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Abstract

Lagrangian based methods have been on the market for over 50 years. These methods are
robust and often can handle optimization problems with complex geometries through efficient
computational steps. The last decade of research have generated a large volume of literature on
various practical and theoretical aspects of many Lagrangian based algorithms. This chapter
reviews the basic elements of Lagrangian based methods for composite minimization in the
convex and nonconvex setting. In the convex case, the focus is on global rate of convergence
results, which are derived here through a novel approach and very simple proof technique. In
the much harder nonconvex case, we survey a very recent methodology which allows to establish
global pointwise convergence results for a broad class of genuine nonlinear composite semi-
algebraic problems.
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1 Introduction

Recently, we are witnessing a resurgence of Lagrangian based methods and their related decompo-
sition schemes. Augmented Lagrangian methods, also known as multiplier methods, are probably
the first Lagrangian based methods developed for optimization. These were introduced about half
a century ago by Hestenes [33] and Powell [49] for solving nonlinear optimization problems with
nonlinear equality constraints. Some earlier works can be traced back to the late fifties with the
volume of Arrow, Hurwicz and Uzawa [2] which have launched the fundamental idea of decom-
position schemes (also known as splitting methods), which are intimately related to Lagrangian
schemes. This renewed interest in Lagrangian methods has emerged from new applications arising
in many fundamental scientific and engineering problems in image science, machine learning, and
other fields, which are often modeled by structured and very large scale minimization problems,
often nonsmooth, and even nonconvex. These methods have gained popularity due to their ability
to adapt to problem structures and to exploit data information, to produce scalable and tractable
updating steps. A voluminous recent literature reflects this intense renewal interest on multiplier
methods and their relatives decomposition algorithms. It is not our intention, neither is the scope
of this review chapter, to discuss all past and more recent literature. Instead, throughout the
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chapter we provide some pointers from earlier foundational works, to some recent advances which
have evolved over the last 50 years.

A classical reference providing the central developments and ideas underlying multiplier meth-
ods since their inception is the monograph of Bertsekas [8], while decomposition methods can be
found in the books of Lasdon [38], and of Bertsekas and Tsitsiklis [11] for a more modern treat-
ment. Decomposition methods can also be developed via the abstract setting of maximal monotone
operators [52, 53, 48, 41]. We refer the reader to the recent monograph of Bauschke and Combettes
[5], which covers fundamental results in this direction, and also includes an extensive bibliography.

In this survey, we present the essential tools needed to build and analyze Lagrangian based
methods for a composite optimization model which is general enough to capture most instances of
fundamental modern applications both in the convex and nonconvex settings. In the convex case,
the focus is on global rate of convergence results, derived here through a novel approach leading
to a simplified proof technique permitting unification. In the much harder nonconvex case, we
review a very recent methodology for global pointwise convergence analysis to a broad class of
genuine nonlinear composite semi-algebraic problems. This is developed in three main sections,
whose contents are now briefly outlined in some more detail.

In section 2, we start with the main model of the chapter, which is a nonlinear composite
minimization, and describe in informal ways the nature and basic steps in constructing Lagrangian
based methods through the penalty and proximal regularization concepts. This has the advantage
of explaining in simple terms, and with minimal sophistication, the basic elements underlying
Lagrangian based schemes in the absence of convexity for a very general composite optimization
model, and to reveal the difficulties associated with Lagrangian based methods (which will be
further elaborated more precisely later on in section 4). We also introduce some basic results in the
convex setting and the starring role of the proximal maps in Lagrangian based schemes. Finally,
we end the section with a sample of application examples, which illustrate the flexibility of the
composite model, many other applications can be found in the cited literature.

In section 3, we focus on the convex setting. When convexity is present in a given optimization
model, it is well-known that an augmented Lagrangian method is a dual method. More precisely,
it is a manifestation of the proximal minimization method applied to the dual formulation of the
given optimization problem. Starting with the pioneering work of Moreau [47], followed by the
proximal minimization algorithm of Martinet [44], this decisive dual approach interpretation of
multiplier methods was developed by Rockafellar, see e.g., [53, 52]. Building on the more general
Proximal Method of Multipliers initially developed by Rockafellar [52], we present a new and
simplified approach to analyze Lagrangian based schemes for the convex composite model. This
novel approach relies on a simple observation, which allows to show that all well-known Lagrangian
methods and their decomposition variants can be captured and analyzed through a single scheme
called the perturbed proximal method of multipliers. This allows us to derive a single unifying global
rate of convergence result through an elementary proof, see Theorem 3.1, which as we show, can
then be easily applied to obtain rate of convergence results for various fundamental decomposition
schemes.

