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Abstract

We consider a broad class of regularized structured total-least squares problems
(RSTLS) encompassing many scenarios in image processing. This class of problems
results in a nonconvex and often nonsmooth model in large dimension. To tackle this
difficult class of problems we introduce a novel algorithm which blends proximal and
alternating minimization methods by beneficially exploiting data information and
structures inherently present in RSTLS. The proposed algorithm, which can also be
applied to more general problems, is proven to globally converge to critical points, and
is amenable to efficient and simple computational steps. We illustrate our theoretical
findings by presenting numerical experiments on deblurring large scale images which
demonstrate the viability and effectiveness of the proposed method.

Key words: Alternating minimization, Kurdyka- Lojasiewisz property, global convergence,
nonconvex-nonsmooth minimization, proximal gradient methods, regularized structured
total least squares, semi-algebraic functions.

1 Introduction

In this paper we consider a broad class of optimization problems for Regularized Structure
Total Least Squares (RSTLS) which captures many models arising in applications, and
consists of solving the following nonconvex and nonsmooth minimization problem:

(RSTLS) min
x,y

F (x) +
1

σ2
w

∥∥∥∥∥
(

A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2 : x ∈ Rn,y ∈ Rp

 ,

(1.1)
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where the model matrix A ∈ Rm×n and the measurements vector b ∈ Rm are contaminated
by noise, σe and σw are the standard deviations of the corresponding noise components
(see Section 5 for more details), and F : Rd → (−∞,+∞] is a given convex (possibly
nonsmooth) function, which allows to capture some desired regularized features of the
solution. We are focusing in this paper on the situation in which the model matrix A admits
a linear structure, and therefore it is natural to assume that the noise matrix contaminating
the “true” model matrix shares the same structure described by the structure matrices
A1,A2, . . . ,Ap ∈ Rm×n with y1, y2, . . . , yp ∈ R being the unknown structure components.
The proposed model is motivated by our desire to tackle and extend various well known
total least squares based models which have been studied in the literature and will be
briefly recalled and discussed in the forthcoming section.

A key difficulty in the RSTLS problem is the nonconvexity in the variables (x,y) due
to the coupling term in the squared norm of the objective function in (1.1). Another diffi-
culty is the large scale nature of the problem which naturally arises in many applications
of interest, as well as, the possible nonsmoothness of the regularizer F (·). Thus, we face
a problem sharing the three most difficult properties an optimization problem can have –
nonconvexity, nonsmoothness, and large size – precluding the direct use of any standard
optimization schemes to its solution. However, the RSTLS problem also shares some par-
ticular structures and data information, such as convexity in separate arguments (x,y),
and smoothness of the least-squares term that can be beneficially exploited.

In the present work we will strongly exploit the alluded structures and properties, and
our main objective is to devise a simple and efficient algorithm proven to globally converge
to a critical point of the nonconvex objective function of (1.1) and capable of handling
large scale instances. To achieve this goal we blend alternating minimization and proximal
methods. These two very well known paradigms have recently attracted intensive research
activities in many disparate applications due to their simplicity and remarkable theoret-
ical and practical performance, mainly in the convex setting, see e.g., [3, 6, 13, 37] and
references therein for a small representative sample of these activities. However here, the
RSTLS problem under consideration is nonconvex and nonsmooth. Motivated by the recent
algorithmic and convergence analysis framework developed in Bolte et al. [12] which builds
on the powerful Kurdyka- Lojasiewicz property [19, 21] to handle genuine nonconvex and
nonsmooth minimization problems, we address the inherent nonconvex difficulty present in
the RSTLS problem by further exploiting the problem’s data information. This leads us to
introduce a novel algorithm which relies on alternating minimization and on semi-proximal
regularization, which for ease of reference is called SPA. While the focus of this paper is on
the RSTLS problems, our analysis is developed for broader class of problems which captures
the class of RSTLS problems and the corresponding algorithm as a particular case. Thus,
our results can also be applied to other applications and contexts sharing this proposed
broader formulation. For the RSTLS problem, the resulting algorithm involves two simple
computational steps. One, asking for the solution of a small scale (p × p) linear system,
while the other step, depending on the choice of the regularizer F (·), either admits a closed
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form solution, or can be efficiently computed via a fast dual proximal method [7]. We prove
that the proposed algorithm SPA globally converges to a critical point of the problem at
hand. Finally, we illustrate our theoretical findings by presenting some numerical examples
on image deblurring which demonstrate the effectiveness of the proposed method.

Outline of the paper. The paper is organized as follows. In the next section we describe
various total least squares models which have motivated the proposed RSTLS, and make
our setting more precise. While the focus of this paper is on the RSTLS problem, our
analysis is developed for broader class of problems which captures the class of RSTLS
problems and the corresponding algorithm as a particular case; this is developed in Section
3. In Section 4, we present a general analysis framework and we state and prove the main
convergence results. Finally, in Section 5, numerical results on image deblurring problems
illustrate our theoretical findings. To make the paper self-contained, a short appendix
includes some relevant technical additional material. Our notations are quite standards,
and will be defined throughout the text if and when necessary.

2 Total Least Squares: Approaches and Models

2.1 Motivation

Many data fitting and linear inverse problems arising in a wide variety of applications lead
to study overdetermined linear systems of the form

Ax ≈ b, (2.1)

where both the model matrix A ∈ Rm×n and the measurement vector b ∈ Rm are contam-
inated by noise, leading to the model

(A + E) x = b + w, (2.2)

where E ∈ Rm×n and w ∈ Rm are unknown perturbation matrix and vector to the model
matrix and to the right-hand side vector, respectively. A well known and classical approach
to this problem is the total least squares (TLS) which seeks to find a triple (x,E,w) that
minimizes ‖E‖2F + ‖w‖2 subject to the consistency equation (2.2); that is, to solve the
following nonconvex minimization problem

(TLS) min
x,w,E

{
‖E‖2F + ‖w‖2 : (A + E) x = b + w

}
,

where ‖·‖F denotes the Frobenius norm. The popularity of TLS mainly stems from the
fact that although nonconvex, this problem admits an explicit solution expressed by the
singular value decompostion of the augmented matrix (A,b), see [16, 38].

