generates a sequence
which converges to the solution of problem (MNP).
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Proposition 5. Let
{
xk
}
k∈N be a sequence generated by BiG-SAM and suppose that As-

sumptions A, B and C hold true. Then, the sequence
{
xk
}
k∈N converges to x∗ ∈ X∗ which

satisfies
〈∇ω (x∗) ,x− x∗〉 ≥ 0, ∀ x ∈ X∗, (3.9)

and therefore, x∗ = x∗mn is the optimal solution of problem (MNP).

Proof. Since Assumptions A and B hold true, by Lemma 1 and Proposition 3, we have that
S and T which defined in (3.5) and (3.4) are a contraction and a nonexpansive mapping,
respectively. Thus, all the assumptions of Lemma 2 are valid and therefore we immediately
obtain that

{
xk
}
k∈N converges to x∗ ∈ X∗ (see Lemmas 1(ii) and 2(ii)). The only remaining

part is showing that the variational inequality given in Lemma 2(iii) implies that (3.9) holds
true. Indeed, using the fact that S = I − s∇ω we obtain that (3.3) is equivalent to

〈x∗ − (x∗ − s∇ω (x∗)) ,x− x∗〉 ≥ 0, ∀ x ∈ X∗,

which directly implies that (3.9) holds true, since s > 0. This means that x∗ satisfies
the first order optimality condition for constrained convex problems (see, for example, [6,
Proposition 2.1.2, Page 194]) and therefore x∗ = x∗mn, as asserted.

4 Rate of Convergence Analysis

In this section we will first prove a technical result about the rate of convergence of the gap
between two successive iterations generated by SAM in its most generality, for solving the
fixed-point problem, as described in Section 3.1. Then, we will use it to derive the main
result of our paper which is a rate of convergence result for BiG-SAM in terms of the inner
objective function values. This rate is superior to the one presented in [2] for the case of
differentiable ω, and holds true for any contraction mapping S regardless of ω.

We first present a technical lemma which will assist us in the rate of convergence proof.
The proof of this lemma is given in Appendix C.

Lemma 3. Let M > 0. Assume that {ak}k∈N is a sequence of nonnegative real numbers
which satisfy a1 ≤M and

ak+1 ≤ (1− γbk+1) ak + (bk − bk+1) ck, k ≥ 1,

where γ ∈ (0, 1], {bk}k∈N is a sequence which is defined by bk = min {2/ (γk) , 1}, and
{ck}k∈N is a sequence of real numbers such that ck ≤M <∞. Then, the sequence {ak}k∈N
satisfies

ak ≤
MJ

γk
, k ≥ 1,

where J = b2/γc.
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For ease of notation, from this point onward, we will denote, for any k ∈ N, yk =
T
(
xk−1

)
and zk = S

(
xk−1

)
. For convenience we will split the rate analysis into two

technical results which will lead us to the main result given in Theorem 1. In Lemma
4 we present some useful inequalities, and in Lemma 5 we show that by choosing an
appropriate sequence {αk}k∈N we can bound the distance between two successive elements
of the sequence

{
xk
}
k∈N by O(1/k) and to show that the sequence

{
xk
}
k∈N converges, with

the same rate, to a fixed-point of T .

Lemma 4. Assume that S : Rn → Rn is a β-contraction and that T : Rn → Rn is
nonexpansive mapping, for which Fix(T ) 6= ∅. Let

{
xk
}
k∈N,

{
yk
}
k∈N and

{
zk
}
k∈N be

sequences generated by SAM. Then, for any k ≥ 1 and any x̃ ∈ Fix(T ), defining z̃ = S (x̃)
the following inequalities hold true∥∥yk+1 − yk

∥∥ ≤ ∥∥xk − xk−1
∥∥ , (4.1)∥∥zk+1 − zk

∥∥ ≤ β
∥∥xk − xk−1

∥∥ , (4.2)∥∥yk − x̃
∥∥ ≤ ∥∥xk−1 − x̃

∥∥ , (4.3)∥∥zk − z̃
∥∥ ≤ β

∥∥xk−1 − x̃
∥∥ . (4.4)

Proof. All the required inequalities are a direct consequence of the nonexpansivity of T
and the contraction property of S.

