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Abstract

We present a unified treatment of the abstract problem of finding the best approx-
imation between a cone and spheres in the image of affine transformations. Prominent
instances of this problem are phase retrieval and source localization. The common
geometry binding these problems permits a generic application of algorithmic ideas
and abstract convergence results for nonconvex optimization. We organize variational
models for this problem into three different classes and derive the main algorithmic ap-
proaches within these classes (13 in all). We identify the central ideas underlying these
methods and provide thorough numerical benchmarks comparing their performance
on synthetic and laboratory data. The software and data of our experiments are all
publicly accessible. We also introduce one new algorithm, a cyclic relaxed Douglas-
Rachford algorithm, which outperforms all other algorithms by every measure: speed,
stability and accuracy. The analysis of this algorithm remains open.

Keywords: Phase retrieval, Source localization, Nonsmooth optimization, Nonconvex
optimization, Proximal algorithms, Feasibility, Fixed points.

1 Introduction

Nonconvex optimization is maturing into a major focus within continuous optimization. The
numerical intuition that one brings to this area from convex optimization can be misleading.
The purpose of this work is to provide thorough numerical benchmarks on a prevalent type
of nonconvex problem which will establish guideposts for the good, the bad and the ugly of
numerical methods. The problem we consider is the following:
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The Cone and Sphere Problem:
Find a point nearest (in some sense) to a cone and to spheres in the image of affine
transformations.

There are two prevalent examples of this problem that appear regularly in the literature:
phase retrieval and source localization. There is no shortage of numerical schemes for ad-
dressing these problems, but most of these methods can be grouped into less than a handful
of distinctly different ideas. We compare these different classes of algorithms, 13 algorithms
in all (not counting equivalent algorithms under different names), on two different source
localization problems (with and without noise) and fifteen phase retrieval problems, twelve
synthetic and three involving laboratory data. Our results summarize more than 19000
individual numerical experiments. A comparable benchmark study for phase retrieval was
carried out by Marchesini [54] over a decade ago.

Phase retrieval has been rediscovered recently in the statistics and applied mathematics
communities. Amongst the latest trends is to change the problem via randomization. This
together with convex relaxations and reformulations to semi-definite programs have inspired
a number of new algorithms. A collection of data and routines has been made available that
compares many of the recent proposals for phase retrieval, including variants of the Wirtinger
Flow and phase lift approaches [21]. The benchmarks we present here are complementary
to these and expand the list of publically available data sets. The data and software for our
experiments are all publicly accessible [48], and will hopefully serve as a starting point for
future numerical methods. One distinction between our benchmarks and the ones appearing
in [21] is the scale of the problems: the largest data sets available in [21] are 64 × 64.
Having to work with data sets 3 orders of magnitude larger, as is the case for the X-ray
diffraction experiments we use for benchmarks, make approaches surveyed in [21], like phase
lift, simply not feasible. Still other algorithms, like Wirtinger Flow, are limited to the
context of a certain kind of phase retrieval, and do not generalize to the source localization
benchmarks we present. We compare representative algorithms for phase retrieval featured
in [21] formally and numerically to algorithms that are standard in the convex optimization
literature, like Cyclic Projections, Douglas-Rachford and the Alternating Directions Method
of Multipliers. Our results confirm other studies that expose some unwarranted enthusiasm
for recently proposed approaches for phase retrieval [56], and show that algorithms that are
beloved in the convex setting are not the best performers for nonconvex problems.

In addition to the benchmarks, one major contribution of our work is a new algorithm,
Cyclic Relaxed Douglas-Rachford 3.3, that appears to outperform every other algorithm by
a remarkable margin in all respects. The other main contribution is a systematic categoriza-
tion of algorithms from the perspective of variational analysis. Many of the algorithms we
include in our benchmarks are standard approaches in convex optimization, but they have
not received much attention in the most recent applied mathematics literature on phase
retrieval. Our categorization provides for tremendous insight towards interpreting the nu-
merical results, and in seeing what features are mainly responsible for better (or worse)
performance.

The understanding of first-order prox-based algorithms, like Douglas-Rachford, applied to
nonconvex problems has matured to the point that quantitative local convergence guarantees
are now possible with the tools and framework introduced in [52]. A global analysis is
incomplete, but some progress has been made in [11]. The issue of convergence, however,
is either misinterpreted or misunderstood in many contemporary numerical comparisons.
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We are interested only in fixed points of algorithms and the relation of these points to
the problem one thinks these algorithms solve. Nonconvex minimization problems have, in
general, multiple local minima, and, more generally, multiple critical points. Most algorithms
for solving optimization problems, on the other hand, are designed to find critical points.
It is not uncommon, however, to see fixed points of algorithms conflated with solutions to
some optimization problem. Even worse, algorithms are compared according to some metric
like least squares residual to some true solution, which in many instances has no relation
to the variational problem upon which an algorithm is based, if such a basis exists. Even
when an algorithm is derived from a particular variational problem, the fixed points of the
algorithm need not coincide with critical points of the motivating optimization problem,
much less solutions (see the Cyclic Projections – Algorithm 3.1 – and Douglas Rachford
(3.3) and subsequent discussion). Our study of phase retrieval will hopefully remind readers
of this distinction.

We present the algorithms through the lens of feasibility problems and their relaxations
to smooth optimization. This helps to underscore the difference between critical points of an
optimization problem and fixed points of an algorithm. Indeed, no honest feasibility model
of a phase retrieval problem has critical points, much less a solution, yet still, the algorithms
converge to good fixed points that defy any obvious variational characterization. In fact, the
algorithms built on feasibility models outperformed all other classes of algorithms by every
relevant performance measure: computational efficiency, speed of convergence, accuracy and
robustness against local minimums.

2 Problem Instances

We begin with a brief description of the two fundamental problem instances from which our
numerical benchmarks are taken.

2.1 Phase Retrieval

The approximate physical model for phase retrieval is∥∥(FPj(z))i
∥∥ = bij, ∀ j = 1, 2, . . . ,m, ∀ i = 1, 2, . . . , n. (2.1)

Here F : Cn → Cn is a unitary linear operator accounting for the propagation of an
electromagnetic wave, Pj : Cn → Cn for j = 1, 2, . . . ,m is a linear operator accounting for
m different settings of the instrument through, which the wave travels, z ∈ Cn is the unknown
object that interacts with the wave at one end (the pupil or object plane) of the instrument,
and bij ∈ R+ is the i’th pixel (i = 1, 2, . . . , n) of the j’th measurement. The phase retrieval
problem involves determining the phase of z (that is, the real and imaginary parts) from
the amplitude of its image under FPj. The problem is fundamental to diffraction imaging
experiments. This includes near-field holography, far field diffraction imaging, (classical)
ptychography, and wavefront sensing to name just a few observation techniques where this
problem arises, see e.g., [47] and references therein. In all instances the measurements are
real and nonnegative numbers.

The different settings of the measurement device are accounted for in different operators
Pj – the mapping F at the foundation of the imaging model remains unchanged. There are
a number of different experimental settings that can be captured by the mapping Pj; we
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mention a few here. In a typical ptychographic experiment an x-ray beam scans a specimen
from side to side and an image is recorded at each scan position of the beam. The j-th spatial
translation of the beam is represented by Pj. The difference here to the model discussed
in [36], for instance, is that the beam is assumed to be fully known and shift invariant.
Alternatively, as discussed in [34,49,70,71] one could record the image at different positions
along the axis of propagation of the field, again represented by different mappings Pj which
account for magnification and defocus factors involved in such spatial translations. More
recently, there have been proposals for adding random phase masks at the object plane.
The idea of phase masks has its detractors [47], but we include this data set as a point of
reference to the more recent phase retrieval literature and it too fits the general model: the
m different masks can be represented by Pj for j = 1, 2, . . . ,m.

In addition to these data equations, there are certain a priori qualitative constraints that
can (and should) be added depending on the type of experiment that has been conducted.
Often these are support constraints, or real-valuedness, or nonnegativity. In astronomy, for
instance, the constraints are often support and magnitude constraints describing a field of
constant magnitude across the aperture of the telescope. These types of constraints are
described by the model (2.1) where F is the identity mapping. In x-ray diffraction imaging
support or support and nonnegativity constraints are frequently imposed. In the early 00’s
Oszlányi and Sütó [63, 64] proposed a simple charge flipping procedure that was quickly
integrated into the software of the crystallography community for structure determination
[24, 65, 74]. Marchesini [55] identified the charge flipping operation as a reflector of a hard
thresholding operation in the first algorithm for sparse phase retrieval. Sparsity constraints
were more recently applied by Loock and Plonka [42,43] for phase retrieval of objects enjoying
a sparse representation in a wavelet-type dictionary.

The solution to the phase retrieval problem as presented here is a complex-valued vector
z ∈ Cn that satisfies (2.1) for all i and j in addition to the a priori information implicit in
the experiment (support, nonnegativity, sparsity, etc). Representing n-dimensional complex
valued vectors instead as two-dimensional vectors on an n-dimensional product space, the
phase retrieval problem is to find z = (z1, z2, . . . , zn) ∈ (R2)

n
(zj ∈ R2) satisfying (2.1) for

all i and j in addition to qualitative constraints. We return below to the issue of existence of
such a vector. The short answer is that, unless the data is the pattern created by a periodic
object, there does not exist a solution to problem (2.1), much less a unique solution. But
this is not a concern for us, either practically or theoretically. One of the main goals of
our study here is to convince readers that there are mathematically sound approaches that
do not involve unrealistic assumptions of existence and uniqueness of solutions to equations
that do not possess solutions.

The models and methods discussed here are based on a feasibility approach to this prob-
lem, that is at least initially, we will be happy with any point that comes as close as possible
to matching the measurements. This, in short, is the way around existence and uniqueness.
The points satisfying single measurements can be represented by sets. With this perspective,
the question of existence is transformed into the question of whether the sets corresponding
to different measurements have points in common. The question of uniqueness amounts to
whether there is only a single common point between the sets.
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2.2 Source Localization

The source localization problem appears in a broad range of applications including, for
instance, mobile communication and wireless networks [23,75], acoustic/sound source local-
ization [41], GPS localization [7], and brain activity identification [29], to mention just a
few. The problem is based on distance measurements from an array of sensors (also called
anchors). Here one is given a collection of m sensors which are denoted by aj ∈ Rd, where
d = 2 or 3 and j = 1, 2, . . . ,m. Each aj contains the exact location of the j-th sensor. The
data consists of distance measurements between the unknown source and the sensors; this
data is represented by bj > 0, j = 1, 2, . . . ,m, and denotes the (possibly noisy) measurement
of the range between the source and the j-th sensor aj. This is described by the following
equations:

bj = ‖Pj(z)‖ , j = 1, 2, . . . ,m, (2.2)

where Pj(z) := z − aj, j = 1, 2, . . . ,m, is the linear shift mapping. The problem is then to
find an adequate approximation of the unknown source z satisfying the system (2.2). The
only difference between source localization and the phase retrieval problems presented in the
previous section is that source localization does not involve a Fourier-like transform F (see
model (2.1)). While this paper was under review, we became aware of another paper where
the link between phase retrieval and source localization was observed [60].