However, it also well known that in the cases where the model matrix A has a spe-
cial structure, TLS methods may not always be appropriate, since they do not take into
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consideration the given structure. It is thus desirable to exploit the special structure in
order to reduce the number of unknown parameters and to improve the performance. In
the context of image processing, which is one of the main application of interest in this
work, it is natural and adequate to consider the same structure on the pertubation matrix
E. Thus, for a model matrix A admitting a linear structure, which as just mentioned is
a common situation in ill-posed linear inverse problems, in this paper we assume that the
perturbation matrix E shares the same structure, and is defined by

E =

p∑
i=1

yiAi,

where A1,A2, . . . ,Ap ∈ Rm×n are the structure matrices and y1, y2, . . . , yp ∈ R are the
unknown structure components. Then, the Structured Total Least Squares method (STLS)
aims at solving the following minimization problem [1, 5, 20, 23, 25, 26, 34]:

(STLS) min
x,y

 1

σ2
w

∥∥∥∥∥
(

A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2
 , (2.3)

where y = (y1, y2, . . . , yp)
T .

The STLS problem is nonconvex, and in contrast to the unstructured TLS problem,
(which can easily be seen as a special case of (2.3)), finding its global solution is diffi-
cult. Note also that by minimizing with respect to y, we can reformulate the (2.3) as a
minimization problem with respect to the x variables only via,

min
x∈Rn

{
(Ax− b)T C (x) (Ax− b)

}
, with C (x) :=

(
σ2
wI + σ2

e

p∑
i=1

AixxTAT
i

)−1
,

which however remains highly nonconvex. Several algorithms have been proposed to find
a stationary point of this formulation of the STLS problem (see, for instance, [22, 24, 34].

In [34], the authors developed the Structured Total Least Norm (STLN) method to solve
such class of problems, which turns out to be useful for many structured linear problems.
However, for many problems, such as, image deblurring, the matrix is often ill-conditoned
and applying STLN results in poor images recovery. Thus regularization is needed. Such an
approach was considered for instance in [29], who implemented Tihkhonov regularization
[35] to derive the regularized structured total least norm (RSTLN), with an algorithm
preserving linear structure of the matrix and which minimizes the lp-norm error, with
p = 1, 2 or ∞. For another work which focused on quadratic regularizers and improves the
computational efficiency of the algorithm [29], see for instance [23]. RSTLN based methods
rely on a variation of the Gauss-Newton method1 and one of its main drawback is that it

1When the regularizer is quadratic, e.g., p = 2, Gauss-Newton is directly applicable, while for p = 1,∞,
the objective function is not anymore differentiable, but can similarly be applied, see [29] for details.
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requires solving a least-squares problem at each iteration (see Section 5.1 for more details
on the method), which in many scenarios becomes too difficult or impossible for large scale
models. In addition, the objective function to be minimized is nonconvex, so there is no
guarantee that the algorithm converges to global minimum.

Linear inverse problems where the model matrix A is ill-conditioned, is a common
phenomena which directly implies that either solutions obtained by the LS, TLS or STLS
methods have a huge norm, resulting with meaningless solutions. This was discussed above
within the RSTLN approach. Alternatively, this difficulty is often handle for example by
adding a penalty term which plays the role of regularization and is somehow able to control
the size of the solution. A popular one is the Tikhonov regularization method [36], but
other choices are also possible depending on the application at hand. In this case, the
resulting model is either called the regularized TLS (RTLS) or regularized structured TLS
(RSTLS), depending on whether the model is structured or not, see [4, 15, 17] and the
references therein for several regularization ideas.

Motivated by the above, in this paper we focus on a broad class of regularized struc-
tured total least squares (RSTLS) problems which captures the ideas and models just
described, and allows for unification and extension, by considering the following nonconvex
and nonsmooth regularized structured total least squares:

(RSTLS) min
x,y

F (x) +
1

σ2
w

∥∥∥∥∥
(

A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2 : (x,y) ∈ Rn × Rp

 ,

(2.4)
where F : Rd → (−∞,+∞] is a proper, lsc and convex function (possibly nonsmooth), and
which as illustrated next, allows to encompass various scenarios.

2.2 Some Models Examples

Now we describe some interesting special cases of the RSTLS problem that can be obtained
by specific choices of the regularizing function F (·).

Example 2.1. (The Constrained RSTLS problem). Let the nonsmooth function F
to be the indicator function of the convex set

Cq :=
{

x ∈ Rn : ‖Lx‖q ≤ δ
}
,

where L ∈ Rd×n, δ > 0 and q = 1, 2,∞. In this case, we obtain from (1.1) the constrained
RSTLS model given by

(RSTLS-C) min
x,y

 1

σ2
w

∥∥∥∥∥
(

A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2 : ‖Lx‖q ≤ δ

 . (2.5)
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Example 2.2. (Penalized RSTLS). As an alternative to the constrained RSTLS, we can
penalize the constraint with F (x) := λf (x). The penalized RSTLS model is then given
by

(RSTLS-P) min
x,y

λf (Lx) +
1

σ2
w

∥∥∥∥∥
(

A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2
 , (2.6)

where f : Rd → R is a convex function (usually a norm), and λ > 0 is a penalty (regulariza-
tion) parameter which measures the trade-off between error measurements and constraint
satisfaction. One of the popular choices for the penalty function is known as the Tikhonov
regularization [36] in which f (·) = ‖·‖2. Another penalty function that has attracted a
revived interest and considerable amount of attention in the signal processing literature is
the use of the `1 norm which is discussed in more details in the next example.

Example 2.3. (Total Variation Deblurring). This example will serve as a basis of
our numerical experiments given in Section 5. We concentrate on RSTLS with a total
variation penalized function f (x) := TV1 (x). More precisely, TV1 stands for the `1-based
anisotropic TV, given by

TV1 (x) =
m−1∑
i=1

n−1∑
j=1

(|xi,j − xi+1,j|+ |xi,j − xi,j+1|) +
m−1∑
i=1

|xi,n − xi+1,n|

+
n−1∑
j=1

|xm,j − xm,j+1| . (2.7)

It is well-known that TV1 (x) =
∥∥LTx

∥∥
1

where L : R(m−1)×n×Rm×(n−1) → Rm×n is defined
by the formula

L (C,D)i,j = ci,j + di,j − ci−1,j − di,j−1, i = 1, 2, . . . ,m and j = 1, 2, . . . , n,

where we assume that c0,j = cm,j = di,0 = di,n = 0 for every i = 1, 2, . . . ,m and j =
1, 2, . . . , n. This means that in this case L = LT and the operator LT : Rm×n → R(m−1)×n×
Rm×(n−1) which is the adjoint to L is given by

LT (x) = (C,D) ,

where C ∈ R(m−1)×n and D ∈ Rm×(n−1) are the matrices defined by

ci,j = xi,j − xi+1,j, i = 1, 2, . . . ,m− 1 and j = 1, 2, . . . , n,

di,j = xi,j − xi,j+1, i = 1, 2, . . . ,m and j = 1, 2, . . . , n− 1.
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3 Problem Formulation and The Main Algorithm

Although the emphasis of this paper is on solving the class of RSTLS problems, for the
purpose of the forthcoming development and analysis we will consider a more general class
of nonconvex and nonsmooth problems which captures the RSTLS as a special case, and
which we hope could also be beneficially applied in other contexts.