Now we prove the rate of convergence to zero of the sequence
{∥∥xk − xk−1

∥∥}
k∈N, where{

xk
}
k∈N is generated by SAM and the averaging parameters αk, k ∈ N, are chosen as

follows

αk = min

{
2γ

k (1− β)
, 1

}
, k ≥ 1, (4.5)

where γ ∈ (0, 1]. For the simplicity of the developments, we will prove our results when
γ = 1. It should be noted that all the results below remains valid also when γ is chosen
arbitrarily from the interval (0, 1].

Lemma 5. Let
{
xk
}
k∈N,

{
yk
}
k∈N and

{
zk
}
k∈N be sequences generated by SAM where

{αk}k∈N is defined by (4.5). Then, for any x̃ ∈ Fix(T ), the two sequences
{∥∥xk − xk−1

∥∥}
k∈N

and
{∥∥yk − xk−1

∥∥}
k∈N converge to 0, and the rates of convergence are given by

∥∥xk − xk−1
∥∥ ≤ 2Cx̃J

(1− β) k
, k ≥ 1, (4.6)

and ∥∥yk − xk−1
∥∥ ≤ 2Cx̃ (J + 2)

(1− β) k
, k ≥ 1, (4.7)

where Cx̃ is defined in (3.2), and J = b2/ (1− β)c.
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Proof. By the definition of xk and xk+1 we immediately obtain∥∥xk+1 − xk
∥∥ =

∥∥(1− αk+1)y
k+1 + αk+1z

k+1 −
(
(1− αk)yk + αkz

k
)∥∥

=
∥∥(1− αk+1)

(
yk+1 − yk

)
+ αk+1

(
zk+1 − zk

)
+ (αk − αk+1)

(
yk − zk

)∥∥
≤ (1− αk+1)

∥∥yk+1 − yk
∥∥+ αk+1

∥∥zk+1 − zk
∥∥+ (αk − αk+1)

∥∥yk − zk
∥∥

≤ (1− αk+1)
∥∥xk − xk−1

∥∥+ αk+1β
∥∥xk − xk−1

∥∥+ (αk − αk+1)
∥∥yk − zk

∥∥
= (1− αk+1 (1− β))

∥∥xk − xk−1
∥∥+ (αk − αk+1)

∥∥yk − zk
∥∥, (4.8)

where the second inequality follows from (4.1) and (4.2). Now, let x̃ ∈ Fix(T ) and let
z̃ = S (x̃), then ∥∥yk − zk

∥∥ =
∥∥yk − x̃ + x̃− z̃ + z̃− zk

∥∥
≤
∥∥yk − x̃

∥∥+ ‖x̃− z̃‖+
∥∥z̃− zk

∥∥
≤
∥∥xk−1 − x̃

∥∥+ ‖(I − S) x̃‖+ β
∥∥xk−1 − x̃

∥∥
≤ Cx̃ + (1− β)Cx̃ + βCx̃ = 2Cx̃, (4.9)

where the second inequality follows from (4.3) and (4.4), as well as the definition of z̃, and
the last inequality follows from Lemma 2(i). Additionally, we have that∥∥x1 − x0

∥∥ =
∥∥x1 − x̃ + x̃− x0

∥∥ ≤ ∥∥x1 − x̃
∥∥+

∥∥x0 − x̃
∥∥ ≤ 2Cx̃, (4.10)

where the second inequality follows from Lemma 2(i). The convergence rate for the sequence{∥∥xk − xk−1
∥∥}

k∈N is now an immediate result of applying Lemma 3 on (4.8) with ak :=∥∥xk − xk−1
∥∥, bk := αk, γ := 1 − β and ck :=

∥∥yk − zk
∥∥ and using (4.9) and (4.10) where

M := 2Cx̃. This proves (4.6).

The convergence rate for
{∥∥yk − xk−1

∥∥}
k∈N is derived by the following arguments∥∥yk − xk−1

∥∥ =
∥∥yk − xk + xk − xk−1

∥∥
≤
∥∥yk − xk

∥∥+
∥∥xk − xk−1

∥∥
= αk

∥∥yk − zk
∥∥+

∥∥xk − xk−1
∥∥

≤ 2

(1− β) k
2Cx̃ +

2Cx̃J

(1− β) k

=
2Cx̃ (J + 2)

(1− β) k
,

where the second inequality is due to the previous result as well as (4.9), which was already
proven.