2.3 Unifying Representation

There are a number of different ways to represent the sets which we show are all equivalent
with regard to the algorithms. We place all models in a real vector space, though in the
context of phase retrieval it is understood that this is a reformulation of a complex val-
ued model space. The model mappings in the previous sections are then linear mappings
F :

(
Rd
)n → (

Rd
)n

and Pj :
(
Rd
)n → (

Rd
)n

with FPj(z) = ẑ = (ẑ1, ẑ2, . . . , ẑn) for
ẑi ∈ Rd. The sets of possible vectors satisfying the measurements are given by

Cj :=
{
z ∈

(
Rd
)n ∣∣ ∥∥(FPj(z))i

∥∥ = bij, ∀ i = 1, 2, . . . , n
}
. (2.3)

Alternatively, one can work with the sets

C ′j :=
{
z ∈

(
Rd
)n | ‖(F(z))i‖ = bij, ∀ i = 1, 2, . . . , n

}
, (2.4)

or
Ĉj :=

{
z ∈

(
Rd
)n | ‖zi‖ = bij, ∀ i = 1, 2, . . . , n

}
. (2.5)

Note that, for all j = 1, 2, . . . ,m, we have the following relations between these sets

Cj = P∗jC ′j = P∗jF∗Ĉj, (2.6)

where P∗j and F∗ are the adjoints of Pj and F , respectively.
For phase retrieval d = 2, n is large (10242 is not uncommon) and m is anywhere from 1

to 10. For sensor localization, d = 2 or 3, n = 1 and m is at least 3, but not usually greater
than 100. These sets are in different spaces relative to one another, but for both applications
F and Pj, j = 1, 2, . . . ,m, are often unitary, so the choice of space to work in is a matter of
convenience only. Even though the sets Cj are nonconvex (a line segment between any two

points in the sets does not belong to the sets), they have very nice structure. The sets Ĉj, for
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instance, are just `2-spheres in an n-dimensional product space of
(
Rd
)

with component-wise
radii given by the elements of the vector b. This is true regardless of whether or not the
measurement b is contaminated with noise. As such, these sets are smooth, semialgebraic
(constructible by finite systems of polynomial inequalities), and prox-regular (loosely defined
as sets with locally single-valued projections [69]). By the relationship (2.6), the sets Cj and
C ′j also enjoy this nice structure. These facts were already observed in [36, Proposition 3.5]
and [46].

We reserve the set C0 for the qualitative constraints. The qualitative constraints that
most often applied are either of the same form as the sets above - as in the case of support
and magnitude constraints - or cones. A support constraint alone is a restriction of points
to a subspace. Support and nonnegativity is the positive orthant of a subspace, that is,
a convex cone. It is easy to see that sets of points satisfying sparsity constraints can be
characterized as unions of subspaces (see, for instance, [5]), hence the set of points satisfying
a sparsity constraint is also a cone.

3 Variational Models

A key feature that allows one to classify algorithms is the degree of smoothness in the
underlying model. We group the algorithms into two classes below in increasing order of
model smoothness. One class of algorithms mixes smooth and nonsmooth formulations, and
involves a product space formulation that gathers constraints/sets into blocks at a modest
cost in increased dimensionality. Nonsmooth aspects are maintained within the blocks, but
communication between blocks is modeled, most often, by smooth operators. The numer-
ical results presented in Section 4 indicate that the smoother the model is, the slower the
algorithm progresses toward a fixed point. Smoothness is also sometimes associated with
stability or reliability. Here again, our results do not support this intuition for this family
of nonconvex problems: the most reliable and robust algorithms are also in the nonsmooth
and feasibility-based category. We do not take into account advantages of parallelization
and other architecture-dependent features that could make a difference in clock times.

3.1 Model Category I: Multi-Set Feasibility

The most natural place to start is by naively trying to find a point in the intersection of the
data generated sets Cj, j = 1, 2, . . . ,m, given by (2.3) together with the possible qualitative
constraint set C0:

Find z∗ ∈
m⋂
j=0

Cj.

We show in Section 4 that this leads to the most effective methods for solving the problem.
Keeping in mind, however, that for all practical purposes the intersection above is empty,
we also show that the algorithm is not solving the problem we thought it was solving.

For our purposes we will prefer to pose this problem equivalently in an optimization
format

min
z∈(Rd)

n

m∑
j=0

ιCj (z) , (3.1)
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where

ιCj (z) :=

{
0, if z ∈ Cj,
+∞, else.

The indicator function ιCj , j = 0, 1, . . . ,m, is an extended real-valued function from
(
Rd
)n

to the extended real-line R ∪ {+∞}. The fact that the intersection is empty is reflected in
the fact that the optimal value to problem (3.1) is +∞.

Despite these worrisome issues, we examine the Method of Cyclic Projections:

Algorithm 3.1 (Cyclic Projections - CP).
Initialization. Choose z0 ∈

(
Rd
)n

.
General Step (k = 0, 1, . . .)

zk+1 ∈ PC0PC1 · · ·PCmzk.

Here the orthogonal projector PCj for j = 0, 1, . . . ,m is defined by

PCj (z) := argmin y∈Cj ‖y − z‖ .

Since Cj is nonconvex the projector is, in general, a set-valued mapping. This can be
computed explicitly [49, Corollary 4.3], for all j = 1, 2, . . . ,m, by the formula

y ∈ PCj (z) ⇐⇒ y = P∗jF∗ŷ, ŷi ∈

{
bij

(FPj(z))i
‖(FPj(z))i‖

, if (FPj(z))i 6= 0,

bijS, if (FPj(z))i = 0.
(3.2)

The unit sphere in Rd is denoted by S above. The projector PC0 is also explicitly known and
has a structure that is no more complicated than (3.2), often it is simpler.

An early champion of feasibility models was Censor who together with Cegielski has
written an excellent review on the extensive literature on numerical methods for these prob-
lems [19]. For a recent review of results on algorithms for inconsistent feasibility see [20].
The analysis of Cyclic Projections for consistent and inconsistent nonconvex problems has
been established in [52]. For consistent feasibility the only critical points are points of in-
tersection, i.e., globally optimal solutions. For inconsistent feasibility there do not exist
critical points and the optimal value of the problem is ∞, that is, the problem is infeasible.
For nonconvex feasibility, both consistent and inconsistent, the fixed points of the algorithm
consist of points of intersection, when these exist, as well as points that are not points of
intersection. Under mild regularity assumptions of the sets, the fixed points correspond to
cycles of smallest length locally over all other possible cycles generated by projecting onto
the sets in the same order. Strong guarantees on convergence of the iterates, like a local
linear rate, have been established generically for problems with this structure (see [52, Ex-
ample 3.6]). What remains is to establish guarantees for global convergence to fixed points
as well as assurances that the fixed points correspond to cycles of globally minimal length.

Another Cyclic Projection-type Method for inconsistent feasibility problems is based on
what is commonly known as the Douglas-Rachford (DR) Algorithm (the original algorithm
is a domain splitting method for partial differential equations [25]). The method can only
be applied directly to two-set feasibility problems,

Find x ∈ C0 ∩ C1.
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The fixed point iteration is given by

(DR) zk+1 ∈ 1

2
(RC0RC1 + Id) zk, (3.3)

where RC := 2PC − Id is the reflector operator of the set C and Id denotes the identity
operator. It is important not to forget that, even if the feasibility problem is consistent, the
fixed points of the Douglas-Rachford Algorithm will not in general be points of intersection.
Instead, the shadows of the iterates defined as PC1z

k, k ∈ N, converge to intersection points,
when these exist [4].

To extend this to more than two sets, Borwein and Tam [13, 14] proposed the following
variant:

Algorithm 3.2 (Cyclic Douglas-Rachford - CDR).
Initialization. Choose z0 ∈

(
Rd
)n

.
General Step (k = 0, 1, . . .)

zk+1 ∈
(

1

2
(RC0RC1 + Id)

)(
1

2
(RC1RC2 + Id)

)
· · ·
(

1

2
(RCmRC0 + Id)

)
zk.

Borwein and Tam showed that, in an infinite dimensional Hilbert space setting, the Cyclic
Douglas Rachford Algorithm applied to collections of convex sets converges weakly to a fixed
point, when this exists [14], regardless of whether the intersection of sets is empty.

It is easy to envision different sequencing strategies than the one presented above. In [6]
one of the pair of sets is held fixed, and this has some theoretical advantages in the convex
setting. We did not observe any advantage for the problems studied here. A comprehensive
investigation of optimal sequencing strategies for problems with different structures has not
been published.

A relaxation to the Douglas-Rachford Algorithm first proposed in [44] is described below
in Algorithm 3.8. At this stage, we just motivate it as a convex combination of the Douglas-
Rachford mapping and the projection onto the “inner” set C1 above: for λ ∈ (0, 1]

(DRλ) zk+1 ∈
(
λ

2
(RC0RC1 + Id) + (1− λ)PC1

)
zk. (3.4)

Extending this to more than two sets yields the following algorithm:

Algorithm 3.3 (Cyclic Relaxed Douglas-Rachford - CDRλ).
Initialization. Choose z0 ∈

(
Rd
)n

and λ ∈ [0, 1].
General Step (k = 0, 1, . . .)

zk+1 ∈
(
λ
2

(RC0RC1 + Id) + (1− λ)PC1

) (
λ
2

(RC1RC2 + Id) + (1− λ)PC2

)
· · ·
(
λ
2

(RCmRC0 + Id) + (1− λ)PC0

)
zk.

In an infinite dimensional Hilbert space setting Luke, Martins and Tam [50] have shown
that the iterates of the CDRλ algorithm converge weakly to the intersection of convex sets.
The analysis of this algorithm for the cone and sphere problem remains open.
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In the convex setting the Douglas-Rachford Algorithm can be derived from the Alter-
nating Directions Method of Multipliers (ADMM [32]) for solving a dual problem [30]. This
algorithm is extremely popular at the moment for large-scale convex problems with linear
constraints, and the literature in this context is massive (see, for instance, [73] and references
therein). In the nonconvex setting, the dual correspondence is lost, though there have been
some recent developments and studies [11, 39, 66]. The ADMM falls into the category of
augmented Lagrangian-based methods. Thus, we can reformulate problem (3.1) as

min
x,zj∈(Rd)

n

{
ιC0 (x) +

m∑
j=1

ιCj (zj) | zj = x, j = 1, 2, . . . ,m

}
, (3.5)

and then one can apply ADMM to the augmented Lagrangian of this formulation; specifically,
we have

L̃η (x, zj, vj) := ιC0 (x) +
m∑
j=1

(
ιCj (zj) + 〈vj, x− zj〉+

η

2
‖x− zj‖2

)
, (3.6)

where η > 0 is a penalization parameter and vj, j = 1, 2, . . . ,m, are the multipliers which
associated with the linear constraints. Therefore ADMM applied to finding critical points
of the corresponding augmented Lagrangian (see (3.6)) is given by

Algorithm 3.4 (Nonsmooth ADMM1).
Initialization. Choose x0, z0j , v

0
j ∈

(
Rd
)n

and fix η > 0.
General Step (k = 0, 1, . . .)

