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Abstract

We study the single source localization problem which consists of minimizing the squared sum

of the errors, also known as the maximum likelihood formulation of the problem. The resulting

optimization model is not only nonconvex but is also nonsmooth. We first derive a novel equivalent

reformulation as a smooth constrained nonconvex minimization problem. The resulting reformula-

tion allows for deriving a delightfully simple algorithm that does not rely on smoothing or convex

relaxations. The proposed algorithm is proven to generate bounded iterates which globally converge

to critical points of the original objective function of the source localization problem. Numerical

examples are presented to demonstrate the performance of our algorithm.
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1 Introduction

We report on a study of the single source localization problem, which appears in a broad range

of important and disparate applications including for instance: mobile communication and wireless

networks [11, 20], acoustic/sound source localization [16], GPS localization [4], and brain activity

identification [12], to mention just a few. The problem is based on range measurements from an array

of sensors (also called anchors) which are actually “data suppliers” for estimating the ranges to the

unknown location of the radiating source. The basic scenario of the source localization problem can

be described as follows. The sensors send their range measurements data to a control center which

estimates the source location according to the received data. There are several types of measurements

that could be used in source localization such as time of arrival, signal strength and distance (which

in many cases is not known directly and should be estimated).

The source localization problem can be modeled mathematically as a system of nonlinear equations,

for which, each equation describes the estimated range between a specific sensor to the source as being

the distance between the unknown source and each anchor contaminated with additive noise. Consider

a group of m sensors which are denoted by aj ∈ Rn, j = 1, 2, . . . ,m. Each aj contains the exact location

of the j-th sensor. We denote by A the set of all sensors, that is, A = {a1, a2, . . . , am}. Let x ∈ Rn,

be the source which exact location is unknown, and let dj > 0, j = 1, 2, . . . ,m, be a noisy observation

of the range between the source x and the j-th sensor aj described by the following equations:

dj = ‖x− aj‖+ εj , j = 1, 2, . . . ,m, (1.1)

where εj is the j-th unknown noise. The problem is then to find an adequate approximation of the

unknown source x satisfying (1.1).

Two well-known optimization approaches for finding the location of the source consist of minimizing

the least squared error in the squared domain, or by minimizing the squared sum of the errors; see

e.g., [5]. The first approach consists of solving the source localization problem via the smooth Squared

Least Squares formulation given by:

min
x∈Rn


m∑
j=1

(
‖x− aj‖2 − d2

j

)2

 . (SLS)

The second approach for estimating the source location, and is the focus of our study, consists of
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minimizing the Least Squares noise error, i.e.,

min
x∈Rn

f (x) :=

m∑
j=1

(‖x− aj‖ − dj)2

 . (LS)

Both formulations of the source localization problem are unconstrained nonconvex optimization prob-

lems. One remarkable feature of problem (SLS), besides having a smooth objective, is that, despite

nonconvexity, it can be solved globally in some cases [5]. Still, it is well-known that the (SLS) formula-

tion suffers from two major drawbacks: it has no statistical interpretation and the estimates produced

by (SLS) are less accurate than those obtained by the (LS) approach [5]. The situation is much better

in this respect for problem (LS) which has the advantage of a statistical interpretation as a maximum

likelihood whenever the noise is assumed to be Gaussian (see, e.g., [5, 6]). The apparent disadvantage

of (LS), however, is that it is nonsmooth: the gradient of the objective function f is not defined for

any x ∈ A. The nonsmoothness of the objective in (LS) also does not permit the derivation of exact

global solutions.

In this paper we focus on the more challenging nonconvex and nonsmooth (LS) formulation. For

various classes of problems, recent analysis shows that nonconvexity does not always present a signif-

icant numerical challenge locally, nor in some cases globally [13, 17]. Nonsmoothness, on the other

hand, is a more formidable challenge. One approach to handling nonsmoothness has been via smooth

approximations. A popular approach has been to solve convex relaxations of the source localization

problem, in particular of the conic types via semi-definite programs or second order conic programs,

see for instance [5, 21] and references therein. A clear advantage of using such convex reformulations

is that the resulting relaxed problems can be efficiently solved via interior point methods. However, as

shown in [5], since the resulting approximate solution is the solution to a relaxed problem, the corre-

spondence to solutions of the original problem could be quite poor, if indeed there is any quantifiable

correspondence at all. An alternative approach is to seek methods that can tackle directly the original

nonconvex and nonsmooth (LS) problem via adequate and simple iterative schemes; see for instance

[6], where the authors propose two different schemes to tackle the least squares formulation of the

problem in its original form. One of the proposed methods there is based on solving a sequence of

certain weighted least squares problems, where convergence of subsequences to cluster points gener-

ated by this method to a critical point of the problem was proven, see more details in Section 5 for

the advantages and drawbacks of this scheme.

In the present work we eschew convex relaxation techniques. Our objective is to develop and

analyze a new simple algorithm for solving the original nonconvex and nonsmooth formulation (LS)
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of the source localization problem. As just mentioned, the nonsmoothness of the objective function in

the (LS) formulation remains a challenging issue. This will be the starting point of our developments.

Relying on the simple observation that the Euclidean norm of a given vector is nothing more than the

support function of the unit ball (this is Cauchy-Schwartz inequality!), we first derive an equivalent

reformulation of (LS), as a smooth constrained nonconvex minimization problem. As we shall see, this

novel perspective paves the way to a method which has two advantages over the current state of the

art. First, it is very simple: the iteration steps are given by a – closed, computationally inexpensive

formula – second, we can show stronger convergence results for the new method than the results

derived in [6]. Indeed, exploiting the nice structure of the proposed smooth constrained reformulation

of (LS), by adapting some very recent convergence results for semialgebraic optimization [1, 3], and in

particular on the general methodology developed in [9], we prove that the proposed method generates

a bounded sequence of iterates which converges to a critical point of the original problem (LS) from

any given starting point.

After presenting the equivalent smooth constrained reformulation of the problem in Section 2, we

study the associated Lagrangian to the problem in Section 3. This is shown to have some very attractive

properties that allow us to derive an explicit algorithm (Algorithm 1) based on the alternating direction

method of multipliers. Section 4 is devoted to the analysis of our proposed method where we state

and prove the main convergence result (Theorem 4.1). Finally, in Section 5 numerical examples are

presented to demonstrate the performance of our algorithm relative to the current state of the art.

Our notation and basic definitions are standard [18]. For any vector rj ∈ Rn, j = 1, 2, . . . ,m,

we use the notation r :=
(
rT1 , r

T
2 , . . . , r

T
m

)T ∈ Rnm. We denote the unit closed ball of Rn by B :=

{u ∈ Rn : ‖u‖ ≤ 1} and, the Cartesian product of m copies of the unit ball B we denote by Bm :=

B×B×· · ·×B. The orthogonal projection onto the ball B is defined by PB (u) := argminv∈B ‖v − u‖
2,

and δB stands for the indicator function of B.