In section 4, we move on to the much harder and challenging nonconvex setting. In sharp
contrast to the convex case, where Lagrangian based methods and their convergence properties
have been extensively studied in past and current literature, in the nonconvex setting, global
convergence analysis for general nonlinear composite models has remained scarce, and far from
being well-understood. Only very recently some progress has been initiated in the nonconvex case,
but mainly for the linear composite model, see e.g., [40] and references therein. The results we
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reviewed in this section are in fact very recent, and were developed in the just published work of
Bolte, Sabach and Teboulle [15], which to the best of our knowledge, appears to be the first work
capable of handling general nonconvex and nonlinear composite minimization, and producing the
basis of a theoretical framework to derive global convergence analysis of Lagrangian based methods
for the broad class of semi-algebraic problems.

The definitions and notations used in this chapter, in relation to convex and variational analysis,
are classical and can be found in the book of Rockafellar [51] and the monograph of Rockafellar
and Wets [54].

2 The Lagrangian Framework

Consider the following general composite optimization model

(M) min
u∈Rd

{Φ (u) := ϕ (u) + h (F (u))} , (2.1)

where ϕ : Rd → (−∞,+∞] and h : Rm → (−∞,+∞] are proper and lower semi-continuous
functions, while F : Rd → Rm is a C1 mapping.

The choice of the model (M) is for the sake of convenience to clearly delineate the role played by
additional structures and properties in every part of the triplet [ϕ, h, F ] in the design and analysis
of various Lagrangian based algorithms that will be described and analyzed in the following parts of
this chapter. In section 2.3, we illustrate the flexibility of model (M) which can be used to describe
a wide spectrum of disparate applications. In the following two subsections we first describe in
informal ways the underlying elements and basic mechanism of every Lagrangian based method for
tackling the general model (M), which is then followed by the fundamental proximal framework.

2.1 Lagrangian Based Methods: Basic Elements and Mechanism

We start with an elementary and useful equivalent reformulation of the optimization model (M),
which reads as

(M) min
u∈Rd,v∈Rm

{ϕ (u) + h (v) : F (u) = v} .

Attaching a multiplier y ∈ Rm to the equality constraint, we define the Lagrangian L : Rd ×Rm ×
Rm → (−∞,+∞], which associated to problem (M), via

L (u, v, y) ≡ ϕ (u) + h (v) + 〈y, F (u)− v〉 , (2.2)

and for any ρ > 0 the corresponding augmented Lagrangian Lρ : Rd × Rm × Rm → (−∞,+∞] is
defined by

Lρ (u, v, y) := L (u, v, y) +
ρ

2
‖F (u)− v‖2

= ϕ (u) + h (v) + 〈y, F (u)− v〉+
ρ

2
‖F (u)− v‖2 , (2.3)

namely, the penalized Lagrangian L (·) ≡ L0 (·).

Equipped with Lρ (·), a basic Lagrangian scheme starts with any given triplet (u, v, y), and
consists of minimizing the augmented Lagrangian Lρ (·) with respect to (u, v) followed by an update
of the corresponding multiplier y, and reads as follows
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Augmented Lagrangian Scheme (ALS)

1. Initialization: Start with any (u, v, y) ∈ Rd × Rm × Rm.

2. Main step: Update the new point (u+, v+, y+) via:(
u+, v+

)
∈ argmin

{
Lρ (u, v, y) : (u, v) ∈ Rd × Rm

}
, (2.4)

y+ = y + ρ
(
F
(
u+
)
− v+

)
. (2.5)

The rational underlying the iterative steps of ALS is quite simple and natural. Indeed, suppose we
have adequate calculus rules at hand (technical details will be given later), then formally we can
write the optimality conditions for ALS, which are characterized (u+, v+) through

(0,0) ∈ ∂(u,v)Lρ
(
u+, v+, y

)
,

where ∂ stands for some (sub)differential operation. The above is equivalent to the following system
of two inclusions

0 ∈ ∂ϕ
(
u+
)

+∇F
(
u+
)T (

y + ρ
(
F
(
u+
)
− v+

))
,

0 ∈ ∂h
(
v+
)
− y − ρ

(
F
(
u+
)
− v+

)
,

where ∇F ∈ Rm×d is the Jacobian matrix associated with F . Now, thanks to (2.5), the system
reduces to