1. Update

xk+1 ∈ argmin x∈(Rd)
n

{
ιC0 (x) +

m∑
j=1

(〈
vkj , x− zkj

〉
+
η

2

∥∥x− zkj ∥∥2)
}

= PC0

(
1

m

m∑
j=1

(
zkj −

1

η
vkj

))
. (3.7)

2. For all j = 1, 2, . . . ,m update (in parallel)

zk+1
j ∈ argmin zj∈(Rd)

n

{
ιCj (zj) +

〈
vkj , x

k+1 − zj
〉

+
η

2

∥∥xk+1 − zj
∥∥2}

= PCj
(
xk+1 − ηvkj

)
. (3.8)

3. For all j = 1, 2, . . . ,m update (in parallel)

vk+1
j = vkj + η

(
xk+1 − zk+1

j

)
. (3.9)

An ADMM scheme for phase retrieval has appeared in [40] and for sensor localization
in [51]. Our numerical experiments below do not indicate any advantage of this approach.
We include it, however, as a point of reference to both the Douglas-Rachford Algorithm
and the smoother AvP2 Algorithm discussed below in Algorithm 3.14. Seeing what changes
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render a bad algorithm reasonable provides tremendous insight. Note that the projections
in Step 2 of the algorithm can be computed in parallel, while the Cyclic Projections and
the Cyclic Douglas-Rachford Algorithms must be executed sequentially. The benchmarking
comparisons carried out in Section 4 do not reflect the advantages of parallelizable methods
like ADMM1 when implemented on multiple CPU’s/GPU’s architectures.

Before moving on to the two other categories, there is one other idea that is worth
mentioning. While the sets Cj, j = 1, 2, . . . ,m, are nonconvex, one could in principle
convexify the indicator function ιCj by computing its Fenchel conjugate, defined as

σCj (y) := sup
x

{
〈y, x〉 − ιCj (x)

}
.

The function σCj is the support function of the set Cj [72], and is a convex function. It is easily
shown that σCj (y) = σco (Cj), where co (Cj) is the convex hull of Cj. Similarly, the support
function of C := ∩jCj in the direction y is just σC (y) and this is equivalent to σco (C) (y).
The problem here is that the set C is, for most practical purposes, empty. The intersection
C := ∩j co (Cj) however, is never empty for the phase retrieval problem (it always contains
the origin), so instead one could consider computing σC (y) and then trying to maximize this
with respect to y, in order to come as close as possible to the boundaries of all the sets.
The numerical procedure one arrives at via this strategy was proposed independently in [2]
and [33], though the connection to Fenchel conjugation has not been recognized and the
argument y of the support function is kept fixed. This numerical approach is presented as a
convex relaxation, which it would be, were it not for the fact that the desired phase is found
at the point where σC (y) attains its maximum value on the unit ball. Instead of maximizing
σC (y), the approach involves a mixture of statistics and luck to guess an appropriate fixed ŷ.
Interested readers are referred to [56], where numerical comparisons of this method against
some of the methods considered here were carried out.

3.2 Model Category II: Product Space Formulations

The second category of algorithms occupies the middle ground between the category of
nonsmooth and feasibility models above and the third category of smooth optimization

approaches. Here, the basic idea is to lift the problem to the product space
((
Rd
)n)m+1

,
which can be then formulated as a two-set feasibility problem

Find z∗ ∈ C ∩D,

where z∗ = (z∗0 , z
∗
1 , . . . , z

∗
m), C := C0×C1×· · ·×Cm and D is the diagonal set of

(
Rd
)n(m+1)

which is defined by
{
z = (z, z, . . . , z) : z ∈

(
Rd
)n}

. Two important features of this formu-
lation are: (i) the projection onto the set C can be easily computed since

PC (z) = (PC0 (z0) , PC1 (z1) , . . . , PCm (zm)) ,

where PCj , j = 1, 2, . . . ,m, are given in (3.2), and (ii) D is a subspace which also has simple
projection given by PD (z) = z̄ where

z̄j =
1

m+ 1

m∑
j=0

zj.
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The most natural algorithm for this formulation is the one we began with, namely Cyclic Pro-
jections Algorithm 3.1. In the case of just two sets, this is known as Alternating Projections
Algorithm:

Algorithm 3.5 (Alternating Projections - AP).

Initialization. Choose z0 ∈
(
Rd
)n(m+1)

.
General Step (k = 0, 1, . . .)

zk+1 ∈ PDPCzk.

One can easily verify that Algorithm 3.5 is equivalent to the following iteration:

zk+1
j ∈ 1

m+ 1

m∑
j=0

PCj
(
zkj
)
, j = 0, 1, . . . ,m;

in other words, Alternating Projections Algorithm on the product space coincides with the
Averaged Projections Algorithm 3.11 and the Alternating Minimization Algorithm 3.10. It
is also interesting to note that, in the product space, the Alternating Projections Algorithm
is equivalent to the very popular Projected Gradient Method. To see this, consider the
following minimization problem:

minimize
z∈C

1

2
dist2 (z, D) . (3.10)

It should be noted that a point in the intersection of C and D (if such exists) corresponds
to the case that the optimal value of problem (3.10) is zero.

The objective of this minimization problem is convex and continuously differentiable
(since D is a closed and convex set) with a Lipschitz continuous gradient (with constant
1) given by ∇ dist2 (z, D) = 2 (z− PDz) (see (3.15)). The classical Projected Gradient
Algorithm applied to this problem follows immediately.

Algorithm 3.6 (Projected Gradient - PG).

Initialization. Choose z0 ∈
(
Rd
)n(m+1)

.
General Step (k = 0, 1, . . .)

zk+1 ∈ PC
(
zk − 1

2
∇ dist2D(zk)

)
⇐⇒ zk+1 ∈ PCPDzk

⇐⇒ uk+1 ∈ 1

m+ 1

m∑
j=0

PCju
k, where zk+1

j = PCju
k+1.

It is well-known that the Projected Gradient Algorithm can be accelerated in the convex
setting [8, 59]. Although there is no theory that supports acceleration in the nonconvex
setting, the recent work [67] demonstrates successful empirical results for a class of phase
retrieval problems. Following this line, a Fast Projected Gradient Algorithm for problem
(3.10) reads as follows:
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Algorithm 3.7 (Fast Projected Gradient - FPG).

Initialization. Choose z0,y1 ∈
(
Rd
)n(m+1)

and αk = k−1
k+2

for all k ∈ N.
General Step (k = 1, 2, . . .)

zk ∈ PC
(
yk − 1

2
∇ dist2

(
yk, D

))
,

yk+1 = zk + αk
(
zk − zk−1

)
⇐⇒

zk ∈ PCPDyk,

yk+1 = zk + αk
(
zk − zk−1

)
.

There is no theory for the choice of acceleration parameter αk, k ∈ N, in Algorithm 3.7
for nonconvex problems, but our numerical experiments indicate that an investigation into
this would be fruitful.

Another approach to accelerate the Projected Gradient Algorithm is by adding an inertial
term (see [62, 68] for two recent studies of this idea in the nonconvex setting including
references therein).

Another algorithmic approach that can fit to the setting of two-set feasibility is the now
popular Douglas-Rachford algorithm [25]. To compensate for the absence of fixed points for
inconsistent feasibility, Luke proposed in [44], a relaxation of this algorithm, which can be
viewed as the usual Douglas-Rachford Algorithm for more general proximal mappings applied
to a relaxation of the feasibility problem to a smooth constrained optimization problem

minimize
z∈(Rd)

n(m+1)

{
λ

2 (1− λ)
dist2 (z, D) + ιC (z)

}
. (3.11)

Algorithm 3.8 (Relaxed Douglas-Rachford - DRλ).

Initialization. Choose z0 ∈
(
Rd
)n(m+1)

and λ ∈ [0, 1].
General Step (k = 0, 1, . . .)

zk+1 ∈ λ
2

(
RDRCzk + zk

)
+ (1− λ)PCzk. (3.12)

In [44] and [45] this algorithm is called the Relaxed Averaged Alternating Reflections
(RAAR) Algorithm. It was shown in [45] that this fixed point mapping is precisely the
proximal Douglas-Rachford Algorithm applied to the problem (3.11), that is,

1

2
(R1RC + Id) =

λ

2
(RDRC + Id) + (1− λ)PC ,

whereR1 is the proximal reflector of the function fλ (z) := λ
2(1−λ) dist2 (z, D), that is, R1 (z) =

2 prox1,fλ
(z)− z. The analysis of [52] also applies to the product space formulation of phase

retrieval and source localization.
A similar algorithm called Hybrid Projection Reflections was proposed in [3], but we do

not include this in our comparisons because this algorithm, like the original HIO algorithm
[28] that inspired it, is not stable.
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An interesting alternative to Douglas-Rachford and Alternating Projections Algorithms
is the following algorithm, which in a limiting case is simply a convex combination of the
two algorithms. For an analysis of this algorithm and a characterization of the set of fixed
points see [76].

Algorithm 3.9 (Douglas-Rachford-Alternating-Projections - DRAP).

Initialization. Choose z0 ∈
(
Rd
)n(m+1)

and λ ∈ [0, 1].
General Step (k = 0, 1, . . .)

zk+1 ∈ PD
(
(1 + λ)PCzk − λzk

)
− λ

(
PCzk − zk

)
. (3.13)

3.3 Model Category III: Smooth Nonconvex Optimization

First, consider the problem of minimizing the sum of squared distances to the sets Cj,
j = 0, 1, . . . ,m, that is,

minimize
z∈(Rd)

n
f (z) :=

1

2 (m+ 1)

m∑
j=0

dist2 (z, Cj) . (3.14)

Since the sets Cj, j = 0, 1, . . . ,m, are nonconvex, the functions dist2 (z, Cj) are clearly not
differentiable, and hence, same for the objective function f (z). However, in our context, the
sets Cj, j = 0, 1, . . . ,m, are prox-regular (cf. Section 2.3). From elementary properties of
prox-regular sets [69] it can be shown that the gradient of the squared distance is defined
and differentiable with Lipschitz continuous derivative (that is, the corresponding Hessian)
up to the boundary of Cj, j = 0, 1, . . . ,m, and points where the coordinate elements of the
vector z vanish. Indeed, for f given by (3.14) we have

∇f (z) :=
1

m+ 1

m∑
j=0

(
Id−PCj

)
(z) . (3.15)

Thus, applying the Gradient Descent Method with unit stepsize to problem (3.14), one
immediately recovers the AvP.

Readers familiar with variational analysis will also recognize (3.14) as the relaxation of
(3.1) via the Moreau envelope [58] of the indicator functions ιCj , j = 0, 1, . . . ,m. But even
without these sophisticated tools, inspection shows that the objective in (3.14) is smooth, has
full domain and takes the value zero at points of intersection, if such points exist. These kinds
of models are much more prevalent in applications than the more severe-looking feasibility
format of problem (3.1).

There is another interesting way to tackle problem (3.14), allowing one to make links with
another fundamental algorithmic paradigm. Ignoring the weighting factor for the moment,
we consider the following problem:

min
z∈(Rd)

n
f (z) :=

1

2

m∑
j=0

dist2 (z, Cj) . (3.16)
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Using the definition of the function dist2 (·, Cj), j = 0, 1, . . . ,m, we can reformulate problem
(3.16) as follows

min
z,u

{
m∑
j=0

1

2
‖z − uj‖2 |uj ∈ Cj, j = 0, 1, . . . ,m

}
, (3.17)

where u = (u0, u1, . . . , um) ∈
((
Rd
)n)m+1

.
Note that problem (3.17) always has an optimal solution (since we minimize a continuous

function over a closed and bounded set). The structure of the optimization problem (3.17),
which includes constraint sets that is separable over the variables uj, j = 0, 1, . . . ,m, suggests
that one can exploit this generous property when developing an optimization algorithm.
Alternating Minimization (AM) is a classical optimization technique which was designed
exactly for these situations, and involves updating each variable separately in a cyclic manner.
More precisely, AM when applied to problem (3.17), generates sequences defined by the
following algorithm.

Algorithm 3.10 (Alternating Minimization - AM).

Initialization. Choose (z0, u00, u
0
1, . . . , u

0
m) ∈

((
Rd
)n)m+2

.
General Step (k = 0, 1, . . .)