2 A Smooth Constrained Reformulation of (LS)

We derive an equivalent smooth constrained re-formulation of (LS), which provides the key insight

toward the main results of this paper, namely a simple algorithm and its convergence analysis. As

described in the introduction, we focus our study on tackling the least squares noise error model which
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is the nonconvex and nonsmooth minimization problem:

min
x∈Rn

f (x) :=
m∑
j=1

(‖x− aj‖ − dj)2

 . (LS)

Elementary algebra shows that (LS) reduces to the following problem (omitting the constant terms

d2
j , j = 1, 2, . . . ,m)

min
x∈Rn

m∑
j=1

(
‖x− aj‖2 − 2dj ‖x− aj‖

)
. (2.1)

Next we replace the nonsmooth term in the objective by a more fundamental representation of the

norm. In particular, we note that, from the Cauchy-Schwartz inequality, the norm of any vector v ∈ Rn

can be rewritten as

‖v‖ = max
‖u‖≤1

〈u, v〉 . (2.2)

Using (2.2) we have

−‖x− aj‖ = min
‖uj‖≤1

−〈uj , x− aj〉 , j = 1, 2, . . . ,m,

which yields the equivalent representation of Problem (2.1)

min
x∈Rn

m∑
j=1

(
‖x− aj‖2 + 2dj min

‖uj‖≤1
−〈uj , x− aj〉

)
.

This can be conveniently written as a minimization problem of a smooth function over a simple convex

constraint set, as follows:

min
(x,u)∈Rn×Bm

m∑
j=1

(
1

2
‖x− aj‖2 − dj 〈uj , x− aj〉

)
.

Let F : Rn × Rnm → (−∞,+∞] be a proper and lower semicontinuous function defined by

F (x,u) :=
m∑
j=1

(
1

2
‖x− aj‖2 − dj 〈uj , x− aj〉+ δB (uj)

)

:= Φ(x,u) +

m∑
j=1

δB (uj) . (2.3)

Using this notation, problem (2.1) is equivalent to:

min {F (x,u) : (x,u) ∈ Rn × Rnm} , (LOCS)

and we clearly have

min
(x,u)∈Rn×Rnm

F (x,u) = min
x∈Rn

f (x)−
m∑
j=1

d2
j .
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This formulation will be the starting point of our analysis. We are interested in designing a simple

algorithm for solving (LOCS) which globally converges to a critical point of F , that is, to a pair (x,u)

which satisfies (see [19])1

(0,0) ∈ ∂F (x,u) = {∇xF (x,u)} × {∂uF (x,u)} ,

which translates to:

∇xF (x,u) =
m∑
j=1

(x− aj − djuj) = 0, (2.4)

∂ujF (x,u) = −dj (x− aj) + ∂δB (uj) 3 0, (2.5)

for all j = 1, 2, . . . ,m, where ∂ujF (x, ·) is the subdifferential with respect to uj .

As we shall see now, we can further exploit the very special and separable structure of the problem

to build a simple scheme based on the well-known alternating directions method of multipliers, see,

e.g., the recent survey [10] and reference therein.

3 A Simple Algorithm for Solving Problem (LOCS)

To construct a procedure for solving (LOCS), we first decompose the problem via the following equiv-

alent formulation through the new variables vj , j = 1, 2, . . . ,m,

min
x,u,v


m∑
j=1

(
1

2
‖x− aj‖2 − 〈vj , x− aj〉

)
: djuj = vj , uj ∈ B, j = 1, 2, . . . ,m

 . (3.1)

The augmented Lagrangian for the above problem is then defined by

Lρ (x,u,v; w) :=

m∑
j=1

Lρj (x, uj , vj ;wj) , (3.2)

where, for each j = 1, 2, . . . ,m,

Lρj (x, uj , vj ;wj) :=
1

2
‖x− aj‖2 − 〈vj , x− aj〉+ 〈wj , djuj − vj〉+

ρj
2
‖djuj − vj‖2 + δB (uj) . (3.3)

1By the subdifferential ∂ϕ we mean the limiting subdifferential, which is defined for proper and lower semicontinuous

functions by

∂ϕ (z̄) :=
{
v : ∃vk → v and zk

ϕ→ z̄ such that ϕ (z) ≥ ϕ
(
zk
)

+
〈
vk, z − zk

〉
+ o(|z − zk|)

}
.

When ϕ is convex, the above definition coincides with the subdifferential of convex analysis. For more details see [19].
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Here ρ := (ρ1, ρ2, . . . , ρm) ∈ Rm++ is the penalty parameter and wj ∈ Rn, j = 1, 2, . . . ,m, is the

multiplier corresponding to the constraint djuj − vj = 0.

The augmented Lagrangian Lρ is separable in each of the variables (uj , vj , wj), j = 1, 2, . . . ,m. This

feature is key to the efficiency of our implementation and analysis. Fix w ∈ Rnm. By inspection one

can see that Lρj , j = 1, 2, . . . ,m, is strongly convex as a function separately of the primal variables

(x,u,v) when the others are fixed. More precisely, we record this useful property in the following

proposition.

Proposition 3.1. For Lρ defined via (3.2) and (3.3) Then the following hold

1. The function x→ Lρ (x,u,v; w) is m-strongly convex, for any fixed triple (u,v,w).

In addition, for all j = 1, 2, . . . ,m, we have

2. the function uj → Lρj (x, uj , vj ;wj) is ρjd
2
j -strongly convex, for any fixed triple (x, vj , wj);

3. the function vj → Lρj (x, uj , vj ;wj) is ρj-strongly convex, for any fixed triple (x, uj , wj).

Therefore, each minimization step of the alternating direction of multipliers – which consists of

minimizing the augmented Lagrangian Lρ, in an alternating way for each primal variable, followed

by a multiplier update – leads to a well-defined minimization of a strongly convex function for each

primal step, i.e., it generates the sequence
{(
xk,uk,vk; wk

)}
k∈N via the following basic scheme:

xk+1 = argminx Lρ

(
x,uk,vk; wk

)
,

and for each j = 1, 2, . . . ,m,

uk+1
j = argminuj∈B Lρj

(
xk+1, uj , v

k
j ;wkj

)
,

vk+1
j = argminvj Lρj

(
xk+1, uk+1

j , vj ;w
k
j

)
,

wk+1
j = wkj + ρj

(
dju

k+1
j − vk+1

j

)
.

