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Abstract

Alternating minimization, or Fienup methods, have a long history in phase re-
trieval. We provide new insights related to the empirical and theoretical analysis of
these algorithms when used with Fourier measurements and combined with convex
priors. In particular, we show that Fienup methods can be viewed as performing alter-
nating minimization on a regularized nonconvex least-squares problem with respect
to amplitude measurements. We then prove that under mild additional structural
assumptions on the prior (semi-algebraicity), the sequence of signal estimates has
a smooth convergent behavior towards a critical point of the nonconvex regularized
least-squares objective. Finally, we propose an extension to Fienup techniques, based
on a projected gradient descent interpretation and acceleration using inertial terms.
We demonstrate experimentally that this modification combined with an `1 prior
constitutes a competitive approach for sparse phase retrieval.

1 Introduction

Phase retrieval is an old and fundamental problem in a variety of areas within engineering
and physics [18, 33]. Many applications of the phase retrieval problem involve estimation
of a signal from the modulus of its Fourier measurements. This problem is ill posed in
general, so that uniqueness and recovery typically require prior knowledge on the input,
particularly in one-dimensional problems. Here we focus on the estimation of real sparse
signals from their Fourier magnitude, a problem which has been treated in several recent
works [19, 34, 28, 39].
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A longstanding line of algorithms to tackle the phase retrieval problem involve appli-
cation of the alternating minimization method which alternate between the constraints in
time and the Fourier magnitude constraints [17, 15, 16]. These methods were pioneered by
the work of Gerchberg and Saxton and later extended by Fienup; see [2] for an optimization
point of view on these techniques and a rich historical perspective. Relations with saddle
point optimization and alternating direction methods of multipliers were also considered in
[24, 38]. Alternating minimization approaches have also been recently applied to phase re-
trieval from random measurements [27, 35]. The main advantage of this class of algorithms
is their simplicity and scalability.

A more recent approach to phase retrieval is to formulate the recovery as a smooth
nonconvex least-squares estimation problem and use dedicated techniques to estimate the
signal using continuous optimization algorithms that guarantee convergence to stationary
points. The GESPAR algorithm [34] is an example of this approach which is based on
the Gauss-Newton method coupled with sparsity priors. For phase retrieval with ran-
dom measurements, gradient descent methods have been proposed and analyzed such as
Wirtinger flow [12] and truncated amplitude flow [37]. Both treat least-squares objectives
where Wirtinger flow measures the loss with respect to the squared-magnitude of the mea-
surements while the amplitude flow approach performs a truncated gradient descent on an
amplitude objective. Another line of work suggests the use of matrix lifting and semidef-
inite programming based relaxations [36, 29, 20, 11, 39]. These techniques are limited by
the size of problems that can be tackled using available numerical solvers.

Our main contribution is to propose a new look at alternating minimization algorithms
for phase retrieval in the context of Fourier measurements and convex priors. We refer
collectively to these techniques as Fienup methods. The use of Fourier measurements is less
flexible than general measurements and is less suited for statistical analysis due to its strong
structure. This renders the phase retrieval problem from Fourier measurements harder
to solve than from random unstructured measurements. On the other hand, the strong
structure of the Fourier transform can be exploited for richer algorithmic construction and
analysis.

As a first step we provide two new interpretations of Fienup algorithms. First we
show that these techniques are naturally linked to a nonsmooth nonconvex least-squares
problem with respect to an amplitude objective. Fienup approaches can then be understood
as majorization-minimization methods for solving this problem. Second, we demonstrate
that Fienup algorithms can be viewed as a projected gradient descent scheme to minimize a
smooth convex objective function over a nonconvex constraint set. This observation allows
to characterize the behavior of the algorithm and develop extensions based on known ideas
for accelerating gradient methods using inertial terms [4]. We then specialize these results
to the case of `0 and `1 priors, leading to a new inertial gradient scheme, which we refer to
as FISTAPH: FISTA for PHase retrieval.

On the theoretical side, we show that if the convex prior is well structured (semi-
algebraic or more generally representable), then the sequence of signal estimates produced
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by Fienup has a smooth convergence behavior, independently of the initialization. Recall
that, broadly speaking, an object is said to be semi-algebraic if it can be represented by
systems of polynomial inequalities. The notion of smooth convergence is a very desirable
property, even more in nonconvex settings where it is usually not possible to obtain global
convergence estimates. We emphasize that this result goes beyond more usual properties
of the set of accumulation points as it states that the set of accumulation points is actu-
ally a singleton. Our convergence analysis follows well established techniques from tame
optimization [1, 9]. These techniques build upon the Kurdyka- Lojasiewicz (KL) property
which holds for many classes of functions [23, 21, 6, 7]. We then provide numerical experi-
ments based on synthetic problems to compare Fienup with `0 and `1 priors, GESPAR [34],
Wirtinger flow (or gradient) methods [12] with `0 and `1 priors and FISTAPH. Numerical
results suggest that the latter combined with an `1 prior constitutes a very competitive
alternative for sparse phase retrieval.