1. Update

zk+1 = argmin z∈(Rd)
n

m∑
j=0

1

2

∥∥z − ukj∥∥2 =
1

m+ 1

m∑
j=0

ukj . (3.18)

2. For all j = 0, 1, . . . ,m update (in parallel)

uk+1
j ∈ argmin uj∈Cj

1

2

∥∥uj − zk+1
∥∥2 = PCj

(
zk+1

)
. (3.19)

By combining (3.18) and (3.19), the AM Algorithm yields exactly the Averaged Projec-
tions Algorithm, which is recorded now.

Algorithm 3.11 (Averaged Projections - AvP).
Initialization. Choose z0 ∈

(
Rd
)n

.
General Step (k = 0, 1, . . .)

zk+1 ∈ 1

m+ 1

m∑
j=0

PCjz
k.

This algorithm, which could be motivated purely from the feasibility framework detailed
above, is often preferred not only because it is parallelizable, but also because it appears
to be more robust to problem inconsistency. The Averaged Projections Algorithm can be
equivalently viewed as the Projected Gradient Algorithm when applied to problem (3.10).
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Indeed, the problem (3.10) and (3.17) are equivalent as we show now:

min
z∈C

1

2
dist2 (z, D) = min

z∈C
min
u∈D

1

2
‖z− u‖2 = min

z∈C
min

u∈(Rd)
n

1

2

m∑
j=0

‖u− zj‖2

= min
u,z

{
m∑
j=0

1

2
‖u− zj‖2 | zj ∈ Cj, j = 0, 1, . . . ,m

}
.

In the case that m = 1, i.e., only one image is considered, the Alternating Minimization
Algorithm discussed above coincides with what was called the Error Reduction Algorithm
in [27]. In [36, Remark 2.2(i)] the more general PHeBIE Algorithm applied to the problem
of blind ptychography was shown to reduce to Averaged Projections Algorithm for phase
retrieval when the illuminating field is known. The PHeBIE Algorithm is a slight extension
of the PALM Algorithm [10]. A partially preconditioned version of PALM was studied in [22]
for phase retrieval, with improved performance over PALM.

The analysis of Averaged Projections Algorithm for problems with this geometry is cov-
ered by the analysis of nonlinear/nonconvex gradient descent. Much of this is classical and
can be found throughout the literature, but it is limited to guarantees of convergence to
critical points (see, for instance, [1, 10]). This begs the question as to which of the critical
points are global minima. The answer to this is unknown.

Instead of always taking the fixed average 1/(m + 1), in the formulation of problem
(3.14), it is possible to derive a variational interpretation of dynamically weighted averages
between the projections to the sets Cj, j = 0, 1, . . . ,m. This idea was proposed in [49]
where it is called extended least squares. A similar approach was also proposed in [9] where
the resulting algorithm is called the Sequential Weighted Least Squares (SWLS) Algorithm.
The underlying model in [49] is the negative log-likelihood measure of the sum of squared
set distances:

minimize
z∈(Rd)

n

m∑
j=0

ln
(
dist2 (z, Cj) + c

)
, (c > 0). (3.20)

Gradient descent applied to this objective yields the following Dynamically Reweighted Av-
eraged Projections Algorithm.

Algorithm 3.12 (Dynamically Reweighted Averaged Projections - DyRePr).

Initialization. Choose z0 ∈
(
Rd
)n

and c > 0.
General Step (k = 0, 1, . . .)

zk+1 ∈ zk −
m∑
j=0

2(
dist2 (zk, Cj) + c

) (zk − PCj (zk)) . (3.21)

Beyond first order methods. The twice continuous differentiability of the sum of
squared distances at most points suggests that one could try higher-order techniques from
nonlinear optimization in order to accelerate the basic gradient descent method. Higher-
order accelerations, like quasi-Newton methods, rely on extra smoothness in the objective
function. However, as observed in [38], quasi-Newton based method can be used to solve
nonsmooth problems. In the numerical comparisons in Section 4 we benchmark a limited
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memory BFGS method applied in [49] against the other techniques. Recently, studies have
appeared comparing second-order and nonlinear Gauss-Newton methods for ptychography
with Wirtinger flow (see Algorithm 3.15) and Cyclic Projection-type Algorithms [78].

Algorithm 3.13 (Limited Memory BFGS with Trust Region - QNAvP).

1. (Initialization) Choose η̃ > 0, ζ > 0, ` ∈ {1, 2, . . . , n}, z0 ∈ Cn, and set ν = ` = 0.
Compute ∇f (z0) and ‖∇f (z0)‖ for

f (z) :=
1

2 (m+ 1)

m∑
j=0

dist2 (z, Cj) , ∇f (z) :=
1

m+ 1

m∑
j=0

(
Id−PCj

)
(z) .

2. (L-BFGS step) For each k = 0, 1, 2, . . . if ` = 0 compute zk+1 by some line search
algorithm; otherwise compute

sk = −
(
Mk
)−1∇f (zk) ,

where Mk is the L-BFGS update [17], zk+1 = zk + sk, f
(
zk+1

)
, and the predicted

change (see, for instance [61]).

3. (Trust Region) If ρ
(
sk
)
< η̃, where

ρ
(
sk
)

=
actual change at step k

predicted change at step k
,

reduce the trust region ∆k, solve the trust region subproblem for a new step sk [16],
and return to the beginning of Step 2. If ρ

(
sk
)
≥ η̃ compute zk+1 = zk + sk and

f
(
zk+1

)
.

4. (Update) Compute ∇f
(
zk+1

)
,
∥∥∇f (zk+1

)∥∥,

yk := ∇f
(
zk+1

)
−∇f

(
zk
)
, sk := zk+1 − zk,

and sk
T
yk. If sk

T
yk ≤ ζ, discard the vector pair {sk−`, yk−`} from storage, set ` =

max{ ell − 1, 0}, ∆k+1 = ∞, µk+1 = µk and Mk+1 = Mk (i.e., shrink the memory

and don’t update); otherwise set µk+1 = yk
T
yk

skT yk
and ∆k+1 = ∞, add the vector pair

{sk, yk} to storage, if ` = `, discard the vector pair {sk−`, yk−`} from storage. Update
the Hessian approximation Mk+1 [17]. Set ` = min{` + 1, `}, ν = ν + 1 and return
to Step 2.

This rather complicated-looking algorithm is a standard in nonlinear optimization and it
even shows unexpected (and largely unexplained) good performance for nonsmooth problems
[38]. Convergence is still open, but we include this algorithm as one of the typical types of
accelerations via higher order methods one might try.

Least squares based-models. In [53] Marchesini studies an augmented Lagrangian
approach to solving

min
z∈(Rd)

n

1

2n

m∑
j=0

n∑
i=1

(∥∥(FPj(z))i
∥∥− bij)2 . (3.22)
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It is not difficult to see that this is a nonsmooth least-squares relaxation of problem (2.1) [67,
Lemma 3.1]. In reduced form, the resulting ADMM Algorithm has the following prescription
which corrects an error in [51]1. The reduced form is recognisable as averaged projections
with a two-step recursion; we therefore refer to this as AvP2, for two-step Averaged Projec-
tions Algorithm.

Algorithm 3.14 (Two-Step Averaged Projections Algorithm - AvP2).
Initialization. Choose any x0 ∈ Rn and ρj > 0, j = 0, 1, . . . ,m. Compute u1j ∈ PCj (z0)
(j = 0, 1, . . . ,m) and z1 := (1/ (m+ 1))

∑m
j=0 u

1
j .

General Step. For each k = 1, 2, . . . generate the sequence
{(
zk,uk

)}
k∈N as follows:

• Compute

zk+1 =
1

m

m∑
j=1

(
ukj +

1

ρj

(
zk − zk−1

))
. (3.23)

• For each j = 1, 2, . . . ,m, compute

uk+1
j = PCj

(
ukj +

1

ρj

(
2zk − zk−1

))
. (3.24)

This algorithm also can be viewed as a smoothed/relaxed version of Algorithm 3.4.
The appearance of the norm in (3.22) makes the analysis of the least squares approach

inconvenient without the tools of nonsmooth analysis. A popular way around this, is to
formulate (2.1) as a system of quadratic equations:∥∥(FPj(z))i

∥∥2 = b2ij, ∀ j = 1, 2, . . . ,m, ∀ i = 1, 2, . . . , n. (3.25)

The corresponding squared least squares residual of the quadratic model which is exceedingly
smooth:

min
z∈(Rd)

n
G (z) :=

1

2

m∑
j=0

n∑
i=1

(∥∥(FPj(z))i
∥∥2 − b2ij)2 . (3.26)

A popular approach in the applied mathematics and statistics communities for solving the
squared least squares formulation (3.26) is based on a trick from conic programming for
turning quadratics into linear functions in a lifted space of much higher dimension. The
lifted linear objective is still constrained in rank, which is a nonconvex constraint, but this
is typically relaxed to a convex constraint. The idea, called phase lift when applied to phase
retrieval, is not an efficient approach due to a number of reasons, not the least of which being
the increase in dimension (the square of the dimensionality of the original problem). Indeed,
the phase lift method is not implementable on standard consumer-grade architectures for
almost all of the benchmarking experiments conducted below.

Similarly to phaselift, the recent paper [18] has inspired many studies of the Wirtinger
Flow (WF) Algorithm for solving problem (3.26). The WF method is a Gradient Descent
Algorithm applied in the image space of the mapping F to minimize the function G. This
leads to the following method.

1The simplified form of [51, Algorithm 1 (simplified)] has an error in equation (5.2).
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Algorithm 3.15 (Wirtinger Flow - WF).
Initialization. Choose z0 ∈

(
Rd
)n

and step-size µ > 0.
General Step (k = 0, 1, . . .)

zk+1 = zk − µ

‖z0‖2
(∥∥(FPj(zk))i∥∥2 − b2ij) zk. (3.27)

While smoothness makes the analysis nicer, the quartic objective has almost no curva-
ture around critical points, which makes convergence of first order methods much slower than
first order methods applied to nonsmooth objectives. See [49, Section 5.2] for a discussion
of this. The numerical comparisons here support this conclusion. More recently, algorithms
for minimizing (3.22) (amplitude-based) were compared with those for minimizing (3.26)
(intensity-based) from the practitioners perspective [78]. Here also the less smooth varia-
tional models perform better from the standpoint of image quality in the presence of noise
and model misspecification.

A summary of the algorithms above together with the theoretical state of the art is
presented in Table 1

Global Local

Literature crit./fixed pts rates crit/fixed pts rates

Model Category I

CP [52] + 0 + +

CDR [13,14] 0 - 0 -

CDRλ [50] 0 - 0 -

ADMM1 [11] + 0 + 0

Model Category II

FPG [67] - - - -

DR [35,52] 0 - + +

DRλ [52] 0 - + +

DRAP [76] 0 - + +

Model Category III

Wirtinger [18] - - + -

AP/AvP/PG [1,37,46,49,52] + + + +

AvP2 [51] + - + -

DyRePr [9, 49] - - 0 -

QNAvP [49] - - + 0

Table 1: State of the theory for the algorithms in this study. A + indicates that the theory
is well developed for settings that cover the cone and sphere problem; a 0 indicates that the
theory is developed for certain settings - convex, for instance - but that the setting of the
cone and sphere problem remains open. A − indicates that the theory remains unexplored.