It turns out that each minimization can be written in a closed form with a simple formula. Indeed, a

straightforward computation yields

∇xLρ (x,u,v; w) =

m∑
j=1

(x− aj − vj) , (3.4)
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and for each j = 1, 2, . . . ,m,

∂ujLρj (x, uj , vj ;wj) = djwj + ρjdj (djuj − vj) + ∂δB (uj) , (3.5)

∇vjLρj (x, uj , vj ;wj) = − (x− aj)− wj − ρj (djuj − vj) , (3.6)

∇wjLρj (x, uj , vj ;wj) = djuj − vj . (3.7)

With the above expressions, the optimality conditions of each convex minimization step in (x,u,v) of

the above basic, results in the following delightfully simple procedure.

Algorithm 1.

Initialization. Start with any
(
x0,u0,v0; w0

)
∈ Rn × Rnm × Rnm × Rnm, and ρj > 0, j =

1, 2, . . . ,m.

Main Loop. For each k = 0, 1, . . . generate a sequence
{(
xk,uk,vk; wk

)}
k∈N as follows:

• Compute

xk+1 =
1

m

m∑
j=1

(
aj + vkj

)
. (3.8)

• Compute, for each j = 1, 2, . . . ,m,

uk+1
j = PB

(
vkj − ρ

−1
j wkj

dj

)
, (3.9)

vk+1
j =

1

ρj

(
ρjdju

k+1
j + xk+1 − aj + wkj

)
, (3.10)

wk+1
j = wkj + ρj

(
dju

k+1
j − vk+1

j

)
. (3.11)

The uj step given in (3.9) which is the projection onto the unit ball simply reduces to the formula:

uk+1
j =

pkj

max{1,
∥∥∥pkj∥∥∥} , where pkj :=

vkj − ρ
−1
j wkj

dj
, j = 1, 2, . . . ,m.

Note that the auxiliary variables vkj and wkj , j = 1, 2, . . . ,m, can be eliminated to produce an algorithm

with iterates only on (x,u) thanks to the relation

wkj = aj − xk, ∀ k ∈ N, ∀ j ∈ {1, 2, . . . ,m} , (3.12)

which can be easily deduced from the algorithms steps. This is presented in Section 5.
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3.1 Properties of the Augmented Lagrangian Lρ

The following elementary, but key fact relates the critical points of the augmented Lagrangian Lρ (3.2)

with those of the objective function F (2.3) of problem (LOCS).

Proposition 3.2. Let (x∗,u∗,v∗; w∗) be a critical point of Lρ. Then the pair (x∗,u∗) is a critical

point of F , that is, satisfies (2.4) and (2.5).

Proof. Since (x∗,u∗,v∗; w∗) is a critical point of Lρ, we have that 0 ∈ ∂Lρ (x∗,u∗,v∗; w∗). Thus, it

follows from (3.4) and (3.7) that
m∑
j=1

(
x∗ − aj − dju∗j

)
= 0,

which is exactly (2.4). On the other hand, multiplying (3.6) by dj and adding to (3.5) yields that

0 ∈ −dj (x∗ − aj) + ∂δB
(
u∗j
)
.

This shows that (2.5) also holds true for all j = 1, 2, . . . ,m.

The above result suggests that one might try to use the augmented Lagrangian Lρ as a merit

function to measure and analyze the progress of the algorithm. For this idea to work, one must have

a sufficient decrease property of Lρ at each iteration. Since our algorithm is of a primal-dual type,

at first glance it does not appear possible (e.g., due to the increase in the dual variable w). The

trick to guaranteeing sufficient decrease in Lρ (and hence enabling its use as a merit function) lies in

controlling the effect of the dual sequence
{
wk
}
k∈N. We do this via a simple and adequate choice of

the penalty parameter ρj , j = 1, 2, . . . ,m.

Before showing how this can be done, we first recall the following well-known result (see [19]).

Proposition 3.3. Let ϕ : Rd → (−∞,+∞] be proper, lower semicontinuous and σ-strongly convex

function. Then, for all p, q ∈ Rd, we have

ϕ (q)− ϕ (p) ≤ 〈ξ, q − p〉+
σ

2
‖p− q‖2 , ξ ∈ ∂ϕ (q) . (3.13)

Remark 3.1. If ϕ is a “pure” quadratic function, i.e., of the form ϕ (p) = (σ/2) ‖p‖2 + bT p + c for

some b ∈ Rd and c ∈ R, then domϕ = Rd, ϕ ∈ C1 and equality holds in (3.13) with ξ = ∇ϕ (q).

We can now prove the sufficient decrease property of the augmented Lagrangian Lρ. For conve-

nience, we use the notation yk =
(
xk,uk,vk; wk

)
, k ∈ N, for the sequence generated by Algorithm

1.
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Proposition 3.4. Let
{
yk
}
k∈N be a sequence generated by Algorithm 1. Then, for all k ∈ N,

Lρ

(
yk+1

)
− Lρ

(
yk
)
≤ −α

2

∥∥∥xk+1 − xk
∥∥∥2
− 1

2

m∑
j=1

ρj

∥∥∥vk+1
j − vkj

∥∥∥2
− 1

2

m∑
j=1

ρjd
2
j

∥∥∥uk+1
j − ukj

∥∥∥2
,

where α :=
∑m

j=1
ρj−2
ρj

. Therefore, with ρj > 2 for all j = 1, 2, . . . ,m,

Lρ

(
yk+1

)
− Lρ

(
yk
)
≤ −C1

∥∥∥xk+1 − xk
∥∥∥2

+
m∑
j=1

∥∥∥vk+1
j − vkj

∥∥∥2

 , (3.14)

where C1 = min {α, ρ1, ρ2, . . . , ρm}.

Proof. First note that by the definition of algorithm (Steps (3.8)–(3.10)) we have that

0 = ∇xLρ
(
xk+1,uk,vk; wk

)
, (3.15)

and for each j = 1, 2, . . . ,m,

0 ∈ ∂ujLρj
(
xk+1, uk+1

j , vkj ;wkj

)
+ ∂ujδB

(
uk+1
j

)
,

0 = ∇vjLρj
(
xk+1, uk+1

j , vk+1
j ;wkj

)
.