It should be noted that in the case of BiG-SAM, the rate of convergence proven in (4.7)
means that the sequence

{
xk
}
k∈N converges to an optimal solution of the inner problem

(P) with a rate of O(1/k).
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Now we turn to discuss the main result which is convergence of the sequence
{
ϕ
(
yk
)}

k∈N.
We discuss the convergence of this sequence rather than the convergence of the sequence{
ϕ
(
xk
)}

k∈N since the latter might be an infeasible in terms of the domain of the function

ϕ (see also [2]). Moreover, since we proved that
∥∥yk − xk−1

∥∥ → 0 as k → ∞ and ϕ is
lower semicontinuous it follows that proving convergence of the sequence

{
ϕ
(
yk
)}

k∈N to

the optimal value also implies convergence of the sequence
{
ϕ
(
xk
)}

k∈N to the same value.

Theorem 1. Let
{
xk
}
k∈N,

{
yk
}
k∈N and

{
zk
}
k∈N be sequences generated by BiG-SAM

where {αk}k∈N is defined by (4.5). Then, for all t ≤ 1/Lf and k ∈ N, we have that

ϕ
(
yk
)
− ϕ (x∗mn) ≤

2C2
x∗
mn

(J + 2)

(k + 1) (1− β) t
,

where Cx∗
mn

is defined in (3.2) and J = b2/ (1− β)c.

Proof. From Proposition 1 we have, for any step-size t ≤ 1/Lf , that the following inequality
holds true

ϕ
(
yk+1

)
− ϕ (x∗mn) ≤ 1

t

〈
xk − yk+1,xk − x∗mn

〉
− 1

2t

∥∥xk − yk+1
∥∥2 . (4.11)

Applying Lemmas 2(i) and 5 for x∗mn ∈ X∗ = Fix(Tt) we obtain that

〈
xk − yk+1,xk − x∗mn

〉
≤
∥∥xk − yk+1

∥∥ · ∥∥xk − x∗mn
∥∥ ≤ 2C2

x∗
mn

(J + 2)

(1− β) (k + 1)
. (4.12)

Substituting (4.11) back into (4.12) we obtain that

ϕ
(
yk+1

)
− ϕ (x∗mn) ≤

2C2
x∗
mn

(J + 2)

(k + 1) (1− β) t
,

which proves the desired result.

Remark 1. The step-size s, which is used in step (3.7), should be chosen such that the
mapping S is a contraction. According to Proposition 3 the step-size s depends on the
knowledge of Lω and σ, or at least on an upper bound on Lω + σ. Moreover, in order to
calculate αk, k ∈ N, we need an upper bound on the contraction parameter β which also
depends on Lω and σ or a lower bound on σLω.

4.1 SAM for Nonsmooth Bi-level Optimization Problems

In this section we focus on problem (MNP) as described in Section 2.1 for which the
objective function ω does not necessarily satisfy Assumption B. Here we replace it by the
following milder assumption.
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Assumption B’. ω : Rn → R is strongly convex with parameter σ > 0 and `ω-Lipschitz
continuous.

It is clear that BiG-SAM can not be applied to bi-level problems for which ω satisfies
Assumption B’ instead of Assumption B, since ω is not necessarily differentiable. However,
due to the strong convexity of ω we may use BiG-SAM in the following way.

We will use the Moreau envelope Msω of ω as a smooth replacement of the original
objective function ω. As we have already mentioned in Section 2.1, the Moreau envelope
is continuously differentiable, its gradient is Lipschitz continuous with constant 1/s and
strongly convex (see Proposition 2). Based on these facts we obtain that Msω satisfies
Assumption B and therefore BiG-SAM can be applied in this case on the Moreau envelope
Msω. It should be noted that in this case step (3.7) is given by

zk = xk−1 − s∇Msω

(
xk−1

)
= xk−1 − s1

s

(
xk−1 − proxsω

(
xk−1

))
= proxsω

(
xk−1

)
, (4.13)

where the second equality follows from (2.8). This means that in order to obtain zk, k ∈ N,
we need to compute the proximal mapping of ω.