The rest of the paper is organized as follows. Section 2 introduces our notation and
states the problem of interest more formally. We also introduce several mathematical
definitions that are required for the rest of the paper and review the numerical algorithms
that are used in subsequent sections. Section 3 describes our characterization of Fienup
methods in the context of phase retrieval from Fourier measurements with convex priors.
We detail the relation of Fienup with a nonsmooth nonconvex least-squares problem as
well as its interpretation as projected gradient descent. Our main convergence result and
our the FISTAPH algorithm are presented in Section 4. Simulation results are provided in
Section 5.

2 Problem Formulation and Mathematical Background

2.1 Notation

Throughout the paper vectors are denoted by boldface letters. For a vector x ∈ Cn, x[i]
is the i-th entry of x, i = 1, 2, . . . , n and supp(x) is the support of x, namely, the set
{i = 1, 2, . . . n; x[i] 6= 0}. Furthermore, ‖x‖0 counts the number of nonzero entries of the
vector x: ‖x‖0 = |supp(x)| and ‖x‖p denotes the `p norm of x for p ∈ R+. The notations |·|,
Re(·), Im(·) and ·̄ describe the modulus, real part, imaginary part and complex conjugate,
respectively, defined over the field of complex numbers. If their argument is a vector, then
they should be understood component-wise. Similarly, basic operations, e.g. powers, are
taken component-wise when applied to vectors. For x ∈ Cn and N ∈ N, F(x, N) ∈ CN

is the vector composed of the N first coefficients of the discrete Fourier transform of x
(obtained by zero padding if n < N). For simplicity, we use the shorthand notation
F(x) = F(x, n) to denote the standard discrete Fourier transform of x ∈ Cn and F−1 to
denote its inverse. For a set S, δS : S → R ∪ {+∞} is the indicator function of S (0 if its
argument is in S, +∞ otherwise) and PS denotes the orthogonal projection onto the set S.
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2.2 Phase Retrieval

Given x0 ∈ Rn, we consider measurements

c = |F(x0)|+ ε, (2.1)

where ε ∈ Rn is an unknown vector of errors. In the rest of the paper, we actually assume
that c has positive entries (it is always possible to set the potential negative entries of c to
zero). The phase retrieval problem consists of producing an estimate x̂ ∈ Rn of x0 based
solely on the knowledge of c given by (2.1).

As mentioned in the introduction, phase retrieval of one-dimensional vectors from
Fourier measurements requires the use of prior knowledge. We focus on support and spar-
sity inducing priors. For J ⊆ {1, 2, . . . , n}, we define the set XJ = {x ∈ Rn; supp(x) ⊆ J}.
The prior function that we use will be denoted by g : Rn → R ∪ {+∞}. We focus on the
following priors (for a given J):

• g : x 7→ ‖x‖0 + δXJ
(x), or `0-based nonconvex prior.

• g : x 7→ ‖x‖1 + δXJ
(x), or `1-based convex prior.

In the experimental section, we compare between these two classes of priors. The algo-
rithmic derivations in this paper will be made under the assumption that g is proper and
lower semicontinuous, and the main convergence result (c.f. Theorem 4.1) will require in
addition convexity of g. In order to efficiently implement the proposed algorithm, we need
to focus on priors for which the proximity operator [25] is easy to compute. We provide
several examples of such priors in Section 2.4.

In the rest of the paper, c ∈ Rn
+ denotes modulus measurements which are assumed to be

given, fixed and obtained through (2.1). Given c ∈ Rn
+, we define Zc = {z ∈ Cn; |F(z)| = c}

as the set of values z that could have produced c (ignoring the noise). To estimate x0, we
consider the regularized least-squares problem

min
x∈Rn,z∈Zc

1

2
‖x− z‖2

2 + g(x), (2.2)

where g encodes our prior knowledge. Our algorithmic approach consists of employing an
alternating minimization method, or one of its variants, to solve the above formulation.
Note that if g = 0, then problem (2.2) has multiple solutions.

2.3 Prior Algorithms for Phase Retrieval

We briefly review several existing algorithms for phase retrieval that will be used in our
experiments in Section 5.

One approach to sparse phase retrieval is the GESPAR algorithm which is based on
the damped Gauss-Newton method in conjunction with an `0 prior [34]. Damped Gauss-
Newton allows to solve smooth, nonlinear least-squares problems. The work of [12] is based
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on the notion of Wirtinger derivatives to treat the same smooth least-squares problem as
GESPAR. The notion of Wirtinger derivative is needed since the objective is not differen-
tiable (holomorphic) as a function of complex variables (see [12] for details). In the case
of real valued functions of real variables, the Wirtinger derivative reduces to a standard
gradient (up to a constant multiplicative factor). An obvious extension of these types of
methods is the use of proximal decomposition, or forward-backward methods which consist
of alternating a gradient step on the smooth part of the objective with a proximal step on
the nonsmooth part [4, 5]. This is the approach that we use in the numerical experiments
to treat phase retrieval with priors.