These facts, together with Proposition 3.3 and the strong convexity of Lρ (cf. Proposition 3.1) applied

to

ϕ (x) = Lρ

(
x,uk,vk; wk

)
at the points q = xk+1 and p = xk,

ϕ (uj) = Lρj

(
xk+1, uj , v

k
j ;wkj

)
+ δB (uj) at the points q = uk+1

j and p = ukj ,

ϕ (vj) = Lρj

(
xk+1, uk+1

j , vk+1
j ;wkj

)
at the points q = vk+1

j and p = vkj ,

yield

Lρ

(
xk+1,uk,vk; wk

)
− Lρ

(
yk
)

= −m
2

∥∥∥xk+1 − xk
∥∥∥2
, (3.16)

Lρj

(
xk+1, uk+1

j , vkj ;wkj

)
− Lρj

(
xk+1, ukj , v

k
j ;wkj

)
≤ −

ρjd
2
j

2

∥∥∥uk+1
j − ukj

∥∥∥2
, (3.17)

Lρj

(
xk+1, uk+1

j , vk+1
j ;wkj

)
− Lρj

(
xk+1, uk+1

j , vkj ;wkj

)
= −ρj

2

∥∥∥vk+1
j − vkj

∥∥∥2
, (3.18)

where equalities (3.16) and (3.18) follow from Remark 3.1. The representation of the augmented

Lagrangian in (3.3) together with (3.11) and (3.12) gives

Lρj

(
xk+1, uk+1

j , vk+1
j ;wk+1

j

)
− Lρj

(
xk+1, uk+1

j , vk+1
j ;wkj

)
=
〈
wk+1
j − wkj , vk+1

j − aj − djuk+1
j

〉
=

1

ρj

∥∥∥wk+1
j − wkj

∥∥∥2
,

=
1

ρj

∥∥∥xk+1 − xk
∥∥∥2
. (3.19)
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Now, recalling that Lρ =
∑m

j=1 Lρj , equations (3.16), (3.18) and (3.19) together with (3.17) yield

Lρ

(
yk+1

)
− Lρ

(
yk
)
≤ −

m∑
j=1

ρj − 2

2ρj

∥∥∥xk+1 − xk
∥∥∥2
− 1

2

m∑
j=1

ρj

∥∥∥vk+1
j − vkj

∥∥∥2

− 1

2

m∑
j=1

ρjd
2
j

∥∥∥uk+1
j − ukj

∥∥∥2
,

which proves the first statement. The second statement (3.14) follows immediately from the first one

whenever ρj > 2. This completes the proof.

Standing assumption. From now on, we assume that

ρj > 2, ∀ j = 1, 2, . . . ,m.

Finally, once again thanks to the nice structure of Lρ, we show that at each iteration k ∈ N,

Lρ
(
yk
)

is bounded from below.

Proposition 3.5. Let
{
yk
}
k∈N be a sequence generated by Algorithm 1. Then, for each k ∈ N, we

have

Lρ

(
yk
)
≥ −1

2

m∑
j=1

d2
j .

Proof. We first re-write the augmented Lagrangian Lρj , j = 1, 2, . . . ,m, as follows

Lρj (x, uj , vj ;wj) =
1

2
‖x− aj‖2 − 〈vj , x− aj〉+ 〈wj , djuj − vj〉+

ρj
2
‖djuj − vj‖2 + δB (uj)

=
1

2
‖x− aj − djuj‖2 −

d2
j

2
‖uj‖2 + 〈djuj − vj , x− aj + wj〉+

ρj
2
‖djuj − vj‖2

+ δB (uj) .

Note also that, for all k ∈ N, xk − aj + wkj = 0 (cf. (3.12)) and ukj ∈ B for all j = 1, 2, . . . ,m, hence

Lρj

(
xk, ukj , v

k
j ;wkj

)
=

1

2

∥∥∥xk − aj − djukj∥∥∥2
−
d2
j

2

∥∥∥ukj∥∥∥2
+
ρj
2

∥∥∥djukj − vkj ∥∥∥2
≥ −

d2
j

2

∥∥∥ukj∥∥∥ ≥ −d2
j

2
.

Using the fact that Lρ
(
yk
)

=
∑m

j=1 Lρj

(
xk, ukj , v

k
j ;wkj

)
then yields the result.
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4 Convergence Analysis

The main goal of this section is to derive convergence properties of Algorithm 1. To establish the main

convergence result, namely global convergence of the sequence
{
yk
}
k∈N generated by Algorithm 1 to

a critical point of the function F (cf. (2.3)), we follow a general convergence mechanism first described

in [1] and more recently extended and simplified in [9]. Here we follow the general approach developed

in [9], whereby a systematic mechanism and “recipe” was derived to prove global convergence of any

sequence (satisfying certain conditions) produced by a given algorithm, independently of the algorithms

used. See details in [9, Section 3.2], and in particular conditions (i), (ii) and (iii) in [9, p. 470]. The

first two bring conditions on the sequence; while the last one is on problem’s data information requiring

the objective function to satisfy the so-called Kurdyka- Lojasiewicz (KL) property [15, 14]. For recent

advances and impact of the KL property in optimization we refer the reader to [7, 1, 8].

Unfortunately, this general mechanism cannot be directly applied, since conditions (i) and (ii)

stated in [9, p. 470] do not hold for our method. Nevertheless, thanks to the generous structure of

the problem (3.1) and of the augmented Lagrangian Lρ (3.2) we will be able to prove convergence of

sequences
{
yk
}
k∈N generated by Algorithm 1 to critical points of F from any initial point y0.

To begin, note first that both the objective function F of (LOCS) and the corresponding augmented

Lagrangian Lρ are semi-algebraic functions, and hence, thanks to a result established in [7], any proper

and lower semicontinuous function which is semi-algebraic satisfies the KL property at any point of

the domain.

Next, we show that
{
yk
}
k∈N is a bounded sequence.

Proposition 4.1. Let
{
yk
}
k∈N be a sequence generated by Algorithm 1. Then

1. the sequence
{∥∥yk+1 − yk

∥∥}
k∈N converges to zero as k →∞ and

2. the sequence
{
yk
}
k∈N is bounded.

Proof. 1. From Proposition 3.4 we have, for all k ∈ N, that

m∑
j=1

(
ρj − 2

2ρj

∥∥∥xk+1 − xk
∥∥∥2

+
ρj
2

∥∥∥vk+1
j − vkj

∥∥∥2
+
ρjd

2
j

2

∥∥∥uk+1
j − ukj

∥∥∥2
)
≤ Lρ

(
yk
)
− Lρ

(
yk+1

)
.

Since ρj > 2 for all j = 1, 2, . . . ,m, summing this inequality for k = 1, 2, . . . , N we obtain that

N∑
k=1

m∑
j=1

(
ρj − 2

2ρj

∥∥∥xk+1 − xk
∥∥∥2

+
ρj
2

∥∥∥vk+1
j − vkj

∥∥∥2
+
ρjd

2
j

2

∥∥∥uk+1
j − ukj

∥∥∥2
)
≤ Lρ

(
y1
)
− Lρ

(
yN
)
.