4 Numerical Comparisons

The benchmarking study we present here is intended to compare numerical performance be-
tween the categories of algorithms delineated above. We do not attempt to show which algo-
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rithm is best within each category, but stark differences between algorithms based on different
variational models (amplitude-based versus intensity-based, for instance) are demonstrated.
We therefore do not include all possible algorithms in the comparisons. The algorithms that
simply are not competitive, like phase lift or HPR, are not included either because they simply
cannot be implemented on the problem (as for phase lift) or because it is non competitive (as
for both phase lift and HPR). Other algorithms that are frequently used in the applications
literature are equivalent to one of the algorithms above (HIO [28] and the Difference Map
Method [26] are either Douglas-Rachford or HPR depending on the qualitative constraints;
Gerchberg-Saxton [31] and Error Reduction [28] are the Alternating and Averaged Projec-
tions Algorithms). Refinements to basic algorithmic templates (preconditioning, step-length
optimization, etc.) can lead to speed-ups, but these improvements are often marginal, so we
do not compare implementations of optimized versions representatives from the categories.
Where algorithms are sensitive to parameter selection, we make no claim to having found
the optimal parameter values. The sensitivity of an algorithm to parameter values can also
be taken as an indicator of reliability and robustness, but a thorough investigation of this
aspect of the algorithms in our comparisons is beyond the scope of our study. We have,
however, made every reasonable effort to find parameter values that put each algorithm in
the best light possible.

In all of the tabulated numerical experiments below, the algorithms are randomly ini-
tialized and performance statistics are compiled for 100 trials. This also includes the tables
where a “warm start” is benchmarked - here the warm start procedure is randomly initial-
ized. In each row of the tables, the performance statistics of the algorithms are reported.
The column “failure” reports the number of times in 100 trials that the algorithm failed to
achieve a specified distance to the true solution. Our tolerance for “failure” for experiments
without noise is set to the reasonable expectation for numerical accuracy given the prob-
lem size. For noisy experiments, the tolerated distance to the true solution is based on the
variance of the noise. The other columns report median, maximum and minimum iteration
counts needed to achieve the mathematically justified stopping criteria, namely the iterate
step size, over 100 trials. The step size of the iterates is the only mathematically relevant
indicator of convergence to a critical point and this can be monitored regardless of whether
the algorithm iterates can be interpreted as a minimizing sequence of some objective func-
tion. For the interpretation of the critical point (whether a local minimizer, global minimizer
point or otherwise) see the references in Table 1. The column “failure” serves as an empir-
ical test as to whether the critical point to which an algorithm appears to be converging is
reasonably close to the true solution, regardless of what the theory tells us (usually much
more conservative than observed in practice). Iteration counts are justified as a reasonable
comparison metric since all of the algorithms in this comparison have similar per-iteration
computational complexity. The exception to this is the quasi-Newton accelerated Averaged
Projections Algorithm (QNAvP). This algorithm has a per-iteration cost of approximately
5 times that of the other algorithms.

In numerical tests with experimental data, only a single random initialization was chosen
and the resulting phase reconstructions are presented. For all but one of the experimental
data sets there is no ground truth, and so the termination of the algorithms is based on the
best available mathematical convergence theory, namely convergence of the iterate steps.
Evaluation of the quality of the critical points of the algorithms for experimental data is
beyond the scope of this study.

19



4.1 Wavefront Sensing: JWST dataset

We begin with numerical comparisons on the James Webb Space Telescope wavefront re-
construction data set presented in [49] (at that time the telescope was known only as the
Next Generation Space Telescope). This is synthetic data, but was carefully constructed to
simulate the actual telescope. For our numerical experiments we use a resolution of 128×128
for each of the images. The data for this problem, bij ∈ (R2) in problem (2.1) with n = 1282,
consists of two out-of-focus images and one in-focus image of a known star (m = 3) together
with the constraint that the wavefront to be constructed has unit amplitude across the aper-
ture of the telescope (see [49]). The focus settings and aperture support are accounted for
in the mappings Pj, in problem (2.1).

All algorithms started from the same randomly chosen initial points and were terminated
once the difference between successive iterates falls below 5× 10−5, or a maximum iteration
count (6, 000) is exceeded. The algorithm is judged to have failed if it does not achieve a
distance to the true solution of 10−2 relative to global phase shift for noiseless data, or a
distance of 0.35 for noisy data.

In Figure 1 we show typical reconstructions of each of the algorithms. It is clear from
this figure that the Wirtinger Flow Algorithm, Douglas-Rachford (DR) and Cyclic Relaxed
Douglas-Rachford (CDRλ) Algorithms fail with noisy data. But the figure does not reveal
how they fail. The behaviour of the iterations is contained in Tables 2.

JWST no noise noise
iteration count iteration count

failure median high low failure median high low

Model Category I

CP∗ 0 27 201 17 0 21 48 14

CDR 0 9 18 8 100 ∗ ∗ ∗
CDRλ∗ (λ = 0.25) 0 25 423 15 0 21 81 14

ADMM1 (η = 3) 0 70.5 115 47 100 ∗ ∗ ∗
Model Category II

FPG 0 191 789 87 0 145.5 589 80

DR 68 704.5 821 631 100 ∗ ∗ ∗
DRλ (λ = 0.85/0.55) 0 64.5 145 53 0 109 515 62

DRAP (λ = 0.55/0.25) 0 72.5 319 45 0 97 362 57

Model Category III

Wirtinger 100 86 87 85 100 86 87 85

AP/AvP/PG 0 247 1700 95 0 138 508 77

AvP2 (ρj = .75) 1 383.5 6000 152 0 300 895 138

DyRePr 100∗ 221 2039 121 100∗ 151.5 586 88

QNAvP 3 95 240 47 3 67.5 206 34

Table 2: JWST wavefront reconstruction problem, noiseless and noisy, 100 random initializations.

The asterisk on CP and CDRλ are to note that these algorithms with noisy JWST data do not

converge to fixed points, but rather to a fixed amplitude with a constant global phase shift from

one iterate to the next. The ∗ for DyRePr indicates that the algorithm fixed point still looks good,

even if it does not lie within the specified distance to the true solution.

20



true phase

CP CDR CDRλ ADMM

FPG DR DRλ DRAP

AvP AvP2 DyRePr QNAvP

Wirtinger

Figure 1: Representative phase reconstructions from algorithms applied to the noisy JWST
dataset.
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• Model Category I. The benchmarked algorithms in this category are Cyclic Pro-
jections (CP - Algorithm 3.1), Cyclic Douglas-Rachford (CDR - Algorithm 3.2) and
Relaxed Cyclic Douglas-Rachford (CDRλ - Algorithm 3.3) and ADMM1 (Algorithm
3.4). The CDR and ADMM1 Algorithms do not converge in the noisy case. A focused
study of these two algorithms for nonconvex feasibility has not been carried out, but
the connection of these algorithms to the Douglas-Rachford Algorithm makes this be-
haviour not surprising. The CP and CDRλ Algorithms are marked with an asterisk
to note that these algorithms with noisy JWST data do not converge to fixed points,
but rather to a fixed amplitude with a constant global phase shift from one iterate to
the next. This is a surprising discovery that does not contradict the known theory for
these algorithms, but rather indicates the existence of limit cycles for this problem.
The limit cycles, however, are simply fixed global phase shifts from the true solution,
and so do not detract from the algorithms’ ability to deliver the true solution, up to
global phase shift. A geometrical understanding of this phenomenon remains open.

• Model Category II. Due to the equivalence of the Averaged Projections Algorithm
to Alternating Projections (AP - Algorithm 3.5) and Projected Gradients (PG - Al-
gorithm 3.6) on the product space, the performance of these algorithms is the same
as that for AvP. In addition to these, we tested the Fast Projected Gradient (FPG
- Algorithm 3.7), the product space implementation of the Douglas-Rachford (DR -
Algorithm 3.3) and Relaxed Dougals-Rachford (DRλ - Algorithm 3.8) Algorithms and
the DRAP (Algorithm 3.9) variant. The only algorithm in this class that does not
achieve the requred tolerance to the true solution is the DR Algorithm, which does not
even converge in the noisy experiments, as predicted by the theory for this algorithm.
All other algorithms converged reliably with little variance. The DRAP Algorithm
performed best overall for these choices of parameters, but none of the algorithms was
particularly sensitive to the choice of parameters.

• Model Category III. The benchmarked algorithms belonging to this category are the
Averaged Projections Algorithm (AvP - Algorithm 3.11), the Dynamically Reweighted
Averaged Projections (DyRePr - Algorithm 3.12), the Limited Memory Quasi-Newton
acceleration of Averaged Projections (QNAvP - Algorithm 3.13), the ADMM-motivated
two-step averaged projections recursion (AvP2 - Algorithm 3.14) and the Wirtinger
Flow algorithm (WF - Algorithm 3.15). The results for this class vary, depending
primarily on the algorithm. The Averaged Projections Algorithm (Algorithm 3.11),
Dynamically Reweighted Averaged Projections Algorithm (Algorithm 3.12) and lim-
ited memory BFGS Algorithm (Algorithm 3.13) were already compared in [49].

The WF Algorithm was the worst of all algorithms in any class, and the AvP2 Al-
gorithm was quite sensitive to the choice of parameter. The other algorithms (AvP,
DyRePr, QNAvP) are for all intents and purposes parameter free, and these per-
formed about the same, regardless of the experiment. The WF Algorithm failed to
attain the required distance to the true solution in both the noiseless and noisy JWST
experiments from each of the randomly generated initializations (see Table 2). It did,
however, converge to a critical point in every experiment after, on average, 86 itera-
tions with very little variance in the convergence. The WF Algorithm does depend on
parameter choices, but we found no parameters for which the algorithm could find a
reasonable neighbourhood of the solution for the JWST dataset. The other algorithms
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from this category performed much better than WF, though the interpretation of the
fixed points of the DyRePr Algorithm is not clear. Averaged Projections Algorithm
found fixed points within the required tolerance of the true solution with and without
noise every time, AvP2 failed only once (without noise), and QNAvP failed 3% of the
time. The median iteration counts for these algorithms ranged from 67 (QNAvP) to
384 (AvP2) with considerable variation at the upper end of iteration counts. The Dy-
namically Reweighted Projections Algorithm (DyRePr) performed similarly to AvP2

in terms of median iteration counts to the stopping criteria and variance, but the fixed
points were never within the required distance of the true solution. Nevertheless, as
seen in Figure 1 the fixed points look no different than the best of the reconstructions.
The ambiguity of the failure of the DyRePr Algorithm is marked with an “100∗” in
the “failure” column of Table 2.

4.2 Coded Diffraction: CDP Dataset

A phase problem for demonstrating the Wirtinger Flow Algorithm was presented in [18].
The experiments are of synthetic 1- and 2-dimensional signals. We compare the algorithms
surveyed here on this problem instance for the same data made available in [18]. There are
several features of this problem that have attracted attention in the applied mathematics and
statistics communities in recent years. Regarding the physical experiment that this data set
mimics, it is imagined that one has a phase mask at the object plane that one can randomly
generate. The data consists of 10 observations of a true signal, each observation bij ∈ R2 in
problem (2.1) with n = 1282 and m = 10 made with a different, randomly generated, phase
mask - Pj, j = 1, 2, . . . ,m, in problem (2.1). There is no qualitative constraint set C0. To
avoid getting stuck in a bad local minimum, the Wirtinger Flow approach involves a warm
start procedure which is a power series iteration (50 in our experiments) that is meant to
land one in the neighborhood of a global minimum.