Remark 2. Based on the equality given in (4.13) it can be seen that BiG-SAM applied
on the Moreau envelope Msω is exactly SAM which is applied to the bi-level problem with
S being the proximal mapping of ω. In this respect it should be noted that the proximal
mapping of a strongly convex function is a contraction (see Lemma 6 in Appendix A) and
therefore all the theory presented in Section 3.1 is valid in this setting too.

The following result is an immediate consequence of Proposition 5 applies on the fol-
lowing mappings

S (x) = x− s∇Msω (x) and T (x) = proxtg (x− t∇f (x)) ,

where s > 0 and t ∈ (0, 1/Lf ].

Proposition 6. Let
{
xk
}
k∈N be a sequence generated by BiG-SAM and suppose that As-

sumptions A, B’ and C hold true and let s > 0. Then, the sequence
{
xk
}
k∈N converges to

x∗s ∈ X∗ which satisfies

〈∇Msω (x∗s) ,x− x∗s〉 ≥ 0, ∀ x ∈ X∗. (4.14)

Therefore, x∗s is the optimal solution of problem (MNP) with respect to the Moreau envelope
Msω, i.e.,

x∗s = argmin
x∈X∗

Msω (x) ,

where X∗ is the optimal solutions set of problem (P).

Proof. Similar to the proof of Proposition 5 using (4.13).
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The section began with the goal of solving problem (MNP) for which ω is not necessarily
smooth. To this end we suggested to apply BiG-SAM on the Moreau envelope Msω for some
step-size s > 0 and as a result we get x∗s which minimizes Msω over X∗. The step-size s also
plays an important role in controlling the distance between x∗s and the original solution
x∗mn, this will be made precise below.

The fact that we smoothed the outer objective function ω seems to not influence the
rate of convergence result which is in terms of the inner objective function. However, a
careful inspection shows that this is not really the case since the rate of convergence result
(see Theorem 1) depends on the contraction parameter β which in this case depends on
the smoothing parameter s. Indeed, from Lemma 6 (see Appendix A), we have that

β =
1

1 + sσ
.

Therefore, we suggest the following concept of rate of convergence result which is different
than the classical one, but seems to be relevant when discussing algorithms for solving
bi-level problems.

Let δ > 0 be the required uniform accuracy in terms of the outer objective function,
that is,

ω
(
xk
)
−Msω

(
xk
)
≤ δ, ∀ k ∈ N, (4.15)

where it should be remembered that ω
(
xk
)
−Msω

(
xk
)
≥ 0 for all k ∈ N. Now, we would

like do determine the number of iterations K that is needed to achieve ε-optimal solution
of the inner problem, that is,

ϕ
(
xK
)
− ϕ (x∗mn) ≤ ε,

while keeping the uniform accuracy as given in (4.15). This means that K depends on both
ε and δ.

Proposition 7. Let
{
xk
}
k∈N be a sequence generated by BiG-SAM and suppose that As-

sumptions A, B’ and C hold true. In addition, suppose that the smoothing parameter is
chosen by

s =
2δ

`2ω
.

Let t ∈ (0, 1/Lf ]. Then, (4.15) holds true and for

k ≥
4C2

x∗
mn

tε

(
2 +

3`2ω
2σδ

+
`4ω

4σ2δ2

)
− 1,

it holds that ϕ
(
xk
)
− ϕ (x∗mn) ≤ ε.

Proof. Since ω is `ω-Lipschitz continuous (see Assumption B’) it follows that the norms of
the subgradients of ω are bounded from above by `ω. Thus, from [5, Lemma 4.2] it follows,
for all x ∈ Rn, that

ω (x)− s`2ω
2
≤Msω (x) ≤ ω (x) . (4.16)
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Therefore, for s = 2δ/`2ω, we obtain that

ω
(
xk
)
−Msω

(
xk
)
≤ δ, ∀ k ∈ N.

Using Theorem 1 we have that

ϕ
(
yk+1

)
− ϕ (x∗mn) ≤

2C2
x∗
mn

(J + 2)

(k + 1) (1− β) t
,

where J = b2/ (1− β)c. Substituting β = 1/ (1 + sσ) in the above bound yields that

ϕ
(
yk+1

)
− ϕ (x∗mn) ≤

2C2
x∗
mn

(
2

1−β + 2
)

(k + 1) (1− β) t

=
4C2

x∗
mn

(k + 1) t
· 2− β

(1− β)2

=
4C2

x∗
mn

(k + 1) t

(
(1 + sσ)2

(sσ)2
+

1 + sσ

sσ

)

=
4C2

x∗
mn

(k + 1) t

(
2 +

3

sσ
+

1

(sσ)2

)
.