12



Thus, since by Proposition 3.5
{
Lρ
(
yk
)}

k∈N is bounded from below, we let N → ∞ and obtain, for

all j = 1, 2, . . . ,m, that

∞∑
k=1

∥∥∥xk+1 − xk
∥∥∥2
<∞,

∞∑
k=1

∥∥∥vk+1
j − vkj

∥∥∥2
and

∞∑
k=1

∥∥∥uk+1
j − ukj

∥∥∥2
<∞.

This shows that the sequences
{∥∥xk+1 − xk

∥∥}
k∈N,

{∥∥uk+1 − uk
∥∥}

k∈N and
{∥∥vk+1 − vk

∥∥}
k∈N all con-

verge to zero as k →∞. Now, in order to complete the proof of the first item, all we need is to show

that
{∥∥wk+1 −wk

∥∥}
k∈N also converges to zero as k → ∞. This immediately follows from (3.12).

Combining all these facts yields 1.

2. First of all, it is clear from the algorithm that
{
uk
}
k∈N ⊂ B

m which implies directly that{
uk
}
k∈N is bounded. In addition, from part 1 it is also true that

{∥∥∥wk+1
j − wkj

∥∥∥}
k∈N

is bounded.

Thus, using Step (3.11), for all j = 1, 2, . . . ,m∥∥∥djukj − vkj ∥∥∥ =
1

ρj

∥∥∥wkj − wk−1
k

∥∥∥ ,
and therefore ∥∥∥vkj ∥∥∥ ≤ 1

ρj

∥∥∥wkj − wk−1
k

∥∥∥+ dj

∥∥∥ukj∥∥∥ .
Since the right-hand side of the above inequality is bounded, it follows that

{
vkj

}
k∈N

is bounded for all

j = 1, 2, . . . ,m, and therefore
{
vk
}
k∈N is bounded. Using now Step (3.8) we immediately obtain that{

xk
}
k∈N is bounded, and from (3.12) that

{
wk
}
k∈N is also bounded. It follows then that

{
yk
}
k∈N is

bounded.

Now we derive a lower bound on the steps in the primal variables
{(
xk,vk

)}
k∈N in terms of an

element from the subdifferential.

Proposition 4.2. Let
{
yk
}
k∈N be a sequence generated by Algorithm 1. Then, for each k ∈ N, there

exist positive constants M and Mj, j = 1, 2, . . . ,m, such that∥∥∥pk∥∥∥ ≤M ∥∥∥xk − xk−1
∥∥∥+

m∑
j=1

Mj

∥∥∥vkj − vk−1
j

∥∥∥ ,
where

M = m+

m∑
j=1

(
dj +

1

ρj

)
Mj = 1 + ρjdj , j = 1, 2, . . . ,m, (4.1)

and pk =
(
pk1,p

k
2,p

k
3,p

k
4

)
∈ ∂Lρ

(
yk
)

is given by

pk1 =
m∑
j=1

(
vk−1
j − vkj

)
,

13



and for all j = 1, 2, . . . ,m, (
pk2

)
j

= dj

(
wkj − wk−1

j

)
+ ρjdj

(
vk−1
j − vkj

)
,(

pk3

)
j

= wk−1
j − wkj ,(

pk4

)
j

=
1

ρj

(
wkj − wk−1

j

)
.

In particular, ∥∥∥pk∥∥∥ ≤ C2

∥∥∥zk − zk−1
∥∥∥ , (4.2)

where C2 =
√
m+ 1 ·max {M,M1,M2, . . . ,Mm} and zk =

(
xk,vk

)
, k ∈ N.

Proof. We first verify that pk ∈ ∂Lρ
(
yk
)

for all k ∈ N. Equation (3.4) together with the update

formula (3.8) for xk yields pk1 =
∑m

j=1

(
vk−1
j − vkj

)
= ∇xLρ

(
yk
)
. By the update rule given in (3.9),

applied at iteration k, we have ρjdjv
k−1
j − djwk−1

j ∈ ρjd2
ju
k
j + ∂δB

(
ukj

)
. Hence(

pk2

)
j

= dj

(
wkj − wk−1

j

)
+ ρjdj

(
vk−1
j − vkj

)
=
(
djw

k
j − ρjdjvkj

)
+
(
ρjdjv

k−1
j − djwk−1

j

)
∈ ∂ujLρj

(
yk
)
,

where the inclusion follows from (3.5). A straightforward application of (3.6) and (3.7) together with

the update formulas (3.10) and (3.11) for vk, yields(
pk3

)
j

= wk−1
j − wkj

= −
(
xk − aj

)
− wkj − ρjdjukj +

(
ρjdju

k
j + xk − aj + wk−1

j

)
= −

(
xk − aj

)
− wkj − ρjdjukj + ρjv

k
j

= ∇vjLρj
(
yk
)
,

and (
pk4

)
j

=
1

ρj

(
wkj − wk−1

j

)
= dju

k
j − vkj = ∇wjLρj

(
yk
)
.

for all j = 1, 2, . . . ,m, as claimed.

Now using the expressions for pk, we obtain the following bound for k ∈ N,∥∥∥pk∥∥∥ ≤ m∑
j=1

(
dj + 1 +

1

ρj

)∥∥∥wkj − wk−1
j

∥∥∥+
m∑
j=1

(1 + djρj)
∥∥∥vkj − vk−1

j

∥∥∥ .
14



Using (3.12) we obtain that∥∥∥pk∥∥∥ ≤M ∥∥∥xk − xk−1
∥∥∥+

m∑
j=1

Mj

∥∥∥vkj − vk−1
j

∥∥∥ ,
where M and Mj , j = 1, 2, . . . ,m, are given in (4.1). This proves the first result. Now, we can use the

fact that for any vector a ∈ Rm+1 we have that ‖a‖1 ≤
√
m+ 1 ‖a‖2. Thus∥∥∥pk∥∥∥ ≤ C2

∥∥∥zk − zk−1
∥∥∥ ,

where C2 =
√
m+ 1 max {M,M1,M2, . . . ,Mm}.

Subsequent results make use of the following notation. The set of all cluster points of sequences{
yk
}
k∈N generated by Algorithm 1 with initial point y0 is denoted ω

(
y0
)

and defined by{
y ∈ Rd : ∃ an increasing sequence of integers {kl}l∈N such that ykl → y as l→∞

}
.

The set of all critical points of Lρ is denoted and defined by critLρ :=
{
y ∈ Rd : 0 ∈ ∂Lρ (y)

}
. The

next result establishes that ω
(
y0
)

consists entirely of critical points of Lρ, and therefore of F , thanks

to Proposition 3.2.