0 ∈ ∂ϕ
(
u+
)

+∇F
(
u+
)T
y+ and 0 ∈ ∂h

(
v+
)
− y+,

that is, we have obtained that 0 ∈ ∂ϕ (u+) + ∇F (u+)
T
∂h (v+). Hence, when F (u+) = v+, the

latter is exactly the optimality condition for model (M), at certain triplet (ū, v̄, ȳ), which reads
(through the usual Lagrangian L (·)) as:

0 ∈ ∂ϕ (ū) +∇F (ū)T ȳ

0 ∈ ∂h (v̄)− ȳ ⇐⇒ 0 ∈ ∂ϕ (ū) +∇F (ū)T ∂h (F (ū)) .

F (ū) = v̄

This simple description and resulting mechanism has the advantage of being essentially independent
of any specific assumptions on the problem’s data (except for satisfying some adequate calculus
rules), e.g., convexity of the involved parts. We will now look at two interpretations of the ALS,
that will throw light on the form of the scheme. In fact, if we set y ≡ 0, the resulting ALS is
nothing else but a usual penalty scheme applied to the problem (M)

min
u∈Rd,v∈Rm

{ϕ (u) + h (v) : F (u) = v} ,

where ρ > 0 stands for the penalty parameter associated to the equality constraint and the term
(1/2) ‖F (u)− v‖2 plays the role of the penalty function, which controls the “violation” of the
constraint. Before we go into the second interpretation of ALS, we note that problem (M) is
obviously equivalent to the following min-max reformulation

(MM) min
u∈Rd,v∈Rm

max
y∈Rm

{L0 (u, v, y) ≡ ϕ (u) + h (v) + 〈y, F (u)− v〉} .

A natural question, which emerges is why not simply use the Lagrangian L0 (·) instead of the
“complicated” augmented Lagrangian Lρ (·)? In fact, the (MM) formulation reveals the problematic
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issue whereby the Lagrangian L0 (·) precisely generates the “hard penalty” reformulation of problem
(M), i.e., we have

(MM) min
u∈Rd,v∈Rm

{ϕ (u) + h (v) +H (u, v)} ,

where

H (u, v) = sup
y∈Rm

〈y, F (u)− v〉 =

{
0, if F (u) = v,

∞, otherwise.

In the absence of a duality theory that would allow to reverse the order of the min-max operation
(i.e., under some convexity/regularity assumptions), we are thus left with an intractable nonsmooth
problem. This naturally leads to the second interpretation of the augmented Lagrangian scheme
that can be viewed as a smoothing or proximal regularization of the Lagrangian L (·), i.e., of H (u, v),
defined above. Indeed, let

Hρ (u, v) = sup
η∈Rm

{
〈η, F (u)− v〉 − 1

2ρ
‖η − y‖2

}
.

Then, an easy computation shows that an optimal solution, η∗, is given by

η∗ = y + ρ (F (u)− v) .

Plugging this optimal solution η∗ in Hρ (u, v), we then get

Hρ (u, v) = 〈y, F (u)− v〉+ ρ ‖F (u)− v‖2 − ρ

2
‖F (u)− v‖2

= 〈y, F (u)− v〉+
ρ

2
‖F (u)− v‖2 .

Hence, using this observation in problem (MM), naturally leads to the following equivalent problem

min
u∈Rd,v∈Rm

{
ϕ (u) + h (v) + 〈y, F (u)− v〉+

ρ

2
‖F (u)− v‖2 ≡ Lρ (u, v, y)

}
,

which is exactly the minimization step of the augmented Lagrangian in ALS (see step (2.4)).

Much like the penalized interpretation, this second interpretation for building an augmented
Lagrangian method has the advantage of being of great generality, and does not need any duality
and/or convexity arguments. Furthermore, it naturally explains the regularization (smoothing)
effect that occurs through the so-called proximal approach that will be described in the next
subsection, and proven to be at the heart of any Lagrangian based method. Recapitulating at
this point, we end this sub-section by outlining the main difficulty with Lagrangian based methods
described by ALS.

Main Difficulties with ALS

Quite clearly, the central issue to address in ALS, is how to solve the minimization step (2.4)
efficiently? Indeed, in all Lagrangian based methods, the updated multiplier y+ is given by the
simple and explicit formula (2.5):

y+ = y + ρ
(
F
(
u+
)
− v+

)
.