Finally, we consider alternating minimization methods that are the main focus of this
work. This approach consists of solving (2.2) by applying the alternating minimization
algorithm. The special structure of the problem allows to perform each partial minimization
efficiently. In particular, the projection onto Zc is easy, as described below in (3.2). These
types of methods are also referred to as Fienup algorithms. A deeper interpretation of this
approach is given in Section 3.

2.4 Tools from Convex and Nonsmooth Analysis

Throughout the paper, our results will be based on tools from convex and nonsmooth
analysis which we review here.

The gradient of a differentiable function f is denoted by ∇f . This concept admits
extensions to nonsmooth analysis; the subgradient of a nonsmooth function g is denoted
by ∂g. For convex functions, subgradients correspond to tangent affine lower bounds. This
definition no longer holds for nonconvex functions. In this case, the proper understanding
of subgradients involves much more machinery which will not be discussed here. We only
consider the notion of a Fréchet critical point which generalizes classical first order criticality
for differentiable functions (see [32]).

Definition 2.1 (Fréchet critical point). Let S ⊆ Rn be a closed set and f : Rn → R be a
lower semicontinuous function. We say that x̄ ∈ S is a Fréchet critical point of the problem

min
x∈S

f(x)

if

lim inf
x→x̄
x 6=x̄
x∈S

f(x)− f(x̄)

‖x− x̄‖
≥ 0.

In other words, the negative variations of f in S around x̄ are negligible at the first order.

We will also heavily use the notion of the proximity operator of a function.
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Definition 2.2 (Proximity operator). For a nonsmooth function g : Rn → R∪ {+∞}, the
(potentially multivalued) proximity operator is denoted by proxg and defined by

proxg(x) ≡ argmin
y∈Rn

{
1

2
‖x− y‖2

2 + g(y)

}
. (2.3)

Note that when g is proper lower semicontinuous and convex, this operator is single
valued.

We next provide a few examples of such functions with their proximity operators; many
more can be found, for example, in [13].

Example 2.1 (Proximity operators).

• Support prior: If C ⊆ Rn is a closed convex set, then proxδC is the Euclidean
projection onto C. This can be used for example to encode knowledge about the
support of the signal x0 by choosing C = XJ for some J ⊆ {1, 2, . . . , n}. In this case,
the projection simply consists in setting the coefficients x[i] to 0 for i 6∈ J .

• Sparsity prior: If g is the `1 norm, then the proximal operator is the soft threshold-
ing operator.1 This can be combined with support information prior by first setting
the coefficients outside of the support to 0 and then applying the soft thresholding
operator.

• Change of basis: Suppose that D is an n×n′ real matrix such that its columns form
an orthonormal family, that is DTD is the identity in Rn′ . Suppose that g̃ : Rn′ → R is
a lower semicontinuous convex function and let g(x) = g̃(DTx). In this case, we have
proxg(x) = x + D

(
proxg̃(D

Tx)−DTx
)

(see [13, Table 1]). This allows to express
priors in different orthonormal bases, such as wavelets for example.

• Trivial prior: When g = 0 the proximity operator is simply the identity map.

It is also worth mentioning that the proximity operator is efficiently computable for
some nonconvex priors. For example, if g = δC where C = {x ∈ Rn; ‖x‖0 ≤ k}, then the
proximity operator is obtained by setting the n − k lowest coefficients (in absolute value)
to 0. This can also be combined with support information.

3 Fienup, Majorization-Minimization and Projected

Gradient

In this section we expand on the alternating minimization approach to (2.2) leading to the
Fienup family of algorithms. For this section, the prior term g in (2.2) is taken to be a
general proper lower semicontinuous function. We begin by describing the algorithm and
then provide two interpretations of it.

1 The soft thresholding operator is given by Tα(x)i = sgn(xi) max{|xi| − α, 0}. If g(x) = λ‖x‖1 for
some λ > 0, then proxg(x) = Tλ(x).
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3.1 Alternating Minimization Algorithm

The alternating minimization algorithm applied to problem (2.2) is explicitly written below.

Alternating Minimization (Fienup)
Initialization. x0 ∈ Rn

General Step. For k ∈ N,

zk+1 ∈ argmin
z∈Zc

1

2
‖xk − z‖2

2,

xk+1 ∈ argmin
x∈Rn

1

2
‖x− zk+1‖2

2 + g(x). (3.1)

The main interest in this scheme is that both partial minimization steps in (3.1) can
be carried out efficiently whenever g is “proximable”, meaning that its prox (or a member
in its prox) is easily computed. First consider, in (3.1), the partial minimization in z with
x ∈ Rn being arbitrary but fixed. This minimization amounts to computing PZc(x

k), the
orthogonal projection of xk onto Zc. For a given x ∈ Rn, all the members in PZc(x) are of
the form z = F−1(ẑ), where for j = 1, 2, . . . , n, we have (i =

√
−1 in the equation below)

ẑ[j] =

{
c[j] F(x)[j]

|F(x)[j]| , if |F(x)[j]| 6= 0,

c[j]eiθj , for an arbitrary θj otherwise.
(3.2)

Next, we treat the subproblem in (3.1) of minimizing with respect to x where z ∈ Cn is
arbitrary but fixed. The partial minimization in x is given by the expression

argminx∈Rn

{
1

2
‖x− z‖2

2 + g(x)

}
= proxg(Re(z)), (3.3)

where Re is the real part taken component-wise. We have used the definition of the prox-
imity operator of g given in (2.3). When this operator is easy to compute, each step of the
algorithm can be carried out efficiently.