Lemma 4.1. Let
{
yk
}
k∈N be a sequence generated by Algorithm 1. The set of cluster points ω

(
y0
)

is nonempty, compact and satisfies the following two properties:

1. ω
(
y0
)
⊂ critLρ;

2. limk→∞ dist(yk, ω
(
y0
)
) = 0.

Moreover, Lρ is finite and constant on ω
(
y0
)
.

Proof. Since
{
yk
}
k∈N is a bounded sequence by Proposition 4.12, it is obvious that ω

(
y0
)

is nonempty.

In addition, since
{
yk
}
k∈N is bounded it follows that ω

(
y0
)

is bounded too. By the definition of ω
(
y0
)

it is also closed and therefore compact.

Now we will prove the properties 1 and 2. Let y∗ = (x∗,u∗,v∗; w∗) be a limit point of
{
yk
}
k∈N

which exists since the sequence
{
yk
}
k∈N is bounded as we proved in Proposition 4.12. This means

that there is a subsequence
{(
xkq ,ukq ,vkq ; wkq

)}
q∈N for which

(
xkq ,ukq ,vkq ; wkq

)
→ (x∗,u∗,v∗; w∗)

as q →∞. Therefore from the continuity of Lρ, it follows that

lim
q→∞

Lρ

(
xkq ,ukq ,vkq ; wkq

)
= Lρ (x∗,u∗,v∗; w∗) .
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On the other hand from Propositions 3.4, 4.12 and 4.2, we know that pk ∈ ∂Lρ
(
yk
)

and pk → 0 as

k → ∞. The closedness property of ∂Lρ (see [9, Remark 1(ii), p. 464]) implies that 0 ∈ ∂Lρ (y∗).

This proves that y∗ is a critical point of Lρ and completes the proof of the first item. The second item

follows immediately from the definition of limit points.

To complete the proof of the lemma we have to show that Lρ is finite and constant on ω
(
y0
)
. The

sequence
{
Lρ
(
yk
)}

k∈N decreases by Proposition 3.4 and by Proposition 3.5 is bounded from below

which implies convergence to some finite limit l. It is also follows that Lρ is constant on ω
(
y0
)
.

For η ∈ (0,+∞] we denote by Φη the set of all concave and continuous functions ϕ : [0, η) → R+

which satisfy ϕ (0) = 0, ϕ ∈ C1 on (0, η) and ϕ′ (s) > 0 for all s ∈ (0, η). We recall next the following

key result obtained in [9, Lemma 6, p. 478].

Lemma 4.2 (uniform KL property). Let Ω be a compact set and let σ : Rd → (−∞,∞] be a proper

and lower semicontinuous function. Assume that σ is constant on Ω and satisfies the KL property at

each point of Ω. Then there exist ε > 0, η > 0 and ϕ ∈ Φη such that for all u in Ω and all u in the

following intersection {
u ∈ Rd : dist (u,Ω) < ε

}
∩ [σ (u) < σ (u) < σ (u) + η] , (4.3)

one has,

ϕ′ (σ (u)− σ (u)) dist (0, ∂σ (u)) ≥ 1. (4.4)

We can now prove our main result.

Theorem 4.1 (global convergence to critical values). For any initial point y0, the sequence
{
yk
}
k∈N

generated by Algorithm 1 applied to problem (LOCS) converges to a critical point y∗ of the augmented

Lagrangian Lρ. In particular, the pair (x∗,u∗) is a critical point of F .

Proof. Our main task is to show that the sequence
{
yk
}
k∈N :=

{(
xk,uk,vk; wk

)}
k∈N has finite length.

For convenience, we also use the notation zk =
(
xk,vk

)
, k ∈ N. Since by Proposition 4.12 the sequence{

yk
}
k∈N is bounded, there exists a convergent sub-sequence {ymk}k∈N such that ymk → ȳ as k →∞.

From the continuity of Lρ, it follows that

lim
k→∞

Lρ

(
yk
)

= Lρ (ȳ) . (4.5)

If there exists an integer k̄ ∈ N for which Lρ

(
yk̄
)

= Lρ (ȳ) then the decreasing property obtained

in Proposition 3.4 would imply that yk̄+1 = yk̄. A simple induction shows then that the sequence{
yk
}
k∈N is stationary and the claim follows.
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Since
{
Lρ
(
yk
)}

k∈N is a decreasing sequence by Proposition 3.4, it is clear from (4.5) that Lρ (ȳ) <

Lρ
(
yk
)

for all k ∈ N. Again from (4.5), for any η > 0 there exists k0 ∈ N such that

Lρ

(
yk
)
< Lρ (ȳ) + η, ∀ k > k0.

From Lemma 4.12 we know that limk→∞ dist
(
yk, ω

(
y0
))

= 0. This means that for any ε > 0 there

exists a positive integer k1 such that dist
(
yk, ω

(
y0
))
< ε for all k > k1. Summing up all these facts,

we get that yk belongs to the intersection in (4.3) for all k > l := max {k0, k1}.

It follows from Lemma 4.1 that ω
(
y0
)

is nonempty and compact, Lρ is finite and constant on

ω
(
y0
)
. Now, as we previously noticed, Lρ is semi-algebraic (a polynomial function) and satisfies the

KL property. Therefore we can apply Lemma 4.2 with Ω = ω
(
y0
)
. Therefore for any k > l we have

ϕ′
(
Lρ

(
yk
)
− Lρ (ȳ)

)
· dist

(
0, ∂Lρ

(
yk
))
≥ 1. (4.6)

This makes sense since we know that Lρ
(
yk
)
> Lρ (ȳ) for any k > l. From (4.2) of Proposition 4.2

we also have that ∥∥∥pk∥∥∥ ≤ C2

∥∥∥zk − zk−1
∥∥∥ , C2 > 0. (4.7)

Combining this fact with (4.6) yields that

ϕ′
(
Lρ

(
yk
)
− Lρ (ȳ)

)
≥ 1

dist (0, ∂Lρ (yk))
≥
(
C2

∥∥∥zk − zk−1
∥∥∥)−1

. (4.8)

On the other hand, from the concavity of ϕ we get that

ϕ
(
Lρ

(
yk
)
− Lρ (ȳ)

)
− ϕ

(
Lρ

(
yk+1

)
− Lρ (ȳ)

)
≥ ϕ′

(
Lρ

(
yk
)
− Lρ (ȳ)

)(
Lρ

(
yk
)
− Lρ

(
yk+1

))
.

(4.9)

For convenience, we define for all p, q ∈ N and ȳ the following quantities

∆p,q := ϕ (Lρ (yp)− Lρ (ȳ))− ϕ (Lρ (yq)− Lρ (ȳ)) .