3.1 The Problem Model

Consider the following nonconvex and nonsmooth optimization model

(M) minx,y {Ψ (x,y) := H (x,y) + F (x) +G (y)} , (3.1)

with the following assumption.

Assumption 1. (i) F : Rn → (−∞,+∞] is a proper, closed and convex function.

(ii) G : Rp → (−∞,+∞] is a proper, closed and strongly convex function with strong
convexity constant σ.

(iii) H : Rn × Rp → R is a C1 function and for any fixed x, the function y → H (x,y) is
convex.

The general optimization model (M) is naturally motivated by the RSTLS problem
which is clearly a special case of problem (M) and satisfies Assumption 1 with:

H (x,y) =
1

σ2
w

∥∥∥∥∥
(

A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

and G (y) =
1

σ2
e

‖y‖2 , (3.2)

and the choice of any proper, lsc and convex function F . Indeed, G is strongly convex with
σ = 2/σ2

e ; the above H is clearly C1 on Rn × Rp, and for any fixed x ∈ Rn, the function
y→ H (x,y) is convex on Rp.

Note that the first item in Assumption 1 allows to consider various interesting scenarios
(see previous examples), while the second item naturally generalizes the quadratic function
‖·‖2, through strong convexity (note that smoothness is not needed). The third item which
asks for the smoothness of H (·, ·) and partial convexity with respect to second variable will
be beneficially exploited to build the algorithm proposed below, where each step involves
the solution of a convex minimization problem in each block (x,y).

3.2 The Algorithm SPA

The block structure of problem (M) naturally suggested to apply the Alternating Mini-
mization (AM) (also known as Gauss-Seidel [8]) method. That is, starting with any given
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initial point (x0,y0) ∈ Rn × Rp, we generate a sequence
{(

xk,yk
)}

k∈N via the following
two steps: for k ∈ N

xk+1 ∈ argminx Ψ
(
x,yk+1

)
, (3.3)

yk+1 = argminy Ψ
(
xk+1,y

)
, (3.4)

where the second step produces a unique minimizer, thanks to the strong convexity of
y→ Ψ

(
xk+1,y

)
, see Assumption 1(ii).

The algorithm (AM) is quite attractive, as it permits a natural decoupling of the func-
tion H and amounts to solving two simpler problems at each iteration. The AM algorithm
and many of its variants has been studied in several works, both in the convex and non-
convex setting, and we refer the reader to [2, 12] and references therein for details on the
origin, advantages, difficulties, and convergence results of several (AM)-based schemes.

Both subproblems in the AM algorithm above are convex, but usually cannot be solved
exactly. Very recently, [12] suggests to overcome this difficulty by solving approximately
both iterations of AM. More precisely, since each iteration of AM consists of minimizing the
sum of a smooth function with a nonsmooth one, they apply one step of the so-called prox-
imal gradient method (see, e.g., [6]), resulting in the Proximal Alternating Linearization
Minimization (PALM) algorithm [12], which actually can solve a broader class of nons-
mooth and nonconvex problems (i.e., where F and G also nonconvex), and was proven to
globally converge to a critical point of Ψ under suitable assumptions; see more in the next
section. At this juncture, it should be noted that very recently AM and PALM based meth-
ods have been applied in various important applications. For instance, in [9], the authors
use the regularized version of the AM algorithm for solving blind image recovery problems.
A variable metric version of PALM can be found in [14]. Other variants of PALM have also
been very recently proposed and used in [31] to solve Ptychographic diffraction imaging
problems, and in [30] for another variant which was used in the context of sparse blind
deconvoluion.

Here, we follow the approach of [12], by further exploiting the data information in
problem (M). More specifically, since for the model (M) the y-step consists of solving a
strongly convex minimization problem, we keep it intact. As we shall see below, for the
RSTLS problem this step can be written explicitly as the solution of a linear system which
can be efficiently approximated. This motivates the proposed algorithm which can be seen
as a variant of PALM, whereby only the x-step (3.3) is solved approximately through one
shot of a proximal gradient step, i.e.,

xk+1 = argminx

{
F (x) +

〈
x− xk,∇xH

(
x,yk

)〉
+
tk
2

∥∥x− xk
∥∥2} , (tk > 0),

while the y-step is solved exactly through the global optimality condition for (3.4). For
ease of reference, we call the resulting algorithm: Semi-Proximal-Alternating (SPA).
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Before presenting the algorithm, it will be convenient to recall the definition of the
Moreau proximal map [27] to re-write compactly the above step. Given a proper, closed
and convex function ϕ : Rd → (−∞,+∞], the proximal map associated with ϕ is uniquely
defined by

proxϕ (x) := argmin

{
ϕ (u) +

1

2
‖u− x‖2 : u ∈ Rm

}
. (3.5)

For a recent and comprehensive review on proximal methods, we refer the reader to [28].

To solve (M) we thus propose the following scheme (the definition of L1(y) is given in
Assumption 2 that follows the description of the method).

Algorithm SPA

(1) Initialization: start with any (x0,y0) ∈ Rn × Rp.

(2) For each k = 1, 2, . . . generate a sequence
{(

xk,yk
)}

k∈N as follows:

(2.1) Set Lk := L1

(
yk
)

and compute

xk+1 = prox 1
Lk
F

(
xk − 1

Lk
∇xH

(
xk,yk

))
. (3.6)

(2.2) Solve the strongly convex minimization problem:

yk+1 = argminy∈Rp
{
G (y) +H

(
xk+1,y

)}
. (3.7)

To analyze and derive the convergence of SPA, we need the following minimal assump-
tions.

Assumption 2. (i) For any fixed y, the function x → H (x,y) is C1,1
L1(y)

, namely, the

partial gradient ∇xH (·,y) is globally Lipschitz with constant L1 (y), that is,

‖∇xH (x1,y)−∇xH (x2,y)‖ ≤ L1 (y) ‖x1 − x2‖ , ∀ x1,x2 ∈ Rn.

In addition, there exist two positive numbers L and L such that infy∈B L1 (y) = L > 0
and supy∈B L1 (y) = L <∞ for any compact set B ⊆ Rm.

(ii) The gradient ∇H is Lipschitz continuous on bounded subsets of Rn × Rp.

(iii) inf(x,y)∈Rn×Rp Ψ (x,y) = Ψ > −∞.