The iterations of the alternating minimization method are summarized as follows:

zk+1 ∈ PZc(proxg(Re(zk))),

xk+1 ∈ proxg(Re(PZc(x
k))). (3.4)

We now consider several special cases of (3.4):

• If g = 0, then proxg is the identity and we recover the original algorithm from Fienup
[16], or alternating projection [2].
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Fienup
Initialization. x0 ∈ Rn.
General Step. For k ∈ N,

xk+1 = Re(PZc(x
k)).

The convergence result given in Theorem 4.1 also holds in this case since constant
functions are convex and continuous.

• If g(x) = λ‖x‖1 for some λ > 0, then proxg = Tλ, where Tλ is the soft threshold-
ing operator (see footnote on page 6). We refer to the resulting algorithm as “AM L1”.

AM L1
Initialization. x0 ∈ Rn, λ > 0
General Step. For k ∈ N,

xk+1 = Tλ(Re(PZc(x
k))).

• If g = δCK
, where CK is the set of all K-sparse vectors, CK = {x ∈ Rn : ‖x‖0 ≤ K},

then proxg = PCK
is the so-called hard thresholding operator. This operator outputs

a vector which is all zeros except for the largest K components (in absolute values)
of its input vector which are kept the same. The hard thresholding operator is multi-
valued and the resulting algorithm, which we term “AM L0” picks an arbitrary point
in its range.

AM L0
Initialization. x0 ∈ Rn, K ∈ N
General Step. For k ∈ N,

xk+1 ∈ PCK
(Re(PZc(x

k))).

3.2 Majorization-Minimization Interpretation

In this section, we focus on partial minimization in z. We show that the value of this
partial minimization leads to a least-squares objective. This allows us to interpret the
Fienup algorithm as a majorization-minimization process on this least-squares function.
For the rest of this section, for any x ∈ Rn, we denote by z(x) an arbitrary but fixed
member of PZc(x).
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Partial Minimization in z

The following lemma provides a connection between partial minimization in z and the
evaluation of a nonsmooth least-squares objective.

Lemma 3.1. For any x ∈ Rn, we have

min
z∈Zc

1

2
‖x− z‖2

2 =
1

2n
‖|F(x)| − c‖2

2. (3.5)

Proof. An optimal solution of the minimization problem is given by z = F−1(ẑ) where ẑ
has the form (3.2). Now,

min
z∈Zc

1

2
‖x− z‖2

2 =
1

2
‖x−F−1(ẑ)‖2

2

=
1

2
‖F−1(F(x)− ẑ))‖2

2

=
1

2n
‖F(x)− ẑ‖2

2.

Using the expression of ẑ in (3.2), we have for all j = 1, 2, . . . , n,

|F(x)[j]− ẑ[j]| =

{
||F(x)[j]| − c[j]|, if |F(x)[j]| 6= 0,

c[j], otherwise.

Putting everything together,

min
z∈Zc

1

2
‖x− z‖2

2 =
1

2n
‖F(x)− ẑ‖2

2 =
1

2n
‖|F(x)| − c‖2

2, (3.6)

which completes the proof.

A direct consequence of Lemma 3.1 is the following corollary that connects between
problem (2.2) and a regularized nonlinear least-squares problem.

Corollary 3.1. The pair (x, z) is an optimal solution of problem (2.2) if and only if x is
an optimal solution of

min

{
F (x) ≡ 1

2n
‖|F(x)| − c‖2

2 + g(x)

}
, (3.7)

and z = F−1(ẑ), where ẑ is of the form given in (3.2).

Note that in (3.7), the least-squares objective is defined with respect to the amplitude
|F(x)| and not the magnitude-squared |F(x)|2. For random measurements, it has been
shown in [37] that the amplitude objective leads to superior performance over the standard
magnitude-squared approach.
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Fienup as Majorization-Minimization

In order to understand further the connection with the Fienup algorithm, we define the
following function:

h(x,y) ≡ 1

2
‖y − z(x)‖2

2 + g(y).

Now, for any x ∈ Rn, using Lemma 3.1, we have the following properties (recalling the
definition of F in (3.7)):

h(x,y) =
1

2
‖y − z(x)‖2

2 + g(y) (3.8)

≥ 1

2
‖y − z(y)‖2

2 + g(y) = F (y), ∀y ∈ Rn,

h(x,x) =
1

2
‖x− z(x)‖2

2 + g(x) = F (x).