This experiment also includes a one-dimensional phase retrieval benchmark. It is held
that 1-dimensional phase problems of this type are very different than 2-dimensional in-
stances. This a reasonable claim due to the early theoretical work showing that the 1-
dimensional phase retrieval problem suffers from nonuniqueness, while 2-dimensional phase
retrieval problems are almost always uniquely solvable, when they are solvable at all [15].
The distinction, however, is spurious when the phase problem is overdetermined, as it is here.
The numerical tests bear this out: there does not appear to be any qualitative computational
difference between 1- and 2-dimensional phase retrieval problems when both are overdeter-
mined. As with the JWST dataset, the stopping criteria was on the stepsize, and this
was more stringent for the 1-dimensional example than the 2-dimensional example simply
because of greater numerical accuracy.

All algorithms started from the same randomly chosen initial points and were terminated
once the difference between successive iterates falls below 1e − 9 (1-D) or 1e − 7 (2-D)
respectively, or a maximum iteration count (6, 000) is exceeded.

A summary of the benchmarks is given below.

• Model Category I. The benchmarked algorithms in this category are Cyclic Pro-
jections (CP - Algorithm 3.1), Cyclic Douglas-Rachford (CDR - Algorithm 3.2) and
Relaxed Cyclic Douglas-Rachford (CDRλ - Algorithm 3.3). The ADMM1 Algorithm
did not converge, and did not come close enough to the true solution for these experi-
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CDP 1D cold 1D warm
iteration count iteration count

failure median high low failure median high low

Model Category I

CP 0 16 20 13 0 13 15 12

CDR 0 39 6000 20 2 38.5 6000 18

CDRλ (λ = 0.33) 0 6 6 5 0 6 6 5

Model Category II

FPG 0 86 102 78 0 84 98 76

DR 0 ∗ ∗ 131 0 ∗ ∗ 136

DRλ (λ = 0.75) 0 97 105 92 0 91 97 87

DRAP (λ = 0.55) 0 68.5 86 63 0 60 67 58

Model Category III

Wirtinger 15 322 6000 290 9 279 6000 269

AP/AvP/PG 0 131.5 217 107 0 99 121 89

AvP2 (ρj = .75) 0 63 68 65 0 69 69 60

DyRePr 0 54 60 49 0 53 59 47

QNAvP 0 25 28 21 0 24 28 20

Table 3: 1-dimensional phase retrieval, problem CDP [18], cold/warm start, 100 random initial-

izations. The “∗” in the results for Douglas-Rachford indicate that this algorithm did not converge,

despite remaining in an acceptable neighbourhood of the true solution.

ments (much like Douglas-Rachford) and so was not included in the tabulated results.
Cyclic Douglas-Rachford does not converge for two-dimensional CDP, but it does con-
verge for one-dimensional CDP. The CP and CDRλ are clearly the best performers.

• Model Category II. Due to the equivalence of the averaged projections algorithm to
Alternating Projections (AP - Algorithm 3.5) and Projected Gradient (PG - Algorithm
3.6) on the product space, the performance of these algorithms is the same as that for
AvP. In addition to these, we tested the Fast Projected Gradient (FPG - Algorithm
3.7), the product space implementation of the Douglas-Rachford (DR - Algorithm
3.3) and Relaxed Dougals-Rachford (DRλ - Algorithm 3.8) algorithms and the DRAP
(Algorithm 3.9) variant. The relative performance of these algorithms is very similar to
the JWST experiments. There does not appear to be a significant qualitative difference
between one- and two-dimensional experiments, though FPG does appear to require
significantly more iterations for the two-dimensional experiments. The DR and CDR
Algorithms are unstable for the 2-dimensional signals where for the 1-dimensional
signals they are more stable. This could indicate larger basins of attraction for 1-
dimensional compared to 2-dimensional phase retrieval, but otherwise does not point
to any more interesting qualitative difference that we can imagine.

• Model Category III. The benchmarked algorithms belonging to this category are the
Averaged Projections Algorithm (AvP - Algorithm 3.11), the Dynamically Reweighted
Averaged Projections (DyRePr - Algorithm 3.12), the Limited Memory Quasi-Newton
acceleration of Averaged Projections (QNAvP - Algorithm 3.13), the ADMM-motivated

24



CDP 2D cold 2D warm
iteration count iteration count

failure median high low failure median high low

Model Category I

CP 0 19 26 17 0 15 19 12

CDR 100 ∗ ∗ ∗ 100 ∗ ∗ ∗
CDRλ (λ = 0.33) 0 11 14 11 0 9 12 8

Model Category II

FPG 0 3178 7596 714 0 1375.5 5866 156

DR 100 ∗ ∗ ∗ 100 ∗ ∗ ∗
DRλ (λ = 0.75) 0 88 97 85 0 79 87 73

DRAP (λ = 0.55) 0 57 93 68 0 58 72 49

Model Category III

Wirtinger 0 412 999 332 12 266.5 404 6

AP/AvP/PG 0 229 334 179 0 122 227 80

AvP2 (ρj = .75) 0 502 1061 373 0 191.5 572 119

DyRePr 100∗ 202.5 366 151 100∗ 91.5 390 47

QNAvP 3 247 616 150 12 52.5 230 28

Table 4: 2-dimensional phase retrieval, problem CDP [18], cold/warm start, 100 random initial-

izations. The ∗ for DyRePr indicates that the algorithm fixed point still yields a point close to the

true solution, though it does not lie within the specified distance for this comparison. The “∗” in

the results for Douglas-Rachford and Cyclic Douglas-Rachford indicate that these algorithms did

not converge.

two-step averaged projections recursion (AvP2 - Algorithm 3.14) and the Wirtinger
Flow Algorithm (WF - Algorithm 3.15). The WF Algorithm performed better on
these experiments than with the JWST data, converging to within the tolerance of
the true solution at least 85% of the time (column “failure”), though interestingly
the warm start procedure recommended in [18] made things worse, both for one- and
two-dimensional examples. The iteration counts to reach the stopping criteria were
among the highest with little variability when it indeed converged (it did not always
converge). The other algorithms performed similarly to the JWST experiment. The
warm start sometimes made an improvement in iteration counts to the stopping cri-
teria and only rarely degraded performance. The 1-diemsional experiments required
fewer iterations to achieve a more stringent stopping criterion than the 2-dimensional
experiments. The only algorithms to fail to achieve the required distance to the true
solution were QNAvP (failed between 3% and 12% of the time on 2-dimensional exper-
iments) and DyRePr (failed to reach the required distance to the true solution 100%
of the time, though, as with the JWST experiment, the fixed points still looked good).
Neither of these algorithms failed to find the true solution for the 1-dimensional CDP
experiments. The ambiguity of the failure of the DyRePr Algorithm is marked with a
“100∗” in the “failure” column of Table 4.
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4.3 Sparse Phase retrieval

The first to examine sparsity constrained phase retrieval was Marchesini in [55] where he
recognized the implicit use of sparsity and hard thresholding in phase retrieval in the Charge
Flipping Algorithm of Oszlanyi and Sütó [63, 64]. Since then, sparse phase retrieval has
received intense study. More than one quarter of the results returned from a web query of
the term “phase retrieval” are about sparse phase retrieval. Our contribution to this wave
includes the recent studies [12, 67]. All of the algorithms surveyed in the previous section
have analogues as more general iterated prox-algorithms (the projection onto a set is just the
prox of the indicator function) and so the projections can be replaced quite easily with hard
and soft-thresholders which are, respectively, the prox mappings of the counting function
(‖x‖0 =

∑n
j=1 ‖xj‖0) and the `1-norm.

The sparsity example constructed for our experiment is modeled after [22]. We generate
a fixed number of Gaussian densities of different height and width randomly placed on a
128× 128 discretization of the plane. The data, bij ∈ R1282 in problem (2.1) with n = 1282

and m = 1, is the amplitude of the discrete Fourier transform of the collection of Gaussian
distributions. Instead of promoting sparsity using the counting function or the `1-norm, we
specify an estimate of the maximum number, s, of nonzero entries (which for our experiments
was an overestimate of the true sparsity by 20%) and project onto the set

Ss :=
{
z ∈

(
R2
)1282 | ‖z‖0 ≤ s

}
.

To this we add the constraint that the object is real and nonnegative, i.e., belongs to

C+ :=
{
z = (z1, z2, . . . , z1282) ∈

(
R2
)1282 | zj = (xj, 0) ∈ R2, xj ∈ [0,∞) (1 ≤ j ≤ 1282)

}
.

(4.1)
The qualitative constraint is then

C0 := C+ ∩ Ss.

It is easy to show that C0 is a cone, so this constraint fits the feasibility format of the cone
and sphere problem. Moreover, it is easy to show that PSsPC+ = PSs∩C+ . As such, the
analysis for the other instances of this problem demonstrated above also apply here. It is
possible to incorporate real-nonnegativity constraints into the hard and soft-thresholding
operators, but since these operators showed no advantage over our formulation here, we do
not include this comparison.

For this experiment we only compare the most successful of the algorithms from the
previous experiments. The goal here is to compare robustness of the best algorithms against
local minimums. The algorithm was judged to have succeeded if it correctly identified the
support of the Gaussian dots (modulo reflections and translations – phase retrieval is not
unique) up to an error of 5 × 10−4. The algorithms in the comparison are CP, CDR and
CDRλ (Model Category I), FPG and DRλ (Model Category II) and from Model Category III
QNAvP. The DRλ Algorithm stands out in these experiments as being the only algorithm to
maintain a relatively high percentage of successful support recovery as the sparsity decreased
(no less than 70% of the 100 random trials for each sparsity level). The other algorithms
performed more or less the same, dropping to between 10% reliability (CDRλ) and 30%
reliability (FPG) at a sparsity of 10 Gaussian dots and a reliability of around 5% for 20
Gaussian dots. This is a two-set feasibility problem, so the advantage of the cyclic algorithms
CDR and CDRλ is not clear. What is not reflected in these graphs is the average number of
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iterations each algorithm required to reach convergence (they all converged). The relative
performance followed the same pattern as the other experiments above, with efficiencies
differing by up to two orders of magnitude. The algorithms not included in the comparison
did not successfully recover the support and so were not considered.

Figure 2: Leading algorithms applied to the feasibility formulation of sparse phase retrieval
with nonnegative real sparse objects. Shown are the percentage of successful exact recoveries
of the support of the sparse object (up to shifts and reflections) over 100 random trials for
objects with 3, 5, 10, 15, 20 and 25 Gaussian “dots”.

4.4 Source Localization

The sensors are located on a 100×100 unit grid, and for the noisy experiments the placement
of the sensors has an error of about 3 units (SNR 30). The data consists of m = 3 or
10 measurements b1j ∈ R, j = 1, 2, . . . ,m, with corresponding shift operators Pj, j =
1, 2, . . . ,m, defined by the randomly determined locations of the sensors (see problem (2.2)).
All algorithms are started from the same randomly chosen initial points. All algorithms are
terminated once the difference between successive iterates falls below 1e− 11 or a maximum
iteration count (10, 000) is exceeded. The algorithm is judged to have failed if it does not
achieve a distance of 1e − 1 to the true source location for noiseless data and 3 for noisy
signals before the iterate difference tolerance is reached. The abstract the source localization
problem has the same qualitative geometry as phase retrieval, and the numerical results do
not indicate any differences in the relative quantitative performance of the algorithms.

A summary of the benchmarks is given below.