Remark 3.1. As we shall see below, L1 (y) is explicitly available for the RSTLS problem,
and we can set the parameter Lk = L1

(
yk
)
. However, note that if this is unknown, or

still too difficult to compute, then a backtracking scheme [6] can be incorporated and the
convergence results developed below remain true, for simplicity of exposition we omit the
details.
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3.3 Applying SPA: An Algorithm for RSTLS

As we shall see now, the particular realization of SPA when applied to RSTLS yields an
attractive scheme for solving a broad class of RSTLS problems. Before doing so, let us first
verify that Assumption 2 also holds for RSTLS, which corresponds to the choice of H and
G as given in (3.2). A simple computation then shows that

∇xH (x,y) =
2

σ2
w

(
A +

p∑
i=1

yiAi

)T ((
A +

p∑
i=1

yiAi

)
x− b

)
, (3.8)

∇yH (x,y) = 2

(
1

σ2
e

Ip×p +
1

σ2
w

B(x)TB(x)

)
y +

1

σ2
w

B(x)T (Ax− b) , (3.9)

where Ip stands for the usual p× p identity matrix, and we define

B(x) := (A1x,A2x, . . . ,Apx) . (3.10)

Now, it is easy to see that Assumption 2(ii) and (iii) hold for the RSTLS problem. For
the former, this is immediate with H defined in (3.2), while the latter follows since Ψ is
nonnegative in most applications of interest, i.e., with F (·) being chosen as a norm. Now,
for any fixed y ∈ Rp, it is easy to see from (3.8) that the function H (·,y) admits a Lipschitz
continuous partial gradient ∇xH (·,y) with constant L1 (y) = (2/σ2

w) ‖A +
∑p

i=1 yiAi‖2.
Moreover, it follows by the continuity of L1 (·) that the moduli L1 (y) is bounded from
below and from above over compact sets, and hence Assumption 2(i) holds.

Remark 3.2. It should be noted that the computation of L1 (y) requires to find the largest
singular value of the corresponding matrix. For large scale problems, such as those arising
in image applications, this could be quite involved, but in several scenarios it can handled
efficiently. For example, the operator represents a blurring operation with a PSF under
reflexive or periodic boundary conditions, the operator norm can be efficiently computed by
directly computing the eigenvalues of the matrix by the techniques described, for example,
in [18]. In other cases, as mentioned in Remark 3.1, a version of the algorithm with a
backtracking scheme can be used in order to refrain from the computation of the exact
Lipschitz constant.

When applied to the RSTLS problem, namely with H and G defined in (3.2), the SPA
reduces to the following:

Algorithm for RSTLS. Start with any (x0,y0) ∈ Rn×Rp, and for each k ≥ 1 generate
the sequence

{(
xk,yk

)}
k∈N via

(a) Compute xk+1 via (3.6), with H defined in (3.2) and Lk = (2/σ2
w)
∥∥A +

∑p
i=1 y

k
i Ai

∥∥2.
(b) Compute yk+1 via (3.11) below.
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The first step of the algorithm reduces to compute the proximal map of the given convex
function F . Depending on the choice of F the proximal map can be computed explicitly
or via an efficient algorithm. For the case of interest in this paper, namely with F being
the total variation function, we will use the recent efficient scheme FDPG of [7], see more
details in the numerical section below.

Now, let us derive the second step (b). Writing the optimality condition for the second
step of (3.7) consists of finding the unique yk+1 which solves the equation∇yH

(
xk+1, yk+1

)
+

(1/σ2
e) yk+1 = 0. Using (3.9), and denoting Bk := B(xk), this reduces to solving a linear

system of equations of dimension p× p and given explicitly by

yk+1 = −σ2
e

(
σ2
wIp×p + σ2

eB
T
k+1Bk+1

)−1
BT
k+1

(
Axk+1 − b

)
. (3.11)

Since p is in many scenarios small, and clearly much smaller than mn, the solution of this
linear system can be computed very efficiently, see Section 5.

In the next section we develop the theoretical framework and prove the promised con-
vergence results.

4 The Analysis Framework and Convergence Results

The main goal of this section is to derive the convergence properties of SPA and hence of
its special case, the algorithm for the RSTLS problem.

4.1 Methodology: An Abstract Convergence Result

To establish the main convergence result of SPA, we follow the scope of a general con-
vergence mechanism first described in [2] and more recently in [12]. Here we use the
methodology of [12], whereby a systematic and simple procedure was developed and which
essentially can be applied to any given algorithm. We summarize here the key elements
and main results of the approach [12] under an abstract convergence result which will then
be applied to prove the convergence of SPA.

Let
{
zk
}
k∈N be a sequence in Rd with starting point z0. The set of all limit points is

denoted by ω (z0), and defined by{
z ∈ Rd : ∃ an increasing sequence of integers {kl}l∈N such that zkl → z as l→∞

}
.

For ϕ : Rd → (−∞,+∞] proper and lsc, critϕ :=
{
x ∈ Rd : 0 ∈ ∂ϕ (x)

}
denotes the set

of critical points of ϕ, where ∂ϕ stands for the subdifferential of ϕ (see Appendix A).

The following definition will be useful to capture two key ingredients of the forthcoming
methodology.

Definition 4.1. Let ϕ : Rd → (−∞,+∞] be a proper and lsc function. A sequence{
zk
}
k∈N is called a gradient-like descent sequence for ϕ if for k ∈ N the following two

conditions hold:

11



(C1) Sufficient decrease property: There exists a positive scalar ρ1 such that

ρ1
∥∥zk+1 − zk

∥∥2 ≤ ϕ
(
zk
)
− ϕ

(
zk+1

)
.

(C2) A subgradient2 lower bound for the iterates gap:

–
{
zk
}
k∈N is bounded.

– There exists a positive scalar ρ2 such that∥∥wk+1
∥∥ ≤ ρ2

∥∥zk+1 − zk
∥∥ , wk+1 ∈ ∂ϕ

(
zk+1

)
Remark 4.1. We note that the assumption that

{
zk
}
k∈N is bounded can also be relaxed,

and condition (C2) can be replaced by: For any compact subset Q ⊂ Rd, there exists
ρ2 > 0, (possibly depending on Q) such that:

dist
(
0, ∂ϕ

(
zk+1

))
≤ ρ2

∥∥zk+1 − zk
∥∥ , ∀ zk, zk+1 ∈ Q.

The two conditions (C1) and (C2) defining a gradient-like descent sequence for a given
ϕ are typical for any descent type algorithms (see, e.g., [2]), and provide the basic tools
to prove that the limit of any convergent subsequence of

{
zk
}
k∈N is a critical point of ϕ.

More precisely, from [12, Lemma 5 and Remark 5] we have

Lemma 4.1. If
{
zk
}
k∈N is a gradient-like descent sequence for a given function ϕ, which

is lsc and proper on Rd, then ω (z0) is a nonempty, compact and connected set, and we
have

lim
k→∞

dist
(
zk, ω

(
z0
))

= 0.