In other words, using the convexity of g, we have that h(x, ·) is a 1-strongly convex global
upper bound on the objective F . Computing this upper bound amounts to performing
partial minimization over z in (2.2). Minimizing the upper bound h(x,y) in y corresponds
to partial minimization over x in (2.2). The upper bound is tight in the sense that we
recover the value of the objective at the current point, h(x,x) = F (x). Therefore the
alternating minimization algorithm is actually a majorization-minimization method for the
nonsmooth least-squares problem

min
x∈Rn

1

2n
‖|F(x)| − c‖2

2 + g(x). (3.9)

The steps presented in (3.1) can then be summarized as follows:

xk+1 = argmin
y

h(xk,y)

= proxg(Re(z(xk)))

= proxg(Re(PZc(x
k))),

which is exactly the mapping given in (3.4). Note that there is a strong connection between
proximal methods and majorization minimization methods [10]. Finally, {xk}k∈N is the
sequence which corresponds to signal estimates and the sequence {zk}k∈N is auxiliary in
the majorization minimization interpretations.

3.3 Projected Gradient Descent Interpretation

We now provide an additional interpretation of the alternating minimization algorithm as
a projected gradient method for an optimization problem related to (2.2) which consists
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of a smooth convex objective and a nonconvex constraint set. This interpretation is valid
whenever g is assumed to be proper lower semicontinuous and convex.

For any x ∈ Rn and z ∈ Cn, we can write (2.2) as ‖x− z‖2
2 = ‖x−Re(z)‖2

2 + ‖Im(z)‖2
2.

To move from complex numbers to real numbers, we set w1 = Re(z) and w2 = Im(z).
Defining a new constraint set Z̃c = {(w1,w2) ∈ Rn × Rn : w1 + iw2 ∈ Zc}, problem (2.2)
is equivalent to

min
x∈Rn,(w1,w2)∈Z̃c

{
1

2
‖x−w1‖2

2 +
1

2
‖w2‖2

2 + g(x)

}
. (3.10)

Minimizing first w.r.t. x, (3.10) reduces to the following minimization problem in
w1,w2:

min
(w1,w2)∈Z̃c

{
H(w1,w2) ≡ G(w1) +

1

2
‖w2‖2

}
, (3.11)

where

G(w1) ≡ min
x∈Rn

{
1

2
‖w1 − x‖2

2 + g(x)

}
.

The next result allows us to relate the gradient of H to the optimization primitives used
in the alternating minimization method.

Lemma 3.2. Assume that g is proper, lower semicontinuous and convex. Then the function
H is continuously differentiable, its gradient is 1-Lipschitz and can be expressed as

∇H(w1,w2) =
(
w1 − proxg(w1),w2

)
. (3.12)

Proof. From Moreau [25, Proposition 7.d], we know that G is differentiable and ∇G(x) =
x − proxg(x) = proxg∗(x), where g∗ is the conjugate function of g, which is convex. The
computation of the gradient of H is then immediate. We can use the fact that proximity
operators of convex functions are nonexpansive [25, Proposition 5.b] to verify that ∇H is
1-Lipschitz. Indeed, for any (w1,w2) and (w̃1, w̃2), we have

‖∇H(w1,w2)−∇H(w̃1, w̃2)‖2
2

= ‖ proxg∗(w1)− proxg∗(w̃1)‖2
2 + ‖w2 − w̃2‖2

2

≤ ‖w1 − w̃1‖2
2 + ‖w2 − w̃2‖2

2

= ‖(w1,w2)− (w̃1, w̃2)‖2
2,

completing the proof.

Consider applying projected gradient descent to solve (3.11). From Lemma 3.2, we can
use a step size of magnitude 1. In this case, taking into account the form of the gradient
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given in (3.12), we obtain that the general update step takes the form

(wk+1
1 ,wk+1

2 )

= PZ̃c
((wk

1 ,w
k
2)−∇H(wk

1 ,w
k
2))

= PZ̃c
((wk

1 ,w
k
2)− (wk

1 − proxg(w
k
1),wk

2))

= PZ̃c
(proxg(w

k
1), 0).

We now go back to the complex domain by setting z = w1 + iw2. Note that projecting
(w1,w2) onto Z̃c is equivalent to projecting z onto Zc. With this notation, the iterations
of projected gradient descent can be summarized by the following iteration mapping (on
complex numbers):

zk+1 = PZc(proxg(Re(zk))),

which is exactly the same as (3.4). Therefore, the Fienup algorithm is equivalent to pro-
jected gradient descent with unit stepsize applied to the formulation (3.11). Note that from
the point of view of nonsmooth analysis, problem (3.11) is much better behaved than (3.9).

4 Consequences and Extensions

We now use the interpretations of Section 3 to analyze the convergence of alternating
minimization applied to problem (2.2), and to offer several extensions.

4.1 Convergence Analysis

Our main convergence result is given in the following theorem. Recall that a function is
semi-algebraic if its graph can be defined by combining systems of polynomial equalities
and inequalities (for example, the `1 norm is semi-algebraic).