Therefore, all the efforts are toward addressing the difficult minimization step (2.4). In fact, all the
past, current and novel schemes in relation to Lagrangian based methods simply rely on choosing
a minimization algorithm that can address both scalability and efficiency by judiciously exploiting
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the specific structures and data information present in the model (M) and captured by the triplet
[ϕ, h, F ].

In the following sections, we will demonstrate how many different variants of ALS can be built
and analyzed through different choices of the minimization procedures. Moreover, one should also
notice that the choice of the penalty/regularization parameter ρ > 0 also plays a fundamental
role. This will be illustrated throughout the methods we elaborate below, both in the convex
and nonconvex settings, under various structural scenarios for the triplet [ϕ, h, F ]. In all these
developments, as already alluded above, a key player is the so-called proximal mapping associated
to a given function, which is introduced next.

2.2 Proximal Mappings and Minimization

From here, we will start with a precise description of the involved objects allowing us also to
introduce a few definitions and relevant terminology from variational and convex analysis. We
record some central properties of proximal mappings and their corresponding envelopes for convex
functions. All the material described here is well-known and relies on the seminal work of Moreau
[47]. However, we present here some of the fundamental properties of proximal mappings and
envelopes of convex functions within the slightly more general setting of a weighted proximal term,
and for completeness we have included their simple proofs. Classical convex analysis monographs
describe in far more details further properties of proximal mappings and their envelopes, see e.g.,
[35, 5, 54], and the recent books of Bertsekas [10] and Beck [6], which also provide more recent
results, applications and references. Note that proximal mappings and related schemes can also
be extended beyond the Euclidean setting, whereby the classical quadratic norm is replaced by a
non-Euclidean distance-like function, see the recent survey of Teboulle [57], which includes ample
relevant references.

For convenience and flexibility towards the analysis of Lagrangian based schemes developed in
the next section, we adopt the slightly more general version of proximal mappings as follows. Let
P ∈ Sd++, where Sd++ is the set of all d× d positive definite matrices, and ψ : Rd → (−∞,+∞] be
a proper, lower semi-continuous and convex function. Then,

proxψP (z) := argminx∈Rd

{
ψ (x) +

1

2
‖x− z‖2P

}
, (2.6)

where, for any x ∈ Rd, we define ‖x‖P = 〈Px, x〉1/2. Clearly, when P := (1/λ) I with λ > 0, we
recover the usual (unweighed) definition of a proximal mapping.

The corresponding proximal envelope of ψ, in that case, is defined by the function

ψP (z) := inf
x∈Rd

{
ψ (x) +

1

2
‖x− z‖2P

}
.

Below we collect some fundamental properties of proxψP (·) and ψP (·).

Lemma 2.1 (Basic properties of proximal maps/envelopes). Let ψ : Rd → (−∞,+∞] be a proper,
lower semi-continuous and convex function and let P ∈ Sd++. The following statements hold true:

(i) The proximal mapping proxψP (·) is the unique solution of the problem (2.6), characterized via

P
(
z − proxψP (z)

)
∈ ∂ψ

(
proxψP (z)

)
. (2.7)
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(ii) The proximal envelope ψP (·) is finite everywhere, convex and differentiable. Moreover, its
gradient is given by

∇ψP (z) = P
(
z − proxψP (z)

)
, (2.8)

and is Lipschitz continuous with Lipschitz constant λmax (P ), the maximal eigenvalue of the
matrix P , i.e., we have

‖∇ψP (z1)−∇ψP (z2)‖ ≤ λmax (P ) ‖z1 − z2‖ , ∀ z1, z2 ∈ Rd.

(iii) A vector z̄ is a minimizer of ψ if and only if z̄ is a minimizer of ψP and we have

inf
x∈Rd

ψP (x) = inf
x∈Rd

ψ (x) = ψ (z̄) = ψ
(

proxψP (z̄)
)

= ψP (z̄) .

Proof. (i) Since x → ψ (x) + (1/2) ‖x− z‖2P is strongly convex, it immediately follows that the

minimum in (2.6) is uniquely attained at p := proxψP (z) such that 0 ∈ ∂ψ (p) + P (p− z).