This result can thus be applied to any algorithm that produces a gradient-like descent
to establish convergence in accumulation points. The main goal is to establish global
convergence, i.e., that the whole sequence converges to a critical point of ϕ. This can be
achieved by imposing an additional assumption on the class of functions ϕ: it must satisfy
the so-called Kurdyka- Lojasiewicz (KL) property [19, 21]. We refer the reader to [11] for
an in depth study of the class KL, as well as references therein.

As proven in [12], relying on a key uniformization of the KL property (see [12, Lemma 6],
it is possible to establish global convergence of any gradient-like descent sequence

{
zk
}
k∈N,

independently of the algorithm used. Verifying the KL property of a given function might
often be a difficult task. However, thanks to a result established in [10], any proper and
lsc function ϕ which is semi-algebraic satisfies the KL property at any point in domϕ,
see also the appendix. We can now conveniently summarize the general methodology and
convergence results of [12] in the following abstract convergence result.

2Here, ∂ϕ stands for the limiting subdifferential of ϕ [33], which in the convex case reduces to the usual
subgradient map [32]. For the reader’s convenience, more details are given in the appendix.
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Theorem 4.1. Let ϕ : Rd → (−∞,∞] be a proper, lsc and semi-algebraic function with
inf ϕ > −∞, and assume that

{
zk
}
k∈N is a gradient-like descent sequence for ϕ. If ω (z0) ⊂

critϕ, then the sequence
{
zk
}
k∈N converges to a critical point z∗ of ϕ.

Remark 4.2. Under the premises of this theorem, it is also possible to derive a rate of
convergence result for the sequence

{
zk
}
k∈N of the form

∥∥zk − z∗
∥∥ ≤ C k−γ, for some

positive constant C and where γ > 0 is the so-called KL exponent, see [2] for details.

Semi-algebraic functions abound in applications and include a broad list of functions
arising in many optimization models. Moreover, sum and composition of semi-algebraic
functions are also semi-algebraic. We refer the reader to [12] and the references therein
for more details, and illustrating examples. For the reader’s convenience some proper-
ties/examples of semi-algebraic sets and functions are also given in the appendix.

For our RSTLS model, it is immediate to see that both (1/σ2
e) ‖y‖

2 and the quadratic
function H (x,y) (cf. (3.2)) are semi-algebraic, and hence with any choice of F (·) semi-
algebraic, the RSTLS problem thus admits of a semi-algebraic objective function. There-
fore, the forthcoming global convergence result established below for SPA, clearly applies
to the RSTLS algorithm described in Section 3.3. It should be noted that the in the RSTLS
case, the generated sequence is bounded (see condition (C2) in Definition 4.1) as long as
the function F (·) is coercive. In this case the objective function Ψ (·, ·) has bounded level
sets which is enough to guarantee boundedness of the sequence (see [12, Remark 6(i), Page
482]).

4.2 Convergence of SPA

Equipped with the abstract Theorem 4.1, our main objective is now to prove the global
convergence of the sequence generated by SPA to a critical point of Ψ. Before doing so, we
need to recall some well-known basic results. We begin by recalling the sufficient decrease
property of the objective function at a proximal gradient step (cf. [6, Lemma 2.3, Page
190]).

Lemma 4.2 (Sufficient decrease property). Let h : Rd → R be a continuously differentiable
function with gradient ∇h assumed Lh-Lipschitz continuous and let g : Rd → (−∞,+∞]
be a proper, lsc and convex function. Then, for any u ∈ dom g and

u+ = prox 1
t
g

(
u− 1

t
∇h (u)

)
,

we have

h
(
u+
)

+ g
(
u+
)
≤ h (u) + g (u)−

(
t− L

2

)∥∥u+ − u
∥∥2 , (4.1)

where L ≥ Lh.

The next result recalls useful basic properties of subdifferential maps (see [33]).
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Proposition 4.1 (Subdifferentiability property). Assume that the coupling function H in
problem (M) is continuously differentiable on Rn×Rp. Then, for all (x,y) ∈ Rn×Rm, we
have

∂Ψ (x,y) = (∇xH (x,y) + ∂F (x) ,∇yH (x,y) + ∂G (y)) = (∂xΨ (x,y) , ∂yΨ (x,y)) .
(4.2)

Moreover, ∂Ψ (·, ·) is a closed map.

We are now ready to state and prove the main convergence result for SPA. In the sequel,
for convenience we often use the notation

zk :=
(
xk,yk

)
, for all k ≥ 0,

for the sequence generated by SPA.

Theorem 4.2 (Global convergence). Suppose that Assumptions 1 and 2 hold, and assume
that Ψ is semi-algebraic. Let

{
zk
}
k∈N be a sequence generated by SPA, which is assumed

to be bounded. Then, the sequence
{
zk
}
k∈N converges to a critical point z∗ of Ψ.

Proof. We invoke Theorem 4.1. For that purpose the proof is divided in two main
parts. We first need to show that the sequence

{
zk
}
k∈N generated by ASPOX is a gradient-

like descent with respect to Ψ, that is, according to Definition 4.1, we need to show that
conditions (C1) and (C2) hold. In the second part we then have to prove that ω (z0) ⊂
crit Ψ.

(i) Proving that conditions (C1)-(C2) hold. Thanks to Assumption 1(ii) and Assump-
tion 2(i), we can apply Lemma 4.2 with h (·) := H

(
·, yk

)
, Lh := L1

(
yk
)

= Lk ≥ L > 0
(since here yk is assumed bounded) and the convex function g (·) := F (·) to get from (3.6)
that for any k ≥ 0,

H
(
xk+1,yk

)
+ F

(
xk+1

)
≤ H

(
xk,yk

)
+ F

(
xk
)
− L

2

∥∥xk+1 − xk
∥∥2 . (4.3)

Now, from Assumption 1(ii) and (iii), it follows that G (·)+H
(
xk+1, ·

)
is σ-strongly convex,

and hence by the well-known subgradient inequality for a σ-strongly convex function [33,
Chapter 12] we obtain for any k ≥ 0:

G
(
yk
)

+H
(
xk+1,yk

)
≥ G

(
yk+1

)
+H

(
xk+1,yk+1

)
+
〈
ηk+1 +∇yH

(
xk+1,yk+1

)
,yk − yk+1

〉
+
σ

2

∥∥yk+1 − yk
∥∥2

= G
(
yk+1

)
+H

(
xk+1,yk+1

)
+
σ

2

∥∥yk+1 − yk
∥∥2 , (4.4)

where ηk+1 ∈ ∂G
(
yk+1

)
and the last equality follows immediately from the optimality

condition for (3.7). Combining (4.3) and (4.4) and using the fact that Ψ (x,y) = H (x,y)+
F (x) +G (y) yields, for all k ≥ 0, that