• Model Category I. The benchmarked algorithms in this category are Cyclic Pro-
jections (CP - Algorithm 3.1), Cyclic Douglas-Rachford (CDR - Algorithm 3.2) and
Relaxed Cyclic Douglas-Rachford (CDRλ - Algorithm 3.3). This category of algo-
rithms again performed the best overall, never failing to achieve the required tolerance
to the true solution. The more overdetermined the problem (10 sensors) the better the
algorithms performed both in iteration counts to the stopping criteria and in variability
of those counts. That the maximum iteration count was achieved during these exper-
iments indicates that it is possible these algorithms could have sometimes converged
to a limit cycle instead of a fixed point. But that the end points were without fail
within the error tolerance of the true solution shows that the limit cycle was still in a
good region. The 3 sensor example is the only experiment where this appears to be a
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3 sensors no noise noise
iteration counts iteration counts

failure median high low failure median high low

Model Category I

CP 0 183.5 10000 9 0 169.5 7867 11

CDR 0 65 10000 8 0 68 2871 8

CDRλ (λ = 0.33) 0 150 10000 8 0 149 6591 10

Model Category II

FPG 0 847.5 10000 97 0 961 10000 103

DR 0 2248 10000 140 0 2320 10000 159

DRλ (λ = 0.85/0.5) 0 215.5 10000 90 0 2825 10000 241

DRAP (λ = 0.55) 0 761 10000 47 0 498.5 10000 45

Model Category III

AP/AvP/PG 0 1001.5 10000 68 0 969 10000 75

AvP2 (ρj = .3) 13 3724.5 10000 274 100 3723 10000 302

DyRePr 100∗ 7 23 5 0 6.5 23 5

QNAvP 1 47.5 995 14 0 38 956 5

Table 5: 100 random instances of 3 sensor source localization problems, with and without noise.

The ∗ for DyRePr indicates that the algorithm fixed point is still reasonably close to the truth,

even if it does not lie within the specified distance tolerance.

possibility and this is reasonable since 3 sensors might not be enough to uniquely de-
termine the source location. The 10 sensor experiment is overdetermined and therefore
one would expect this to be more robust against noise. The results from this model
category confirm this.

• Model Category II. Due to the equivalence of the Averaged Projections Algorithm
to Alternating Projections (AP - Algorithm 3.5) and Projected Gradient (PG - Al-
gorithm 3.6) on the product space, the performance of these algorithms is the same
as that for AvP. In addition to these, we tested the Fast Projected Gradient (FPG
- Algorithm 3.7), the product space implementation of the Douglas-Rachford (DR -
Algorithm 3.3) and Relaxed Dougals-Rachford (DRλ - Algorithm 3.8) Algorithms and
the DRAP (Algorithm 3.9) variant. It is remarkable that the Douglas-Rachford Algo-
rithm converges sometimes to a fixed point with 3 sensors and noise. We know that
Douglas-Rachford Algorithm does not possess a fixed point for inconsistent feasibility
problems, so the fact that it converged in the noisy 3 sensor experiment indicates that
even with noise, the three sensor case can still have nonempty intersection. Even when
the intersection is empty, however, note that the iterates of the Douglas-Rachford Al-
gorithm, while they do not converge, they never wander very far from an acceptable
solution.

• Model Category III. The benchmarked algorithms belonging to this category are
the Averaged Projections Algorithm (AvP - Algorithm 3.11), the ADMM-motivated
two-step Averaged Projections recursion (AvP2 - Algorithm 3.14), the Dynamically
Reweighted Averaged Projections (DyRePr - Algorithm 3.12), and the Limited Memory

28



10 sensors no noise noise
iteration counts iteration counts

failure median high low failure median high low

Model Category I

CP 0 10.5 55 5 0 11 61 5

CDR 0 9 54 4 0 9 51 4

CDRλ (λ = 0.33) 0 9 43 4 0 9 52 4

Model Category II

FPG 0 168.5 518 93 0 182.5 764 100

DR 0 193.5 1197 143 0 10000 10000 10000

DRλ (λ = 0.85/0.5) 0 132.5 209 102 0/0 146.5 722 68

DRAP (λ = 0.55) 0 104 431 49 0 107.5 547 47

Model Category III

AP/AvP/PG 0 141.5 570 71 0 146.5 722 68

AvP2 (ρj = .3) 0 550.5 2141 284 90 569.5 10000 273

DyRePr 100∗ 7 16 5 0 7 16 5

QNAvP 0 17 889 12 0 33 46 13

Table 6: 100 random instances of 10 sensor source localization problems, with and without noise.

The ∗ for DyRePr indicates that the algorithm fixed point is still reasonably close to the truth,

even if it does not lie within the specified distance tolerance.

Quasi-Newton acceleration of Averaged Projections (QNAvP - Algorithm 3.13). The
Wirtinger Flow Algorithm does not extend to the source localization problem. The
algorithms performed similarly on these experiments as with the phase data. The
variability in the iteration counts to the stopping criteria was considerably higher than
for the phase problems with the median iteration counts considerably higher for AvP
and AvP2. The sensitivity of AvP2 to the parameter value ρ is shown in the noisy
examples where it failed to achieve the prescribed distance to the true solution at least
90% of the time. The clear winner in this category is the quasi-Newton aceleration of
AvP, (QNAvP). This algorithm failed only once to get within the required tolerance of
the true solution, both with noisy and exact data, and achieved this in almost 25 times
fewer iterations than AvP. Considering the per-iteration extra cost of the QNAvP, this
results in a factor 5 speedup in CPU time - worth the effort.

4.5 Experimental Data

We compare the quality of the most successful algorithms above on three sets of publically
available experimental data. These data sets are all similar in the sense that they consist
of single images together with a simple a priori qualitative constraint. The first experiment,
shown in Figure 3 (real part of the iterate at termination) was studied and developed for [56].
This is not a Fourier imaging data set, but the (linear) imaging operator was provided with
the image data. The second experiment shown in Figure 4 is a far-field optical diffraction
imaging experiment. The third dataset shown in Figure 6 is a near-field x-ray hologram.
The latter two experimental datasets are available at [48].
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true object

CP CDR CDRλ

DR DRλ DRAP

Wirtinger AvP DyRePr QNAvP

Figure 3: Representative phase reconstructions from algorithms with the Phasepack dataset
PhaseSLM 40x40. Shown are the real part of the final iterates of the respective algorithms.

The first dataset is provided with a ground truth; there is no groundtruth for the other
experiments. The point of these experiments is to reproduce the kinds of environments and
data that these algorithms are intended for; and in these settings, one only has mathematical
theory as a guide for determining when to stop the algorithm and why.

• Model Category I. The benchmarked algorithms in this category are Cyclic Pro-
jections (CP - Algorithm 3.1), Cyclic Douglas-Rachford (CDR - Algorithm 3.2) and
Relaxed Cyclic Douglas-Rachford (CDRλ - Algorithm 3.3). The algorithms quickly
converged to the images shown. The contrast is not as good as with the other algo-
rithms, but otherwise there is no observable difference in fidelity.

• Model Category II. Since there are only two constraint sets, we tested the non-
product space implementation of the Douglas-Rachford (DR - Algorithm 3.3), the
Relaxed Dougals-Rachford (DRλ - Algorithm 3.8) and the DRAP (Algorithm 3.9)
variants. These also quickly converged to the images shown. The contrast is much
better with these methods than the cyclic implementations in the first model category.

• Model Category III. The benchmarked algorithms belonging to this category are the
Wirtinger Flow (WF - Algorithm 3.15), Averaged Projections Algorithm (AvP - Algo-
rithm 3.11), the Dynamically Reweighted Averaged Projections (DyRePr - Algorithm
3.12), and the Limited Memory Quasi-Newton acceleration of Averaged Projections
(QNAvP - Algorthm 3.13). For this data, only the averaged projections algorithm
retrieves a reasonable image.
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The next dataset is an optical diffraction image produced by undergraduates at the X-Ray
Physics Institute at the University of Göttingen shown in Figure 4. This is a difficult data
set because it is very noisy, and the physical parameters of the image (magnification factor,
Fresnel number, etc.) were unknown to us. We optimistically assumed a perfect imaging
system so that the imaging model is simply an unmodified Fourier transform. The object was
a coffee cup: a real, non-negative object, supported on some patch in the object plane, that
is, the qualitative constraint C0 is of the form (4.1). In such an experiment, one only has the
successive iterates and a feasibility gap to observe in order to conclude that the algorithm
is converging at least to a local best approximation point. The stepsize and feasibility gap
is shown in Figure 5. Given the noise in the image, it is not clear that one desires a local
best approximation point with the smallest feasibility gap since this will also mean that the
noise has been recovered. For the numerical test reported here we applied a low-pass filter
to the data since almost all of the recoverable information about the object was contained
in the low-frequency elements. This also had the numerically beneficial effect of rendering
the problem more inconsistent. Thanks to the analysis in [52] we now understand why this
can be helpful. All algorithms achieve the same gap distance between the sets, indicating
that they attain points with the same local best approximation between the sets.

CP CDR CDRλ

DRλ DRAP

AvP QNAvP

Figure 4: Object recovery of an optical diffraction experiment. The original object was a
coffee cup. The recovered object shown are upside-down images of the coffee cup with the
handle on the left.

Noisy experiments like this one also bring to the foreground the issue of regulariza-
tion. In [46] approximate projection algorithms for regularized sets were analyzed for cyclic
projections. The ideas of that work can be extended to the other algorithms considered
here, namely, that one can place balls (either Euclidean or Kullback-Leibler, as appropri-
ate) around the measured data and project onto these “inflated” sets. Since the projections
onto such sets is generally much more complicated to compute than the original sets, one
can replace the exact projection with the projection onto the original, unregularized data
set, treating the latter projection as an approximation to the former. This has additional
advantages of extrapolation which yields finite termination at a feasible points, in this case.
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Figure 5: Step-size and gap size between constraint sets versus iteraton for several algo-
rithms.

The payoff for early termination is demonstrated in Figures 6 and 7 with a near field
holography experiment provided to us by Tim Salditt’s laboratory at the Institute for X-
Ray Physics at the University of Göttingen [77]. Here the structured illumination shown
in Figure 6(a) left is modeled by Pj, j = 1, 2, . . . ,m, in problem (2.1) with m = 1. The
image – bij, j = 1, 2, . . . ,m, in problem (2.1) with m = 1 – shown in Figure 6(a) right is
in the near field, so the mapping F in problem (2.1) is the Fresnel transform [34]. The
qualitative constraint is that the field in the object domain has amplitude 1 at each pixel,
that is, the object is a pure phase object. A support constraint is not applied. Without
regularization/early termination the noise is recovered as shown in Figure 6(c). The data
is regularized by accepting points within a fixed pointwise distance to the measured data
at each pixel with respect to the Kullback-Leibler divergence. Rather than projecting onto
these Kullback-Leibler balls, all algorithms compute the unregularized projection and move
to the point given by the unregularized algorithm. The stopping rule, however, is with
respect to the achieved feasibility gap between the regularized data sets and the qualitative
constraint. This is effectively an early stopping rule for the unregularized algorithms. The
result for different algorithms is shown in Figure 7.
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(a)

(b)

(c)

Figure 6: Unregularized reconstruction of near field holography experiment with empty
beam correction using the DRλ algorithm with λ = 0.5. The algorithm is stable, and con-
verges as predicted by the theory, however the noise is reconstructed without regularization
of the data set.
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CP CDRλ DRλ DRAP

AvP QNAvP

Figure 7: (a) Step-size and gap between the constraint sets versus iteration. Images
below: Reconstructed phase of regularized near field holography experiment with empty
beam correction for the same data shown in Figure 6(a).