Theorem 4.1. Assume that g is proper, lower semicontinuous, convex and semi-algebraic.
Then the sequence {xk, zk}k∈N generated by the alternating minimization algorithm satisfies
the following:

(i) It holds that
∑

k≥0 ‖xk+1−xk‖2 < +∞ and the sequence {xk}k∈N converges to a point
x∗ ∈ Rn.

(ii) For any accumulation point z∗ of {zk}k∈N, (x∗, z∗) is a Fréchet critical point of prob-
lem (2.2) and (w∗1,w

∗
2) = (Re(z∗), Im(z∗)) is a Fréchet critical point of problem

(3.11).

The proof is quite technical and is given in Appendix A. The semi-algebraic assumption
on g can be relaxed to representability in o-minimal structures over the real field, see [14].
Therefore, the proposed result actually applies to much more general regularizers. For
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example, using boundedness of the feasible set in (3.11), the same result holds if g is
analytic (see the dicussion in [8, Section 5]). The arguments build upon a nonsmooth
variant of the celebrated Kurdyka- Lojasiewicz (KL) property [23, 21, 6, 7]. Note that
direct application of the results of [1, 9] to projected gradient descent or those of [8, 30]
to majorization minimization is not possible here. Indeed, [1, 9] require step sizes strictly
smaller than 1/L where L is the Lipschitz constant of the gradient and convergence does
not hold in this case. Furthermore, the approach of [8, 30] requires the local model h(x,y)
to be continuous with respect to both its arguments which is not the case here due to
the arbitrary choice of z(x). These added difficulties require separating the analysis with
respect to x and z as we propose.

The most important implication of Theorem 4.1 is that the sequence of estimated sig-
nals converges smoothly to a point which satisfies certain optimality conditions related to
problems (2.2) and (3.11). This limit is a candidate solution to the phase retrieval problem
and the sequence {zk}k∈N allows to describe stationarity properties of this candidate solu-
tion. On the other hand, our result does not characterize the limit uniquely and different
initializations could still produce different limits and hence different candidate solutions.

This approach is a departure from standard convergence results that are only able to
guarantee that accumulation points of the generated sequence of iterates satisfy certain
optimality conditions. It is important to underline that the result is global: it holds for
any initialization of the algorithm and does not require any regularity assumption beyond
semi-algebraicity and convexity of g. This is in contrast with local convergence results
which are typical for alternating projection methods [22, 3] that are applicable when the
prior term g is an indicator function.

4.2 Acceleration and Momentum Term

A benefit of the interpretation of alternating minimization as a projected gradient method
is that it allows proposing new variants inspired by known extensions of projected gradient
algorithms. In this section we focus on the incorporation of an inertial term that results in
an alternating minimization scheme that includes a momentum term. This line of research
has a long history in optimization, starting with the development of the heavy-ball method
[31] which inspired an optimal first order scheme for convex optimization developed by
Nesterov [26], and its extension to convex composite problems with the FISTA method
[4]. Although this last technique was proposed and analyzed only in the context of convex
optimization, we consider its application in our nonconvex constrained problem since it
empirically exhibits good performances. The resulting algorithm is referred to as FISTAPH,
and is described as follows.
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FISTAPH: FISTA for Phase retrieval
Initialization. z0 ∈ Zc and αk ∈ [0, 1) for all k ∈ N. Set y0 = z0 and z−1 = z0.
General Step. For k ∈ N,

• zk+1 ∈ PZc(proxg(Re(yk))).

• yk+1 = zk + αk
(
zk − zk−1

)
.

If zm is the last produced iteration, then the output of the algorithm is x̂ = proxg(Re(zm)).

A typical choice for the weight sequence is αk = k−1
k+2

. The question of convergence of the
iterates produced by this method in nonconvex settings is an interesting topic to explore
in future research. We may also further consider monotone variants of similar types of
methods, see e.g. [5].

In the numerical experiments we employ FISTAPH in the setting where g(x) = λ‖x‖1

for some λ > 0. In this case, proxg = Tλ with Tλ being the soft thresholding operator with
parameter λ (see footnote on page 6).

5 Experiments and Numerical Results

In this section, we describe experiments and numerical results comparing the different
algorithms introduced in Section 2.3 on the task of phase retrieval.

5.1 Experimental Setup

Given measurements c as in (2.1), our problem consists of finding the corresponding x0.
We focus on the setting in which x0 is known to be sparse. We vary the signal size n
(with J = {1, 2, . . . , n/2}), the sparsity level K and the signal to noise ratio (SNR). In
the following discussion, we will refer to a recovery method M which can be seen as a
black box which takes as input a vector of measurements c ∈ Rn

+, support information J ,
sparsity level K, an initial estimate x and outputs an estimate x̂ ∈ Rn with supp(x̂) ⊆ J
and ‖x‖0 ≤ K. One recovery experiment consists of the following:

• Fix a recovery methodM, a signal length n, a support information set J = {1, 2, . . . , n/2},
a sparsity level K and an SNR.