Ψ
(
zk
)
−Ψ

(
zk+1

)
≥ L

2

∥∥xk+1 − xk
∥∥2 +

σ

2

∥∥yk+1 − yk
∥∥2 ≥ ρ1

2

∥∥zk+1 − zk
∥∥2 , (4.5)
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where ρ1 = min {L, σ}, thus proving condition (C1) for the sequence
{
zk
}
k∈N with respect

to Ψ. Moreover, as a byproduct, it also follows that

lim
k→∞

(
zk+1 − zk

)
= 0. (4.6)

Indeed, from (4.5), the sequence
{

Ψ
(
zk
)}

k≥0 is nonincreasing, and since Ψ is assumed

to be bounded from below (see Assumption 2(iii)), it converges to some real number Ψ.
Summing (4.5) from k = 0 to N − 1 we thus get

N−1∑
k=0

∥∥zk+1 − zk
∥∥2 ≤ 2

ρ1

(
Ψ
(
z0
)
−Ψ

(
zN
))
≤ 2

ρ1

(
Ψ
(
z0
)
−Ψ

)
, (4.7)

and taking the limit as N →∞ the claim (4.6) follows.
Now, we prove that condition (C2) holds for the sequence

{
zk
}
k∈N. Writing the opti-

mality conditions for the convex iterations of SPA defined in (3.6) and (3.7) we have for
any k ≥ 0:

∇xH
(
xk,yk

)
+ Lk

(
xk+1 − xk

)
+ uk+1 = 0, uk+1 ∈ ∂F

(
xk+1

)
, (4.8)

∇yH
(
xk+1,yk+1

)
+ vk+1 = 0, vk+1 ∈ ∂G

(
yk+1

)
. (4.9)

On the other hand, using Proposition 4.1 we have

∂Ψ
(
zk
)

=
(
∇xH

(
xk+1,yk+1

)
+ ∂F

(
xk+1

)
,∇yH

(
xk+1,yk+1

)
+ ∂G

(
yk+1

))
. (4.10)

Therefore, defining the quantity

ξk+1
x := Lk

(
xk − xk+1

)
+∇xH

(
xk+1,yk+1

)
−∇xH

(
xk,yk

)
,

and using (4.10) together with (4.8) and (4.9), we obtain

wk+1 :=
(
ξk+1
x ,0

)
∈ ∂Ψ

(
xk+1,yk+1

)
.

To complete the proof of condition (C2) it remains to estimate the norm of wk+1. For
that, since we assumed that

{
zk
}
k∈N is bounded, thanks to Assumption 2(i) it follows that

Lk ≤ L, and since by Assumption 2(ii) ∇H is Lipschitz continuous over bounded subsets
of Rn × Rm, there exists M > 0 such that∥∥wk+1

∥∥ =
∥∥(ξk+1

x ,0)
∥∥ ≤ Lk

∥∥xk − xk+1
∥∥+

∥∥∇xH
(
xk+1,yk+1

)
−∇xH

(
xk,yk

)∥∥
≤ L

∥∥xk+1 − xk
∥∥+M

(∥∥xk+1 − xk
∥∥+

∥∥yk+1 − yk
∥∥)

≤ L
∥∥xk+1 − xk

∥∥+
√

2M
∥∥zk+1 − zk

∥∥
≤
(√

2M + L
)∥∥zk+1 − zk

∥∥ , (4.11)

thus proving that condition (C2) holds with ρ2 :=
√

2M + L.
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(ii) Proving that ω (z0) ⊂ crit Ψ. Let z∗ = (x∗,y∗) be a limit point of
{
zk
}
k∈N. Thus,

there exists a subsequence
{(

xkq ,ykq
)}

q∈N such that
(
xkq ,ykq

)
→ (x∗,y∗) as q → ∞. We

need to show that

lim
q→∞

Ψ
(
xkq ,ykq

)
= Ψ (x∗,y∗) and (0,0) ∈ ∂Ψ (x∗,y∗) .

Following the same proof as [12, Lemma 5(i), Page 476] for the iterative Step (3.6), since
both the sequences

{
xk
}
k∈N and Lk are bounded, ∇H is continuous and from (4.6) the

distance between two successive iterates tends to zero, it follows that F
(
xkq
)

tends to
F (x∗) as q →∞. On the other hand, from the iterative Step (3.7), we have for all k ≥ 0

H
(
xk+1,yk+1

)
+G

(
yk+1

)
≤ H

(
xk+1,y∗

)
+G (y∗) .

Since H (·, ·) is continuous (see Assumption 1(iii)), choosing k = kq − 1 in the above
inequality and letting q goes to ∞, yields

lim sup
q→∞

G
(
ykq
)
≤ G (y∗) ,

and since G is lower semicontinuous (see Assumption 1(ii)), this shows that G
(
ykq
)

tends
to G (y∗) as q →∞. Therefore,

lim
q→∞

Ψ
(
xkq ,ykq

)
= lim

q→∞

{
H
(
xkq ,ykq

)
+ F

(
xkq
)

+G
(
ykq
)}

= H (x∗,y∗) + F (x∗) +G (y∗) = Ψ (x∗,y∗) .

Finally, since wk+1 =
(
ξk+1
x ,0

)
∈ ∂Ψ

(
xk+1,yk

)
and since from (4.6) and (4.11)

∥∥wk+1
∥∥→ 0

as k →∞, then recalling the closedness property of the map ∂Ψ (cf. Proposition 4.1), we
obtain that (0,0) ∈ ∂Ψ (x∗,y∗), which completes the proof that (x∗,y∗) is a critical point
of Ψ.

5 Numerical Results

In this section we report on several numerical experiments of the SPA algorithm applied
to the problem of deblurring images. We split this section into two subsections. In the
first subsection we present experiments on small scale images (21×21), while in the second
subsection we present results for large images (256×256). The motivation for this partition
is the fact that on small images we can compare our algorithm to the RSTLN method [29].
Since the RSTLN method is based on the Gauss-Newton method, it can be used efficiently
to solve small scale problems.

To be more precise, in this section we are interested in solving the problem

min
x,y

λf (Lx) +
1

σ2
w

∥∥∥∥∥
(

A +

p∑
i=1

yiAi

)
x− b

∥∥∥∥∥
2

+
1

σ2
e

‖y‖2
 ,

where
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• b is the vectorized observed image (that is, a vector obtained by stacking the columns
of the observed image). This image was obtained from the original “vectorized image
bt whose pixels were scaled to be between 0 and 1. The image goes through a Gaussian
blur point spread function (PSF) of size q × q and standard deviation γ (given by
the MATLAB command psfGauss([q,q],γ)), by using the MATLAB command imfilter.
After that we add a zero-mean white Gaussian noise with standard deviation σw.