34



[6] H. H. Bauschke, D. Noll, and H. M. Phan. Linear and strong convergence of algorithms
involving averaged nonexpansive operators. J. Math. Anal. and Appl., 421(1):1–20,
2015.

[7] A. Beck and D. Pan. On the solution of the GPS localization and circle fitting problems.
SIAM J. Optim., 22(1):108–134, 2012.

[8] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[9] A. Beck, M. Teboulle, and Z. Chikishev. Iterative minimization schemes for solving the
single source localization problem. SIAM J. Optim., 19(3):1397–1416, 2008.

[10] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for
nonconvex and nonsmooth problems. Math. Program., 146(1):459–494, 2014.

[11] J. Bolte, S. Sabach, and M. Teboulle. Nonconvex Lagrangian-based optimization: mon-
itoring schemes and global convergence. Math. Oper. Res., 43(4):1051–1404, 2018.

[12] J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd. First order methods beyond convex-
ity and Lipschitz gradient continuity with applications to quadratic inverse problems.
SIAM J. Optim., 28(3): 2131–2151, 2018.

[13] J. M. Borwein and M. K. Tam. A cyclic Douglas–Rachford iteration scheme. J. Optim.
Theory Appl., 160(1):1–29, 2014.

[14] J. M. Borwein and M. K. Tam. The cyclic Douglas–Rachford method for inconsistent
feasibility problems. J. Nonlinear Convex Anal., 16(4):537–584, 2015.

[15] Y. M. Bruck and L. G. Sodin. On the ambiguity of the image reconstruction problem.
Opt. Comm., 30(3):304–308, 1979.

[16] J. V. Burke and A. Wiegmann. Low-dimensional quasi-Newton updating strategies
for large-scale unconstrained optimization. Department of Mathematics, University of
Washington, July 1996.

[17] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices
and their use in limited memory methods. Math. Program., 63:129–156, 1994.

[18] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via
Wirtinger flow: Theory and algorithms. IEEE Trans. Inf. Theory, 61(4):1985–2007,
2015.

[19] Y. Censor and A. Cegielski. Projection methods: an annotated bibliography of books
and reviews. Optimization, 64(11):2343–2358, 2015.

[20] Y. Censor and M. Zaknoon. Algorithms and convergence results of projection methods
for inconsistent feasibility problems: A review. Pure Appl. Func. Anal., 3(4): 565–586,
2018.

35



[21] R. Chandra, Z. Zhong, J. Hontz, V. McCulloch, C. Studer, and T. Goldstein. Phasepack:
A phase retrieval library. Asilomar Conference on Signals, Systems, and Computers,
2017.

[22] H. Chang, S. Marchesini, Y. Lou, and T. Zeng. Variational phase retrieval with globally
convergent preconditioned proximal algorithm. SIAM J. Imaging Sci., 11(1):56–93,
2018.

[23] K. W. Cheung, H. C. So, W.-K. Ma, and Y. T. Chan. Least squares algorithms for
time-of-arrival-based mobile location. IEEE Trans. Signal Process., 52(4):1121–1128,
2004.

[24] A. A. Coelho. A charge-flipping algorithm incorporating the tangent formula for solving
difficult structures. Acta Cryst., 63(5):400–406, 2007.

[25] J. Douglas Jr. and H. H. Rachford Jr. On the numerical solution of heat conduction
problems in two or three space variables. Trans. Amer. Math. Soc., 82(2):421–439, 1956.

[26] V. Elser. Phase retrieval by iterated projections. J. Opt. Soc. Amer. A, 20(1):40–55,
2003.

[27] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform.
Opt. Lett., 3(1):27–29, 1978.

[28] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21(15):2758–2769,
1982.

[29] F. Freschi. Localization of sources of brain activity: A MILP approach. IEEE Trans.
Magn., 46(8):3429–3432, 2010.

[30] D. Gabay. Augmented Lagrangian Methods: Applications to the Solution of Boundary-
Value Problems, chapter Applications of the method of multipliers to variational in-
equalities, pages 299–331. North-Holland, Amsterdam, 1983.

[31] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of
phase from image and diffraction plane pictures. Optik, 35(2):237–246, 1972.

[32] R. Glowinski and A. Marroco. Sur l’approximation, par elements finis d’ordre un, et las
resolution, par penalisation-dualitè, d’une classe de problemes de dirichlet non lineares.
Revue Francais d’Automatique, Informatique et Recherche Opérationelle, 9(R-2):41–76,
1975.

[33] T. Goldstein and C. Studer. Convex phase retrieval without lifting via phasemax.
In Proceedings of the 34th International Conference on Machine Learning, volume 70,
Sydney, Australia, 2017.

[34] J. Hagemann, A.-L. Robisch, D. R. Luke, C. Homann, T. Hohage, P. Cloetens, H. Suho-
nen, and T. Salditt. Reconstruction of wave front and object for inline holography from
a set of detection planes. Opt. Express, 22(10):11552–11569, 2014.

[35] R. Hesse and D. R. Luke. Nonconvex notions of regularity and convergence of funda-
mental algorithms for feasibility problems. SIAM J. Optim., 23(4):2397–2419, 2013.

36



[36] R. Hesse, D. R. Luke, S. Sabach, and M. Tam. The proximal heterogeneous block
implicit-explicit method and application to blind ptychographic imaging. SIAM J.
Imaging Sci., 8(1):426–457, 2015.

[37] A. S. Lewis, D. R. Luke, and J. Malick. Local linear convergence of alternating and
averaged projections. Found. Comput. Math., 9(4):485–513, 2009.

[38] A. S. Lewis and M. L. Overton. Nonsmooth optimization via quasi-Newton methods.
Math. Program., 141(1-2):135–163, 2013.

[39] G. Li and T. K. Pong. Global convergence of splitting methods for nonconvex composite
optimization. SIAM J. Optim., 25(4):2434–2460, 2015.

[40] J. Liang, P. Stoica, Y. Jing, and J. Li. Phase retrieval via the alternating direction
method of multipliers. IEEE Signal Process. Lett., 25(1):5–9, 2018.

[41] A. Lombard, Y. Zheng, H. Buchner, and W. Kellermann. TDOA estimation for multiple
sound sources in noisy and reverberant environments using broadband independent
component analysis. IEEE T. Audio Speech, 19(6):1490–1503, 2011.

[42] S. Loock and G. Plonka. Phase retrieval for Fresnel measurements using a shearlet
sparsity constraint. Inverse Problems, 30(5):2014.

[43] S. Loock and G. Plonka. Iterative phase retrieval with sparsity constraints. Proc. Appl.
Math. Mech., 16(1):835–836, 2016.

[44] D. R. Luke. Relaxed averaged alternating reflections for diffraction imaging. Inverse
Problems, 21(1):37–50, 2005.

[45] D. R. Luke. Finding best approximation pairs relative to a convex and a prox-regular
set in Hilbert space. SIAM J. Optim., 19(2):714–739, 2008.

[46] D. R. Luke. Local linear convergence of approximate projections onto regularized sets.
Nonlinear Anal., 75(3):1531–1546, 2012.

[47] D. R. Luke. Phase retrieval, what’s new? SIAG/OPT Views and News, 25(1):1–5,
2017.

[48] D. R. Luke. Proxtoolbox. http://num.math.uni-goettingen.de/proxtoolbox/, 2017.

[49] D. R. Luke, J. V. Burke, and R. G. Lyon. Optical wavefront reconstruction: Theory
and numerical methods. SIAM Rev., 44(2):169–224, 2002.

[50] D. R. Luke, A.-L. Martins, and M. K. Tam. Relaxed cyclic Douglas-
Rachford algorithms for nonconvex optimization. Stockholm, July 2018. ICML
Workshop: Modern Trends in Nonconvex Optimization for Machine Learning,
https://sites.google.com/view/icml2018nonconvex/papers.

[51] D. R. Luke, S. Sabach, M. Teboulle, and K. Zatlawey. A simple globally convergent
algorithm for the nonsmooth nonconvex single source localization problem. J. Global
Optim., 69(4):889–909, 2017.

37



[52] D. R. Luke, Nguyen H. Thao, and M. K. Tam. Quantitative convergence analysis of
iterated expansive, set-valued mappings. Math. Oper. Res., 43(4):1143-1176, 2018.

[53] S. Marchesini. Phase retrieval and saddle-point optimization. J. Opt. Soc. Am. A,
24(10):3289–3296, 2007.

[54] S. M. Marchesini. A unified evaluation of iterative projection algorithms for phase
retrieval. Rev. Sci, Inst., 78(1):011301, 2007.

[55] S. M. Marchesini. Ab initio compressive phase retrieval. Technical report,
arXiv:0809.2006v1, Sept. 2008.

[56] C. A. Metzler, M. K. Sharma, S. Nagesh, R. G. Baraniuk, O. Cossairt, and A. Veer-
araghavan. Coherent inverse scattering via transmission matrices: Efficient phase re-
trieval algorithms and a public dataset. IEEE International Conference on Computa-
tional Photography (ICCP), 2017.

[57] D. L. Misell. An examination of an iterative method for the solution of the phase
problem in optics and electron optics I. test calculations. J.Phys.D., 6(18):2200–2216,
1973.
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[70] A.-L. Robisch, K. Kröger, A. Rack, and T. Salditt. Near-field ptychography using lateral
and longitudinal shifts. New J. Phys., 17(7):073033, 2015.

[71] A.-L. Robisch and T. Salditt. Phase retrieval for object and probe using a series of
defocus near-field images. Opt. Express, 21(20):23345–23357, 2013.

[72] R. T. Rockafellar and R. J. Wets. Variational Analysis. Grundlehren Math. Wiss.
Springer-Verlag, Berlin, 1998.

[73] R. Shefi and M. Teboulle. Rate of convergence analysis of decomposition methods
based on the proximal method of multipliers for convex minimization. SIAM J. Optim.,
24(1):269–297, 2014.

[74] S. van Smaalen, L. Palatinus, and M. Schneider. The maximum-entropy method in
superspace. Acta Cryst., 59(5):459–469, 2003.

[75] P. Stoica and J. Li. Source localization from range-difference measurements. IEEE
Signal Proc. Mag., 23(6):63–66, 2006.

[76] N. H. Thao. A convergent relaxation of the Douglas–Rachford algorithm. Comput.
Optim. Appl., 70(3):841–863, 2018.

[77] R. N. Wilke, M. Priebe, M. Bartels, K. Giewekemeyer, A. Diaz, P. Karvinen, and
T. Salditt. Hard x-ray imaging of bacterial cells: nano-diffraction and ptychographic
reconstruction. Opt. Express, 20(17):19232–19254, Aug 2012.

[78] L.-H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, and
L. Waller. Experimental robustness of Fourier ptychography phase retrieval algorithms.
Opt. Express, 23(26):33214–33240, 2015.

[79] E. H. Zarantonello. Projections on convex sets in Hilbert space and spectral theory.
In E. H. Zarantonello, editor, Contributions to Nonlinear Functional Analysis, pages
237–424. Academic Press, New York, 1971.

39


	Introduction
	Problem Instances
	Phase Retrieval
	Source Localization
	Unifying Representation

	Variational Models
	Model Category I: Multi-Set Feasibility
	Model Category II: Product Space Formulations
	Model Category III: Smooth Nonconvex Optimization

	Numerical Comparisons
	Wavefront Sensing: JWST dataset
	Coded Diffraction: CDP Dataset
	Sparse Phase retrieval
	Source Localization
	Experimental Data