• Generate x0 ∈ Rn by the following procedure:

– Choose K coordinates among J uniformly at random.

– Set these coordinate values at random in [−4,−3] ∪ [3, 4].

– Set all other coordinates to be 0.
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• Generate the measurements c2 = |F(x0)|2 + ε, where ε is white Gaussian noise
according to the chosen SNR. Set negative entries of c2 to be 0 in order to take
square root.

• Call methodM 100 times with data (c, J,K) and randomly generate initial estimates
to get 100 candidate solutions {x̂it}it=1,2,...,100.

• Compute the best estimate x̂best with best = argminit=1,2...,100{‖|F(x̂it)| − c‖2
2}.

• Compare x̂best and x0 (modulo Fourier invariances) with the following metric (sign is
understood coordinatewise with sign(0) = 0):

recovery(x̂best,x0) =

{
1, sign(x̂best) = sign(x0)

0, otherwise.

This procedure was repeated 100 times. That is, for each method, signal length, sparsity
level and SNR, we have 100 signal recovery experiments, each one associated with a support
recovery status. We aggregate these results by considering the recovery probability (average
of recovery(x̂best,x0)) and the median CPU usage for a single simulation (100 calls to
the method with different initialization estimates). We use the same initialization for all
methods by careful initialization of random seeds. All the experiments were performed on
a desk station with two 3.2 GHz Quad Core Intel Xeon processors and 8GB of RAM.

5.2 Implementation Details

In our numerical implementation, we used the following stopping criterion.

• For alternating minimization and Wirtinger methods: the difference in successive
objective value less than 10−8.

• For GESPAR: no swap improvement.

• For FISTAPH: the norm of the gradient mapping less than 10−8.

The tuning of these criteria allows to balance accuracy and computational time to some
extent.

The `1 penalized problem includes a prior sparsity inducing term of the form g(·) =
λ‖ · ‖1. It is necessary to tune the λ parameter in order to obtain meaningful results. We
considered the following strategies for different methods.

• For alternating minimization, we set λ = 0.2 in all experiments.

• For Wirtinger based method, λ is tuned a posteriori as a function of n and k. The
experiment was conducted for λ = 1, 2.15, 4.64, 10, 21.5, 46.4, 100, 215, 464, and we
report only the best experiment for each setting.
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An interesting feature of alternating minimization based methods is that in our experiments,
recovery performance was very consistent for different values of λ in different settings. As
a result, we chose a single value of λ for all experiments. The tuning of λ for Wirtinger
based algorithms is practically much more difficult. In particular, we found that the best
λ was a highly dependant function of the sparsity level K.

Finally, we note that `0 based priors have the sparsity level of the estimate, K, as
a parameter. On the other hand, `1 based priors will not necessarily produce K-sparse
estimates. We therefore use truncation and keep the K largest entries in absolute value of
the last iteration.

5.3 Numerical Results

The performance in terms of support recovery are presented in Fig. 1 with the corre-
sponding algorithm run time in Fig. 2. Each point in these plots is an average over 100
simulations of the recovery process, each simulation consisting of 100 random initializations
of the method considered. AM corresponds to Fienup methods with different priors, FISTA
is the accelerated variant, and WIRT stands for Wirtinger.

We make the following observations from the numerical results:

• For alternating minimization, there is a consistent increase in recovery performance
by switching from `0 to `1 based regularization priors.

• The `1 prior degrades the performance of Wirtinger based methods compared to the
`0 prior.

• FISTAPH consistently provides the best performance and is significantly faster than
its competitors.

• Fienup with `0 prior leads to lower performance compared to GESPAR, which was
already reported in [34].

In order to evaluate the benefits of sparsity in reducing the number of measurements,
we compared Wirtinger flow with `0 prior, GESPAR and FISTAPH on the same recovery
problems (N = 256 and SNR = 20) with the difference that we only keep the first mea-
surements (for other experiments, the number of measurements is equal to the size of the
signal). The results are presented in Fig. 3. We observe that for all three methods, using
half the number of measurements allows to maintain a level of recovery rate close to the
setting where all measurements are used. FISTAPH benefits the most from this effect. In
the simulations, the choice of the regularization parameter was scaled proportionally to the
number of measurements.

As described in the experimental section, we added noise on the squared measurements
rather than on the measurements themselves. This noise model is closer to the optimization
formulation considered for GESPAR and Wirtinger flow than model (2.2) which is related
to problem (3.9). We tried changing the noise model on a subset of experiments (additive
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noise on the measurements rather than squared measurements), however, the performance
of the different methods was very similar. Therefore, we only report results related to
squared-measurement noise model.
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Figure 1: Support recovery comparison. For each point, the probability is estimated based
on 100 simulations. AM stands for alternating minimization and WIRT for WIRTINGER.
FISTAPH is described in Section 4, and GESPAR is the method presented in [34].
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Figure 2: Timing comparison. The ordinate axis is displayed in logarithmic scale. Each
point is the median over 100 simulations, each simulation consisting of 100 random ini-
tializations for every method. AM stands for alternating minimization and WIRT for
WIRTINGER. FISTAPH is described in Section 4, and GESPAR is the method presented
in [34].