• We assume that the blurring operator is not exactly known and that the observed
PSF is constructed by taking the original PSF and adding to it a q × q matrix with
the same structure as the original PSF such that the components of each structure
matrix Ai are with noise which independently generated from a zero-mean normal
distribution with standard deviation σe.

• We consider here the periodic boundary condition. This means that the blurring
matrix has a structure of BCCB. For more details, we refer the reader to the book
[18].

• f : Rn → (−∞,+∞] is a regularizing function and λ > 0 is a regularizing parameter.

5.1 Small Scale Images - Comparison with RSTLN

We begin this section by recalling the RSTLN algorithm (see [34, 29]). This method was
designed to solve the following class of RSTLS problems:

min
x∈Rn,y∈Rp

∥∥∥∥∥∥
 (1/σw) ((A +

∑p
i=1 yiAi) x− b)

(1/σe) y
λLx

∥∥∥∥∥∥
µ

, (5.1)

where µ = 1, 2,∞. It should be noted that when µ = 2, this formulation is equivalent
to (1.1) where the regularizer f (·) is chosen as λ ‖x‖22. This model is more flexible in
the sense that it allows different types of norms to measure the fidelity to the data (in
(1.1) only `2 is possible for the objective function). A major drawback of this model is
the fact that the type of the chosen norm should be the same for the data fidelity and
for the regularizer. On the other hand, in (1.1) any type of regularizer can be considered,
which gives us the possibility of tackling the problem in the common situation that the
data fidelity is measured with `2 norm and the regularizer is given by `1 norm.

As we mentioned above, the RSTLN method is based on the Gauss-Newton method,
which means that at each iteration one should solve an optimization problem of the follow-
ing form:

min
x,y

{∥∥∥∥( A +
∑p

i=1 y
k
i Ai Bk

0p×n
σw
σe

Ip×p

)(
x− xk

y − yk

)∥∥∥∥2 + λf (Lx)

}
, (5.2)
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where
(
xk,yk

)
is the given iterate and Bk is the m × p matrix defined in (3.10), that is,

Bk :=
[
A1x

k,A2x
k, . . . ,Apx

k
]
.

It should be noted that this is not exactly the problem that was solved in [29], be-
cause here we apply the Gauss-Newton method on the model (1.1) and not on the model
(5.1), meaning we look at general regularizers. Here we use CVX in order to solve these
subproblems at each iteration.

Example 5.1. Consider the 21× 21 ‘plus’ image given in Figure 1(1). The ”true” image
goes through a Gaussian blur point spread function (PSF) of size 5 × 5 and standard
deviation 2, and then the observed image is constructed by adding to each of the components
of the blurred image a zero-mean normally distributed random variable with standard
deviation σw = 10−4. See Figure 1 for the blurred and noised image (displayed on the
right-hand side). We also add noise to the structure components vector of the PSF which
is normally distributed with zero-mean and variance σe = 10−4. In this example we have 6
structure matrices, i.e., p = 6, and each matrix is of size 5× 5. Specifically , the structure
matrices are

A1 =


0.0352 0 0 0 0.0352

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0352 0 0 0 0.0352

 , A2 =


0 0.0387 0 0.0387 0

0.0387 0 0 0 0.0387
0 0 0 0 0

0.0387 0 0 0 0.0387
0 0.0387 0 0.0387 0

 ,

A3 =


0 0 0.0399 0 0
0 0 0 0 0

0.0399 0 0 0 0.0399
0 0 0 0 0
0 0 0.0399 0 0

 , A4 =


0 0 0 0 0
0 0.0425 0 0.0425 0
0 0 0 0 0
0 0.0425 0 0.0425 0
0 0 0 0 0

 ,

A5 =


0 0 0 0 0
0 0 0.0438 0 0
0 0.0438 0 0.0438 0
0 0 0.0438 0 0
0 0 0 0 0

 , A6 =


0 0 0 0 0
0 0 0 0 0
0 0 0.0452 0 0
0 0 0 0 0
0 0 0 0 0

 .
Here we regularize the problem with the `1 norm, that is, f (x) := λ ‖x‖1 with a

regularization parameter λ = 10−3. In this case the proximal mapping is the so-called
soft-thresholding operator which is given by

proxλf (x)i := (|xi| − λ)+ sign (xi) ,

where xi is the i-coordinate of x and (x)+ := max {x, 0}.
In this experiment we used periodic boundary condition and initialize SPA with x0 = b,

the observed image, and y = 0. We first solved the problem with the RSTLN method
which after 8 outer iterations (of the Gauss-Newton method) produced the solution given
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Figure 1: The plus test image: original image (left), blurred and noised image (right)

in Figure 2 (in the top-left corner). The relative error of this solution is 0.0405 (i.e., the
value of ‖xRSTLN − xorig‖ / ‖xorig‖) when the relative error of the blurred and noisy image
is 0.2725. The SPA algorithm achieves such an error (i.e., 0.0405) after 972 iterations (see
the solution obtained by the SPA in Figure 2, the top-right corner). The SPA obtained this
solution after 2.15 seconds while the RSTLN method did it after 9.88 seconds. The relative
error between the two solutions (SPA and RSTLN) is ‖xRSTLN − xSPA‖ / ‖xSPA‖ = 0.047.
The two figures in the bottom obtained by the SPA algorithm after 2500 (left corner) and
4500 (right corner) iterations.

It should be noted that the 4500 iterations of the SPA algorithm took 10 seconds which
is almost the time that the RSTLN ran. So, for the same running time, the SPA algorithm
generated a much better solution than the RSTLN method (the relative error of the SPA
after 4500 iterations is 0.0252 and after 2500 iterations is 0.0288). It should be noted that
the poor performance of the RSTLN method here is also due to the fact that we have used
CVX in order to solve (5.2) at each iteration of the Gauss-Newton method.

We made more extensive set of tests in which we solved 10 problems – each correspond-
ing to a realization of σw and σe for different values 10−2, 10−3 and 10−4. In Table 1, for
each value of standard deviation, and for each choice of an algorithm (SPA and RSTLN),
we indicate the average CPU time of each algorithm (out of the 100) with tolerance pa-
rameter ε > 0 for ε = 10−3, 10−4, 10−5 after 100 iterations; The parameter ε is used in the
stopping criterion, which is

∥∥xN+1 − xN
∥∥ / ∥∥xN∥∥ ≤ ε for some N ∈ N).