Now, we use the smoothing parameter that we found above to obtain that

ϕ
(
yk+1

)
− ϕ (x∗mn) ≤

4C2
x∗
mn

(k + 1) t

(
2 +

3`2ω
2σδ

+
`4ω

4σ2δ2

)
.

Thus, given ε > 0, in order to obtain ϕ
(
yk+1

)
− ϕ (x∗mn) ≤ ε it remains to find values of k

for which
4C2

x∗
mn

(k + 1) t

(
2 +

3`2ω
2σδ

+
`4ω

4σ2δ2

)
≤ ε,

which is equivalent to

k ≥
4C2

x∗
mn

tε

(
2 +

3`2ω
2σδ

+
`4ω

4σ2δ2

)
− 1.

The desired result is obtained by choosing k to be the upper bound just obtained.

Two remarks on the just obtained result.

Remark 3. (i) The uniform accuracy property mentioned in (4.15) yields that the limit
point x∗s of the sequence generated by BiG-SAM satisfies that

ω (x∗s)− ω (x∗mn) ≤Msω (x∗s) + δ −Msω (x∗mn) ≤ δ,

where the first inequality follows by using the two inequalities given in (4.15) while
the second inequality follows from the fact that x∗s is a minimizer of Msω over X∗ and
obviously x∗mn ∈ X∗. This means that δ also controls the gap between the wished
optimal value of ω, that is, ω (x∗mn), and the value of ω evaluated at the optimal
solution of the smoothed problem.
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(ii) The number of iterations needed to achieve a desired inner function accuracy ε is
therefore O(1/εδ2). Consequently, increasing the uniform accuracy parameter δ by
an order of magnitude results in increment of two orders of magnitude in the number
of iterations. For example, by taking δ =

√
ε one will results with a rate of O(1/ε2)

in terms of the inner objective function values.

5 Numerical Experiments

In this section we consider the inverse problems tested in [2, Section 5.2.2] and present a
numerical comparison between the MNG and BiG-SAM methods. Linear inverse problems
seeks to reconstruct a vector x ∈ Rn from a set of measurements b ∈ Rm which satisfy the
following relation b = Ax + ρε where A : Rn → Rm is a given linear mapping, ε ∈ Rm

denotes an unknown noise vector and ρ > 0 denotes its magnitude.

There are several ways to solve linear inverse problems using optimization techniques,
but here we will focus on the following bi-level formulation. In this case, the inner objective
function is defined by

ϕ (x) := ‖Ax− b‖2 + δX (x) ,

where δX is the indicator function over the non-negative orthant X = {x ∈ Rn : x ≥ 0}.
The outer objective function is given by

ω (x) =
1

2
xTQx,

where Q is a certain positive definite matrix.

Following [2] we consider three inverse problems phillips, baart, and foxgood which can
be found in the “regularization tools” website2.

For each of these inverse problems we generated the corresponding 1, 000× 1, 000 exact
linear system Ax = b by applying the relevant function (’philips’,’baart’,’foxgood’). We
then performed 100 Monte-Carlo simulations by adding normally distributed noise with zero
mean to the right-hand side vector b, using three different choices of standard deviation:
ρ = 10−1, 10−2, 10−3. The matrix Q is defined by Q = LL′ + I where L is generated by
the function get l(1,000,1) from the “regularization tools” and approximates the first-
derivative operator.

In order to implement the MNG method, we need to compute Q−1/2 and Q1/2 before
the algorithm starts. However, note that while Q may be a sparse matrix, the matrices
Q−1/2 and Q1/2 may not be, even if we use other decompositions, such as the Cholesky
decomposition. Since the MNG method requires the starting point to be the optimal
solution of the unconstrained minimization of ω, we start both algorithms from the point
0.

2see http://www2.imm.dtu.dk/~pcha/Regutools/
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We tested BiG-SAM with three different choices of the parameter γ which are 0.1, 0.5
and 1 (see the discussion before Lemma 5 about the parameter γ). All experiments were
ran on a Unix server with 32 Intel Xeon CPUs E5-2690 @2.9GHz and 250GB RAM, using
MATLAB R2016a, with no parallelization.