6 Conclusion

The main theoretical contribution of this work is to provide a strong theoretical basis
to the fact that Fienup-type methods, when used with Fourier transforms and convex
priors, lead to smoothly converging sequences of estimates. This result holds under minimal
assumptions and in particular, it holds globally, independently of the initialization point.
Furthermore, we characterize the properties of the limiting point as Fréchet critical points
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is described in Section 4, and GESPAR is the method presented in [34]. Color reflects the
number of measurements.

of different optimization problems. These results shed light on properties of one of the most
well known algorithms used in the context of phase retrieval. Furthermore, based on an
interpretation as a projected gradient method, we proposed a new variant of Fienup with
the incorporation of a momentum term which we call FISTAPH.

On the practical side, we demonstrated based on numerical simulations that FISTAPH
with `1 regularization constitutes a very competitive alternative to other methods in the
context of sparse phase retrieval. Although this observation is only based on empirical
evidences, it potentially illustrates the fact that momentum based methods are able to
avoid bad local minima and saddle points in complicated nonconvex landscapes.

A Proof of Theorem 4.1

The proof of Theorem 4.1 involves many notions of nonsmooth analysis which can be
found in [32]. Throughout the proof, we only consider subgradients of subdifferentially
regular functions. Each subgradient can be interpreted as a Fréchet subgradient and the
subgradient set valued mapping is closed. We adopt the notation of Section 3.3, let-
ting z = w1 + iw2 for two real vectors w1 and w2 and consider the constraint set Z̃c =
{(w1,w2) ∈ Rn × Rn; w1 + iw2 ∈ Zc}. We let K(x,w1,w2) = 1

2
‖x−w1‖2

2 + 1
2
‖w2‖2

2 +g(x)
be the objective function of problem (2.2) which with this notation becomes

min
x∈Rn,(w1,w2)∈Z̃c

K(x,w1,w2). (A.1)
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We will denote by δZ̃c
, the indicator function of the set Z̃c (0 on the set and +∞ outside).

We set K̃(x,w1,w2) = K(x,w1,w2) + δZ̃c
(w1,w2) so that problem (A.1) is equivalent to

the (unconstrained) minimization of K̃.

Proof of (i): Using [32, Proposition 10.5 and Exercise 10.10], the subgradient of this
nonsmooth function is of the form

∂K̃(x,w1,w2) =

(
∂xK̃(x,w1,w2)

∂(w1,w2)K̃(x,w1,w2)

)
(A.2)

=

 x−w1 + ∂g(x)(
w1 − x

w2

)
+ ∂δZ̃c

(w1,w2)

 .

Partial minimization over iterations the following

0 ∈ xk+1 −wk
1 + ∂g(xk+1) (A.3)

0 ∈
(

wk
1 − xk

wk
2

)
+ ∂δZ̃c

(wk
1 ,w

k
2). (A.4)

Combining (A.2) (A.3) and (A.4), we have 0(
wk

1 − xk+1

wk
2

)
+ ∂δZ̃c

(wk
1 ,w

k
2)

 (A.5)

⊂ ∂K̃(xk+1,wk
1 ,w

k
2).

Using (A.4),  0
xk − xk+1

0

 ∈ ∂K̃(xk+1,wk
1 ,w

k
2). (A.6)

Finally, from strong convexity of K̃ with respect to its first argument, we have

K̃(xk+1,wk
1 ,w

k
2) +

1

2
‖xk+1 − xk‖2

2

≤ K̃(xk,wk
1 ,w

k
2)

≤ K̃(xk,wk−1
1 ,wk−1

2 ). (A.7)

Since g is semi-algebraic, K̃ is also semi-algebraic. Any semi-algebraic function satisfies the
nonsmooth Kurdyka- Lojasievicz property [7]. We can now use the well established recipe
[1, Section 2.3] [9, Section 3.2] with the two conditions (A.6) and (A.7) to obtain that the
sequence

{
‖xk+1 − xk‖2

}
k∈N is summable. This proves statement (i) (convergence holds
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by Cauchy criterion).

Proof of (ii): Using the fact that K̃ has compact sublevel sets, the sequence
{

(xk+1,wk
1 ,w

k
2)
}
k∈N

is bounded and hence has a converging subsequence. We fix an accumulation point (x∗,w∗1,w
∗
2)

of the sequence (note that x∗ is given by (i)). We remark that, thanks to (A.5) and the
fact that ‖xk+1−xk‖ → 0, any accumulation point of the sequence is a critical point of K̃.
Furthermore, since xk → x∗, we have using (A.5) that

−
(

w∗1 − proxg(w
∗
1)

w∗2

)
∈ ∂δZ̃c

(w∗1,w
∗
2).

This is actually the criticality condition for problem (3.11) which proves statement (ii).
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