(ii) For any x̄ ∈ domψ we clearly have

ψP (z) ≤ ψ (x̄) +
1

2
‖x̄− z‖2P <∞,

and since Ψ (x, z) := ψ (x)+(1/2) ‖x− z‖2P is jointly convex in (x, z), it follows that ψP (z) =
infx∈Rd Ψ (x, z) is convex on Rd.
Now, to establish that ψP (·) is differentiable, first note that

ψP (z) = ψ
(

proxψP (z)
)

+
1

2

∥∥∥proxψP (z)− z
∥∥∥2
P
,

and, for all v ∈ Rd, we have

ψP (z + v) ≤ ψ
(

proxψP (z)
)

+
1

2

∥∥∥proxψP (z)− (z + v)
∥∥∥2
P
.

Combining these two inequalities and some algebra yields that for any v ∈ Rd

γ (v) := ψP (z + v)− ψP (z)−
〈
v, P

(
z − proxψP (z)

)〉
≤ 1

2
‖v‖2P .

Now, since ψP (·) is convex, then so is the function v → γ (v). Hence, since γ (0) = 0 we get
that γ (v) + γ (−v) ≥ 0. Therefore, the last inequality also implies that γ (v) ≥ − (1/2) ‖v‖2P ,
and hence it follows that

lim
‖v‖P→0

|γ (v)|
‖v‖P

= 0,

showing that P
(
z − proxψP (z)

)
= ∇ψP (z). In order to prove the Lipschitz continuity of

∇ψP (·), using (2.8), we have

∇ψP (z1)−∇ψP (z2) = P (z1 − z2)− P
(

proxψP (z1)− proxψP (z2)
)
.

Since P ∈ Sd++ clearly P−1 exists and using the above we get〈
P−1 (∇ψP (z1)−∇ψP (z2)) ,∇ψP (z1)−∇ψP (z2)

〉
= 〈z1 − z2,∇ψP (z1)−∇ψP (z2)〉

−
〈

proxψP (z1)− proxψP (z2) ,∇ψP (z1)−∇ψP (z2)
〉

≤ 〈z1 − z2,∇ψP (z1)−∇ψP (z2)〉 ,
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where the inequality uses the monotonicity of ∂ψ (since ψ is convex), (2.7) and (2.8) proven
above. From the latter inequality we immediately obtain that

λmin
(
P−1

)
‖∇ψP (z1)−∇ψP (z2)‖ ≤ ‖z1 − z2‖ ,

and this proves the desired result since λmin
(
P−1

)
= λmax (P )−1.

(iii) This easily follows from the very basic definition of ψP (·) and the relations established above.

The relations established in Lemma 2.1(iii) are the basis for the so-called proximal minimization
algorithm for tackling the problem infx∈Rd ψ (x), which in turn is looking for a vector z ∈ Rd such
that ∇ψP (z) = 0 (for some P ∈ Sd++), i.e., , thanks to 2.8 to a solution of the fixed point equation

z = proxψP (z). Thus, given any z, the proximal minimization algorithm computes the next update
via

z+ = proxψP (z) = argminx∈Rd

{
ψ (x) +

1

2
‖x− z‖2P

}
.

The proximal step plays a central role and leads to the fundamental proximal inequality that will be
systematically used in the sequel. Before stating this result, we also recall the following fundamental
Pythagoras three points identity. For any P ∈ Sd++, we have

2 〈w − v, P (v − u)〉 = ‖w − u‖2P − ‖w − v‖
2
P − ‖u− v‖

2
P , ∀ u, v, w ∈ Rd. (2.9)

The next result gives the announced fundamental proximal inequality.

Lemma 2.2 (Proximal Inequality). Let ψ : Rd → (−∞,+∞] be a proper, lower semi-continuous

and convex function and let P ∈ Sd++. Then, for z+ = proxψP (z) and for any x ∈ Rd, we have

ψ
(
z+
)
− ψ (x) ≤

〈
x− z+, P

(
z+ − z

)〉
=

1

2

(
‖x− z‖2P −

∥∥x− z+∥∥2
P
−
∥∥z+ − z∥∥2

P

)
. (2.10)

Proof. Writing the optimality condition, which characterize z+ = proxψP (z), yields

0 ∈ ∂ψ
(
z+
)

+ P
(
z+ − z

)
.

Using the subgradient inequality for the convex function ψ, we have for all x ∈ Rd

ψ
(
z+
)
− ψ (x) ≤

〈
x− z+,−γ

〉
, γ ∈ ∂ψ

(
z+
)
,

and hence, from the first inclusion, it follows that

ψ
(
z+
)
− ψ (x) ≤

〈
x− z+, P

(
z+ − z

)〉
,

which proves the first inequality in (2.10). Invoking the identity (2.9) immediately yields the
equality.