In Table 1 we present the mean time (out of 100 runs) until the algorithm (MNG and
BiG-SAM) reach the stopping criteria

(
ϕ
(
yk
)
− ϕ∗

)
/ϕ∗ < 10−2, where ϕ∗ is the optimal

value of the inner problem. If this stopping criteria was not achieved, then we stopped the
algorithm after 500 seconds. In Table 2 we present the mean relative feasibility gap (RFG)
given by ∆ϕ =

(
ϕ
(
yk
)
− ϕ∗

)
/ϕ∗ and the mean relative optimality gap (ROG) given by

∆ω =
∣∣ω (yk)− ω∗∣∣ /ω∗, for each algorithm after a running time of 250 seconds.

The values of ϕ∗ and ω∗ were calculated in advance using CVX [9] for MATLAB and
GUROBI version 7.0.1 solver, which we will refer to hereafter as the standard solver. The
value of ϕ∗ was computed as the optimal solution of the inner problem. The value ω∗ is a
lower bound on the optimal value of the outer problem, obtained by solving the following
convex problem

min {ω (x) : x ≥ 0, ϕ (x) ≤ ϕ∗(1 + µ)} ,

where µ is a small number for which the problem was solvable (we used 10−4).

Problem ρ Mean time (Number of realization terminated at time limit)
BiG-SAM MNG

γ = 0.1 γ = 0.5 γ = 1

Baart
10−1 5.37e−3 (0) 3.62e−2 (0) 6.08e−2 (0) 2.92e−1 (0)
10−2 1.51e−1 (0) 5.03e−1 (0) 8.26e−1 (0) 4.40 (0)
10−3 9.78 (0) 2.23e+1 (0) 3.57e+1 (0) 4.18e+2 (31)

Foxgood
10−1 1.51e−2 (0) 6.88e−2 (0) 1.06e−1 (0) 3.33e−1 (0)
10−2 4.47e−1 (0) 1.20 (0) 2.17 (0) 3.65 (0)
10−3 1.30e+1 (1) 2.99e+1 (0) 4.43e+1 (1) 2.93e+1 (1)

Phillips
10−1 1.13e−2 (0) 3.90e−2 (0) 6.58e−2 (0) 4.02e−1 (0)
10−2 2.44 (0) 6.77 (0) 9.83 (0) 1.67e+2 (5)
10−3 4.93e+2 (97) 4.98e+2 (98) 4.99e+2 (99) 5.00e+2 (100)

Table 1: Comparison between MNG and BiG-SAM (3 versions) of mean running times (in
seconds) until termination and the number of realizations terminated because of the time
limit (of 500 seconds) over 100 realization. The comparison is across the different problem
instances and noise magnitude ρ.

The average number of iterations needed to reach these results for the MNG method
was usually higher than that of BiG-SAM with γ = 0.1 but lower than that of BiG-SAM
with γ = 0.5. However, as we can clearly see in the table above the higher iteration cost of

19



this method causes the mean time of the MNG method to be the highest, in most cases,
and causes the algorithm to stop because of time limit rather than because it reached the
termination criteria.

In Table 2 we see that when all methods are ran for the same amount of time, all BiG-
SAM variants (except for BiG-SAM with γ = 1 for the Foxgood with ρ = 0.001) obtain
superior ∆ϕ values compared to the MNG method, up to 2 orders of magnitude better.
Moreover, in most cases all BiG-SAM variants obtain slightly better ∆ω values compared
to the MNG method, a fact which is more pronounced for higher values of the noise ρ.

Problem ρ Mean RFG (∆ϕ in %) Mean ROG (∆ω in %)
BiG-SAM MNG BiG-SAM MNG

γ = 0.1 γ = 0.5 γ = 1 γ = 0.1 γ = 0.5 γ = 1

Baart
10−1 6.93e-4 1.31e-3 1.80e-3 3.11e-2 26.12 23.87 24.88 58.08
10−2 4.61e-2 5.42e-2 5.64e-2 1.37e-1 58.13 58.83 59.05 61.16
10−3 1.475e-1 1.73e-1 2.05e-1 3.80 53.26 53.40 53.50 54.94