For the moderate accuracy ε = 10−3, the SPA method is significantly better (more than
10 times faster) than the RSTLN method. For the greater accuracies ε = 10−4, 10−5, it is
clear that the SPA method is better than RSTLN (about twice faster). It also should be
noted that the maximum CPU time for RSTLN could be very high for larger accuracies,
for example, for the parameter ε = 10−5, RSTLN run for more than 230 seconds (for
σw = σw = 10−2), which for the SPA, only required about 11 seconds.
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Figure 2: The plus test image: RSTLN solution (top-left corner), SPA solution - 972
iterations (top-right corner), SPA solution - 2500 iterations (bottom- right corner), SPA
solution - 4500 iterations (bottom-left corner)

5.2 Large Scale Image

In this section we present numerical examples on large scale images. We consider the
256 × 256 camerman test image whose pixels were scaled into the range between 0 and
1. We will demonstrate the viability and effectiveness of the proposed SPA method in
deblurring large scale images.

Example 5.2. The camerman test image went through a Gaussian blur point spread
function (PSF) of size 5 × 5 and standard deviation 4, and then the observed image is
constructed by adding to each of the components of the blurred image a zero-mean normally
distributed random variable with standard deviation σw = 10−3. See Figure 3 for the
original image (displayed on the left-hand side) and the blurred and noised image (displayed
on the right-hand side). We also add noise to the structure components vector of the PSF,
which is normally distributed with zero-mean and variance σe = 10−3. The number and
size of the structure matrices are the same as in the previous example.
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σw σe ε = 10−3 ε = 10−4 ε = 10−5

SPA RSTLN SPA RSTLN SPA RSTLN

10−4 10−4
0.0769

0.09 0.07

1.7733

1.84 1.69

0.3423

0.36 0.33

2.2879

2.68 2.12

1.256

1.35 1.23

2.3395

2.91 2.22

10−3 10−4
0.0789

0.1 0.07

1.9428

2.42 1.66

0.35

0.36 0.34

2.1357

2.5 2.19

1.5889

1.69 1.57

3.0093

3.91 2.3

10−3 10−3
0.0774

0.12 0.07

1.8299

2.26 1.55

0.3484

0.38 0.33

2.4399

3.09 2.29

1.5506

1.69 1.52

3.2463

4 2.38

10−2 10−2
0.0802

0.11 0.07

7.4978

39.35 3.37

0.5838

0.68 0.57

16.2789

185.61 4.84

10.5208

10.73 10.4

19.243

230.59 5.8

Table 1: average CPU time(out of 100) in the first line, maximum and minimum CPU time
(out of 100) in the second line for which an ε-optimal solution is reached.
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Figure 3: The camerman test image: original image (left), blurred and noised image (right)

In this experiment we used periodic boundary conditions and considered the total vari-
ation (TV)-based regularization, that is, F (x) = λTV1 (x) where λ = 10−3 (see Example
2.3 for the precise definition of TV1). We initialized the algorithm in the same way as in the
previous example, namely the initial x is the observed image and y = 0. The main effort
in implementing SPA for deblurring the image involves the computation of the proximal
mapping of TV1. It is well-known that there is no an explicit expression for the proximal
mapping of TV1, and therefore it requires an additional iterative method. We will use the
FDPG method of [7] in order to compute the prox of TV1. When implementing the FDPG
at each iteration of SPA, we bound the number of the iterations of FDPG by 12.

The figure below (see Figure 4) obtained by the SPA after 50 and 200 iterations.
The relative error of the solution obtained by the SPA after 50 iterations is 0.0868 (i.e.,

the value of ‖xSPA − xorig‖ / ‖xorig‖) while after 200 iterations the relative error is 0.0657.
The relative error of the blurred and noisy image is 0.1327.
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Figure 4: The camerman test image: SPA solution after 50 (left) and 200 (right) iterations

A Appendix

A.1 Nonsmooth Calculus

Let us recall a few definitions concerning subdifferential calculus (see, for instance, [33]).
Recall that for a proper and lower semicontinuous function ϕ : Rd → (−∞,+∞], the
domain of ϕ is defined through domϕ :=

{
x ∈ Rd : ϕ (x) < +∞

}
.

Definition A.1 (Subdifferentials). Let ϕ : Rd → (−∞,+∞] be a proper and lower semi-
continuous function.

(i) For a given x ∈ domϕ, the Fréchet subdifferential of ϕ at x, written ∂̂ϕ (x), is the
set of all vectors u ∈ Rd which satisfy

lim inf
y 6=x y→x

ϕ (y)− ϕ (x)− 〈u,y − x〉
‖y − x‖

≥ 0.

When x /∈ domϕ, we set ∂̂ϕ (x) = ∅.

(ii) The limiting-subdifferential, or simply the subdifferential, of ϕ at x ∈ Rn, written
∂ϕ (x), is defined through the following closure process

∂ϕ (x) :=
{

u ∈ Rd : ∃ xk → x, ϕ
(
xk
)
→ ϕ (x) and uk ∈ ∂̂ϕ

(
xk
)
→ u as k →∞

}
.

Note that in this nonsmooth and nonconvex context, the well-known Fermat’s rule
remains barely unchanged. It formulates as: “if x ∈ Rd is a local minimizer of ϕ then
0 ∈ ∂ϕ (x)”. Points whose subdifferential contains 0 are called critical points, and the set
of critical points of ϕ is denoted by critϕ.
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A.2 Semi-algebraic sets and functions

We recall here basic definitions and properties, see e.g., [12] and references therein for more
details.

Definition A.2 (Semi-algebraic sets and functions). (i) A subset S of Rd is a real semi-
algebraic set if there exists a finite number of real polynomial functions gij, hij : Rd →
R such that

S =

p⋃
j=1

q⋂
i=1

{
u ∈ Rd : gij (u) = 0 and hij (u) < 0

}
.

(ii) A function h : Rd → (−∞,+∞] is called semi-algebraic if its graph{
(u, t) ∈ Rd+1 : h (u) = t

}
,

is a semi-algebraic subset of Rd+1.

The following useful result can be found in [10].

Theorem A.1. Let ϕ : Rd → (−∞,+∞] be a proper and lower semicontinuous function.
If ϕ is semi-algebraic then it satisfies the KL property at any point of domϕ.

The class of semi-algebraic sets is stable under the following operations: finite unions,
finite intersections, complementation and Cartesian products. There is broad class of semi-
algebraic functions arising in optimization: Real polynomial functions; indicator functions
of semi-algebraic sets; finite sums product and composition of semi-algebraic functions;
Sup/Inf type functions; the sparsity measure (or the counting norm) ‖x‖0 of a vector x,
and much more, see e.g., [12] and references therein.
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