Combining (4.8) and (4.9) while using (3.14) yields for any k > l that

∆k,k+1 ≥
C1

∥∥zk+1 − zk
∥∥2

C2 ‖zk − zk−1‖
, (4.10)

and hence ∥∥∥zk+1 − zk
∥∥∥2
≤ γ∆k,k+1

∥∥∥zk − zk−1
∥∥∥ ,

where γ = C2/C1. Using the fact that 2
√
ab ≤ a+ b for all a, b ≥ 0, we infer

2
∥∥∥zk+1 − zk

∥∥∥ ≤ ∥∥∥zk − zk−1
∥∥∥+ γ∆k,k+1. (4.11)
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Let us now prove that for any k > l the following inequality holds

k∑
i=l+1

∥∥zi+1 − zi
∥∥ ≤ ∥∥∥zl+1 − zl

∥∥∥+ γ∆l+1,k+1.

Summing up (4.11) for i = l + 1, l + 2, . . . , k yields

2
k∑

i=l+1

∥∥zi+1 − zi
∥∥ ≤ k∑

i=l+1

∥∥zi − zi−1
∥∥+ γ

k∑
i=l+1

∆i,i+1

≤
k+1∑
i=l+1

∥∥zi − zi−1
∥∥+ γ

k∑
i=l+1

∆i,i+1

=
k∑

i=l+1

∥∥zi+1 − zi
∥∥+

∥∥∥zl+1 − zl
∥∥∥+ γ∆l+1,k+1,

where the last inequality follows from the fact that ∆p,q + ∆q,r = ∆p,r for all p, q, r ∈ N. Since ϕ ≥ 0,

we thus have for any k > l that

k∑
i=l+1

∥∥zi+1 − zi
∥∥ ≤ ∥∥∥zl+1 − zl

∥∥∥+ γϕ
(
Lρ

(
yl+1

)
− Lρ (ȳ)

)
.

Since the right hand-side of the inequality above does not depend on k at all, it follows immediately

that the sequence
{
zk
}
k∈N has finite length, that is,

∞∑
k=1

∥∥∥zk+1 − zk
∥∥∥ <∞, (4.12)

which implies that both
{
xk
}
k∈N and

{
vk
}
k∈N also have finite length. In addition, from (3.12) we

have for all j = 1, 2, . . . ,m, that

wk+1
j − wkj = xk+1 − xk,

which implies that
{
wk
}
k∈N also has finite length. Now, using (3.9) we obtain that∥∥∥uk+1

j − ukj
∥∥∥ =

∥∥∥∥∥PB
(
vkj + ρ−1

j wkj
dj

)
− PB

(
vk−1
j + ρ−1

j wk−1
j

dj

)∥∥∥∥∥
≤ 1

dj

∥∥∥vkj + ρ−1
j wkj −

(
vk−1
j + ρ−1

j wk−1
j

)∥∥∥
≤ ρj
dj

∥∥∥vkj − vk−1
j

∥∥∥+
1

dj

∥∥∥wkj − wk−1
j

∥∥∥ ,
where the first inequality uses the nonexpansivity of the projection PB, and hence the latter inequality

implies that
{
uk
}
k∈N also has finite length. Therefore

{
yk
}
k∈N has finite length which means that it

is a Cauchy sequence and hence a convergent sequence. Let y∗ be a limit point of
{
yk
}
k∈N. From

Lemma 4.1 it is clear that y∗ is a critical point of Lρ, as asserted. Thanks to Proposition 3.2, we then

obtain that (x∗,u∗) is a critical point of F .
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5 Numerical Examples

The structure of (LOCS) opens the door to consider possibly different types of iterative schemes for

solving (LS). Before turning to the implementation of Algorithm 1, we first briefly discuss two known

algorithms that are not unreasonable candidates for tackling (LOCS). However, as we shall explain

below, both schemes are not competitive.

First, note that the objective function Φ given by (2.1) is nonconvex and continuously differentiable

(a nonconvex quadratic) in (x,u), and hence admits a Lipschitz continuous gradient with Lipschitz

constant L. Thus one scheme that easily could be applied to (LOCS) is the projected gradient method.

Projected gradients has been studied thoroughly in [2] where, under suitable assumptions satisfied by

(LOCS), it is shown to converge globally to critical points. More recently it has been shown that, on a

local neighborhood of the critical points, assuming these are isolated points, projected gradients in fact

converges linearly for any problem with this structure [17, Proposition 6.8]. Our numerical experiments

indicate, however, that despite the analytical guarantees, projected gradient is not competitive globally

to Algorithm 1. Moreover, its performance deteriorates rapidly as the number of anchors m increases.

This is explained by the inverse dependence of the Lipschitz constant L on m: the larger m, the

smaller the step sizes. (The same behavior was observed when using a backtracking procedure for L.)

We therefore do not report on numerical testing for this scheme.

Another natural scheme that could be applied to (LOCS) is the alternating minimization (Gauss-

Seidel) method. Observe that Φ is convex in each of its arguments separately, then the alternating

minimization method applied to (LOCS) would generate iterates by solving the two convex programs

xk+1 = argmin
{

Φ
(
x,uk

)
: x ∈ Rn

}
,

and

uk+1 ∈ argmin
{

Φ
(
xk+1,u

)
: u ∈ Bm

}
.

It is easy to see that both minimization steps can be explicitly solved, yielding a very simple algorithm.

It turns out (after some algebra left to the reader) that the resulting alternating minimization scheme

reduces to a fixed point algorithm already proposed in [6] where it is called SFP. The SFP method has

two drawbacks. First, global convergence to critical points can be guaranteed under the assumption

that these are isolated points (see [6, Theorem 2.2]). Second, as established in that work, the numerical

performance of SFP is significantly worse than the SWLS method also developed in [6], and which we

now consider in our comparisons below.
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We present a numerical comparison of Algorithm 1 for solving (LOCS) against the SWLS algorithm

proposed in [6], which appears to be the state of the art for this class of problems. We will not provide

here the exact description of the SWLS algorithm, but it is important to note that this is a quite

involved algorithm, since at each iteration of the SWLS, a generalized trust region subproblem must

be solved. SWLS is thus a nested optimization algorithm which is quite expansive to implement as we

will see in the numerical examples below. Before presenting the numerical experiments and findings,

we first discuss a few theoretical aspects of the SWLS algorithm.

In [6], the authors prove that if
{
xk
}
k∈N is a sequence generated by SWLS, then every subsequence

of it converges to a critical point of the original objective function f (see [6, Theorem 3.1, p. 1410]).

Algorithm 1, in comparison, is guaranteed to generate a convergent sequence, not just a subsequence,

from any initial point. In addition to this global convergence property, we would like to emphasize two

further drawbacks of the SWLS algorithm (see [6, p. 1408]). The analysis is based on two assumptions

which are not needed when we analyze Algorithm 1. The first assumption is on the problem’s data,

that is, on the set of anchors aj , j = 1, 2, . . . ,m, and requires that the matrix
1 aT1

1 aT2
...