Foxgood
10−1 1.11e-2 1.52e-2 1.74e-2 5.19e-2 48.37 51.13 52.51 59.98
10−2 3.01e-2 3.47e-2 3.82e-2 5.40e-2 15.42 15.29 15.25 15.28
10−3 1.88e-2 2.46e-2 3.55e-2 2.56e-2 1.65 1.50 1.41 1.45

Phillips
10−1 3.84e-2 5.11e-2 6.00e-2 2.40e-1 78.95 81.73 83.14 90.03
10−2 4.51e-1 4.98e-1 5.26e-1 7.44e-1 93.91 94.01 94.06 94.16
10−3 1.75 1.82 1.87 2.19 90.16 90.16 90.16 90.17

Table 2: Comparison of relative feasible gap (RFG) and relative optimal gap (ROG) after
250 seconds for MNG and BiG-SAM with various parameters, averaged over 100 realization
for each instance of problem and noise magnitude ρ.

In order to better understand this comparison we look at a specific realization of size
100 for a problem of Phillips type with ρ = 0.01. In Figure 1a we can see that BiG-SAM
(with γ = 1) and MNG are very close in the first 10 seconds, but then BiG-SAM starts to
improve much faster than the MNG method. Moreover, we can see clearly that lower value
of γ yields a faster convergence. In Figure 1b we see the distance between the iteration
xk and the optimal solution x∗ (which was evaluated via the same procedure we used to
find ω∗). We can see the same behavior here as in the first figure, which means, a faster
convergence of the BiG-SAM variants.
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Figure 1: The progress of the algorithms in time for a Phillips example with ρ = 0.01 and
n = 100.

Appendix A Proof of Proposition 2

We provide two proofs. One is short and based on well-known facts of convex analysis.
The second proof is more complicated but provide useful properties of the mappings that
play a central role in this work and will be useful in other contexts. We begin with first
proof.

Proof. The proof is simple and based on the notion of infimal convolution and its properties.
First of all, by its definition we have that the Moreau envelope is the infimal convolution
of ω with the the squared norm function h (·) = (1/2s) ‖·‖2. Thus, for all x ∈ Rn, we
have that Msω (x) = (ω2h) (x). A well-known fact (see [1, Proposition 13.21(i), Page 187])
yields that (ω2h)∗ = ω∗ + h∗, and therefore M∗

sω = ω∗ + h∗. Now, the rest of the proof
follows from the following known fact: function ϑ : Rn → (−∞,∞] is strongly convex with
strong convexity parameter t if and only if its conjugate ϑ∗ is a continuously differentiable
function whose gradient is Lipschitz continuous with constant 1/t. Using this fact twice
yields that M∗

sω has Lipschitz continuous gradient with constant s + 1/σ. Now, using the
converse implication of the fact gives the desired result.

Before we give the second proof, we will prove that the proximal mapping of a strongly
convex function is a β-contraction, where β = 1/ (1 + sσ).

Lemma 6. Let ω : Rn → (−∞,+∞] be a strongly convex function with parameter σ.
Then, for any s > 0, it follows proxsω is a β-contraction, where β = 1/ (1 + sσ), that is,

‖proxsω (x)− proxsω (y)‖ ≤ 1

1 + sσ
‖x− y‖ , ∀ x,y ∈ Rn.
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Proof. We first define an auxiliary function φ by φ (x) = sω (x)− (sσ/2) ‖x‖2. Since ω is
strongly convex with parameter σ it follows that ϕ is convex. Hence, by the definition of
the proximal mapping, we obtain

proxsω (x) = argmin
u∈Rn

{
sω (u) +

1

2
‖u− x‖2

}
= argmin

u∈Rn

{
φ (u) +

sσ

2
‖u‖2 +

1

2
‖u− x‖2

}
= argmin

u∈Rn

{
φ (u) +

1 + sσ

2

∥∥∥∥u− 1

1 + sσ
x

∥∥∥∥2
}

= argmin
u∈Rn

{
1

1 + sσ
φ (u) +

1

2

∥∥∥∥u− 1

1 + sσ
x

∥∥∥∥2
}

= prox 1
1+sσ

φ

(
x

1 + sσ

)
. (A.1)

From (A.1) and the non-expensiveness of the proximal mapping (see [1, Proposition 12.27,
Page 176]) we get

‖proxsω (x)− proxsω (y)‖ =

∥∥∥∥prox 1
1+sσ

φ

(
x

1 + sσ

)
− prox 1

1+sσ
φ

(
y

1 + sσ

)∥∥∥∥
≤ 1

1 + sσ
‖x− y‖ .

This proves that the proximal mapping is 1/ (1 + sσ)-contraction.

Now we can provide the second proof of Proposition 2.

Proof. By (2.8) and using the Cauchy-Schwartz inequality we have that

〈∇Msω (x)−∇Msω (y) ,x− y〉 =
1

s
〈x− y − (proxsω (x)− proxsω (y)) ,x− y〉

=
1

s
‖x− y‖2 − 1

s
〈proxsω (x)− proxsω (y) ,x− y〉

≥ 1

s
‖x− y‖2 − 1

s
‖x− y‖ · ‖proxsω (x)− proxsω (y)‖ .

By Lemma 6 we have that

‖proxsω (x)− proxsω (y)‖ ≤ 1

1 + sσ
‖x− y‖ .

Thus combining the two inequalities we obtain that

〈∇Msω (x)−∇Msω (y) ,x− y〉 ≥ 1

s

(
1− 1

1 + sσ

)
‖x− y‖2 =

σ

1 + sσ
‖x− y‖2 .

Thus we conclude that Msω is strongly convex with parameter σ/ (1 + sσ).
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Appendix B Proof of Proposition 3

Denote x̃ := x− s∇ω (x) and ỹ := y− s∇ω (y). By the definition of x̃ and ỹ we have that

‖x̃− ỹ‖2 = ‖x− s∇ω (x)− (y − s∇ω (y))‖2

= ‖x− y‖2 − 2s 〈∇ω (x)−∇ω (y) ,x− y〉+ s2 ‖∇ω (x)−∇ω (y)‖2 . (B.1)

Since ω is σ-strongly convex then by [10, Theorem 2.1.12, Page 66] we have that

〈∇ω (x)−∇ω (y) ,x− y〉 ≥ σLω
σ + Lω

‖x− y‖2 +
1

σ + Lω
‖∇ω (x)−∇ω (y)‖2 . (B.2)

By combining (B.1) and (B.2) we obtain that

‖x̃− ỹ‖2 ≤
(

1− 2sσLω
σ + Lω

)
‖x− y‖2 +

(
s2 − 2s

σ + Lω

)
‖∇ω (x)−∇ω (y)‖2 .

Therefore, for any s ≤ 2/ (σ + Lω), we have that the second term is negative and so

‖x− s∇ω (x)− (y − s∇ω (y))‖ ≤
√

1− 2sσLω
σ + Lω

‖x− y‖ ,

which proves the desired result.

Appendix C Proof of Lemma 3

We split the proof into two cases: k ≤ J and k > J . We will start with proving the desired
result for k ≤ J .

Case 1:

Since J ≥ 2 and γ ≤ 1 it follows that a1 ≤M < 2M ≤MJ/γ, and since bk = 1 for any
k ≤ J we have that

ak = (1− γ) ak−1, k = 2, 3, . . . , J.

Now, using the fact that γk ≤ J , we obtain

ak = (1− γ)k−1 a1 ≤ a1 ≤
Ja1
γk
≤ MJ

γk
, k = 2, 3, . . . , J.

This proves that the desired result hols true for all k ≤ J .

Case 2:

We will assume that the claim is true for all l = 1, 2, . . . , k where k ≥ J and prove that
it is true for k + 1. In this case, it is clear that bk+1 = 2/ (γ (k + 1)) and bk ≤ 2/ (γk).
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Since ck ≤M and using the induction assumption we obtain

ak+1 ≤ (1− γbk+1) ak + (bk − bk+1) ck

≤
(

1− 2γ

γ (k + 1)

)
JM

γk
+

(
bk −

2

γ (k + 1)

)
M

≤
(

1− 2

k + 1

)
JM

γk
+

(
2

k
− 2

k + 1

)
M

γ

=
k − 1

k + 1
· JM
γk

+
2M

γk (k + 1)

≤ JM (k − 1)

γk (k + 1)
+

JM

γk (k + 1)

=
JM

γ (k + 1)
,

where the last inequality follows from the fact that k > J ≥ 2. Thus the claim for k > J
is also proven. This completes the proof of the desired result.
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