...

1 aTm


has full column rank. Such an assumption is quite common when dealing with localization problems

and seems to hold in many cases. The second assumption, which seems to be more demanding, comes

about because the iterates of the SWLS algorithm could coincide with anchor points aj for some

j = 1, 2, . . . ,m, at which the algorithm is not defined. To deal with this scenario the authors of [6]

show that if x0 belongs to the following set

R =

{
x ∈ Rn : f (x) <

min1≤j≤m d
2
j

4

}
,

then xk /∈ A for all k ∈ N. The price to be paid for this stratagem is in finding such a starting point

x0, which increases computational cost of the SWLS. See [6] for more details about how to find a

starting point x0 which satisfies this assumption.

We have mentioned in Section 3 that Algorithm 1 can be written as an algorithm with steps on

(x,u), that is, to eliminate the auxiliary variables v and w. Indeed, Algorithm 1 can be written

equivalently as follows
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Algorithm 1 (simplified).

Initialization. Start with any
(
x0,u0,v0; w0

)
∈ Rn × Rnm × Rnm × Rnm, and ρj > 0, j =

1, 2, . . . ,m. Compute

x1 =
1

m

m∑
j=1

(
aj + v0

j

)
,

and, for each j = 1, 2, . . . ,m,

u1
j = PB

(
v0
j + ρ−1

j w0
j

dj

)
.

Main Loop. For each k = 1, . . . generate the sequence
{(
xk,uk

)}
k∈N as follows:

• Compute

xk+1 =
1

m

m∑
j=1

1

ρj

(
ρjaj + ρjdju

k
j + xk − xk−1

)
. (5.1)

• For each j = 1, 2, . . . ,m, compute

uk+1
j = PB

(
ukj +

1

ρjdj

(
aj − xk−1

))
(5.2)

We present now some numerical comparison to the SWLS algorithm. Following [6], we will use the

following setting to what we call an “experiment” (for n = 2 and m ∈ {3, 5, 7, 10}):

• Generate randomly the sensor locations aj , j = 1, 2, . . . ,m, and the true source location x, from

a uniform distribution over the box [−1000, 1000]× [−1000, 1000].

• Compute the ranges dj , j = 1, 2, . . . ,m, using the relation (1.1), that is,

dj = ‖x− aj‖+ εj ,

where εj , j = 1, 2, . . . ,m, being generated from a normal distribution with zero mean and

standard deviation 20.

• Generate random starting point again form uniform distribution over the box [−1000, 1000] ×

[−1000, 1000], x0 ∈ R2 for both methods and u0,v0,w0 ∈ R2m for Algorithm 1.

For both methods, we use the stopping criteria
∥∥∇f (xk)∥∥ < 10−6, where k is the iteration index. In

our theoretical results we assumed that ρj > 2 for all j = 1, 2, . . . ,m, and in the experiments we took

ρj = 2.00001 for all j = 1, 2, . . . ,m. All the experiments were conducted in MATLAB.
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For each value of m ∈ {3, 5, 7, 10}, which is the number of sensors, we have conducted 1000

experiments and the results are presented in Table 1. In the second row we have recorded the number

of experiments (out of 1000) for which SWLS achieved a lower function value f than Algorithm 1,

while in the third row we record the opposite cases, that is, when Algorithm 1 achieved a lower function

value than SWLS. The last two rows indicate the mean CPU time of each method. We will denote by

x̂S and x̂A the solutions obtained by the SWLS method and Algorithm 1, respectively.

m 3 5 7 10

#(f(x̂S) < f(x̂A)) 264 114 61 18

#(f(x̂A) < f(x̂S)) 32 1 1 0

CPU - SWLS 0.0359 0.0365 0.0372 0.0376

CPU - Algorithm 1 0.0175 0.0155 0.0158 0.0179

Table 1: Comparison between the SWLS algorithm and Algorithm 1.

As can be clearly seen from Table 1, SWLS achieved lower function values in more experiments

than Algorithm 1. Even though, it should be noted that the superiority of SWLS becomes very minor

as m increases. We obtained that for m ≥ 20, the two methods perform equally and produce the same

solutions. On the other hand, a clear advantage of Algorithm 1 is the running time, which for any

value of m, is at least two times faster than SWLS.

To test the robustness of Algorithm 1 against the choice of initial points we have repeated the

1000 experiments above but this time we initialized Algorithm 1 from two different, randomly selected

starting points. The results are summarized in Table 2. It should be noted that we compared the

function value in the solution obtained by the SWLS algorithm with the smaller function value obtained

by the two runs of Algorithm 1.

m 3 5 7 10

#(f(x̂S) < f(x̂A)) 145 63 17 7

#(f(x̂A) < f(x̂S)) 44 5 3 0

CPU - SWLS 0.0361 0.0366 0.0376 0.0379

CPU - Algorithm 1 0.0353 0.0309 0.0316 0.0361

Table 2: Comparison between the SWLS algorithm and Algorithm 1.

As can be seen now, the mean CPU time of both methods is of the same order and the performance

of Algorithm 1 is much more robust than SWLS (see Table 1).
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Another interesting phenomena that we would like to point out here relates to the penalty pa-

rameter ρ. We have proved that convergence can be guaranteed for ρj > 2, j = 1, 2, . . . ,m and in

the previous experiments we used parameter values that satisfy this requirement. It should be noted

that the algorithm is well-defined for any ρj > 0, j = 1, 2, . . . ,m. We set m = 3 and conducted

1000 experiments with different values for ρj > 0, j = 1, 2, . . . ,m. For each value, we compared the

performance of Algorithm 1 to the SWLS algorithm in terms of the objective function value. In the

following table we see that if ρj = 1, which does not satisfy the theoretical requirement, then we get

slightly better results, but for ρj ≥ 3 we observe that the performance deteriorates.

ρ #(f(x̂S) < f(x̂A)) #(f(x̂A) < f(x̂S))

1 249 33

3 294 31

4 323 28

6 374 27

8 414 27

Table 3: Comparison between the SWLS algorithm and Algorithm 1 (different values of ρ).

From Table 3 we see that violating the theoretical requirement on the penalty parameter ρ does

not appear to affect the numerical performance of the algorithm, however in few experiments we do

obtained a better solution in terms of lower objective function value. It should be noted that we

observed the same phenomena for larger values of m, that is, to larger number of sensors.
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aux Dérivées Partielles (Paris, 1962), pages 87–89. Éditions du Centre National de la Recherche
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