In relation to Lagrangian based methods, we will also need the following useful variant of the
proximal inequality.

Lemma 2.3 (Composite proximal inequality). Let ψ : Rd → (−∞,+∞] be a proper, lower-semi
continuous and convex function and let S : Rd → R be a differentiable function. Given a matrix
P ∈ Sd++, we define:

z+ := argminx∈Rd

{
ψ (x) + S (x) +

1

2
‖x− z‖2P

}
. (2.11)

Then, for any x ∈ Rd, we have

ψ
(
z+
)
− ψ (x) +

〈
∇S

(
z+
)
, z+ − x

〉
≤ 1

2

(
‖x− z‖2P −

∥∥x− z+∥∥2
P
−
∥∥z+ − z∥∥2

P

)
.
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Proof. The proof follows through identical arguments of the proof given in Lemma 2.2.

To illustrate the viability of the general optimization model (M), we end this section with some
application examples.

2.3 Application Examples

We briefly present few examples of challenging applications that can be cast as particular instances
of the general model (M). We discuss below both convex and nonconvex models.

Example 1. Convex Nonlinear Programming [51, 9] is a constrained minimization of a convex
function ϕ under a set of equality and inequality constraints, which is explicitly given by

min
u∈Rd

{ϕ (u) : fj (u) ≤ bj , (j = 1, 2, . . . , p), fj (u) = bj , (j = p+ 1, p+ 2, . . . ,m)} ,

where fj : Rd → (−∞,+∞], j = 1, 2, . . . , p, are proper, lower semi-continuous and convex functions,
while fj : Rd → (−∞,+∞], j = p + 1, p + 2, . . . ,m, are affine functions. Therefore, this fits into
the general model (M), where

F (u) := (f1 (u) , f2 (u) , · · · , fm (u))T ,

and h (v) :=
∑m

j=1 hj (vj) with hj = ι(−∞,bj ] (vj) for j = 1, 2, . . . , p and hj = ι{bj} (vj) for j =
p + 1, p + 2, . . . ,m (the indicator function of a set C is defined as ιC (x) = 0 for x ∈ C and
ιC (x) = +∞ for x /∈ C). In this case, the function h is convex and nonsmooth.

Example 2. Regularized Image Deblurring [26, 55, 18, 61, 20] consists of finding an “image”,
which solves the following optimization problem

min
U∈Rp×q

{
1

2
‖AU −B‖2 + λR (U)

}
,

where A is a linear mapping (usually called deblurring transformation) and B ∈ Rp×q. Here,
we assume that both A and B are known in advance. The role of the regularizer R (·) and the
regularizing parameter λ > 0, is to control the obtained solution. For example, if a sparse solution
is desired, then the convex regularizer R (U) = ‖U‖1 is very useful. Another example, which is
very classic, is when one is interested in controlling the total variation of the obtained image. In
this case, appropriate choice for a regularizer would be the `1-based anisotropic total variation, i.e.,
R (U) = TV1 (U), where TV1 stands for

TV1 (U) =

p−1∑
i=1

q−1∑
j=1

(|ui,j − ui+1,j |+ |ui,j − ui,j+1|) +

p−1∑
i=1

|ui,q − ui+1,q|+
q−1∑
j=1

|up,j − up,j+1| .

It is well-known that TV1 (U) =
∥∥LT (U)

∥∥
1

where L : R(p−1)×q × Rp×(q−1) → Rp×q is defined by
the formula

L (x, y)i,j = xi,j + yi,j − xi−1,j − yi,j−1, i = 1, 2, . . . , p and j = 1, 2, . . . , q,

where we assume that x0,j = xp,j = yi,0 = yi,q = 0 for every i = 1, 2, . . . , p and j = 1, 2, . . . , q. This
means that in this case h (·) = ‖·‖1 and F = LT where the operator LT : Rp×q → R(p−1)×q×Rp×(q−1)
is the adjoint to L, which is given by

LT (U) = (x, y) ,
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where x ∈ R(p−1)×q and y ∈ Rp×(q−1) are the matrices defined by

x = ui,j − ui+1,j , i = 1, 2, . . . , p− 1 and j = 1, 2, . . . , q,

y = ui,j − ui,j+1, i = 1, 2, . . . , p and j = 1, 2, . . . , q − 1.

Example 3. Fused Lasso [58, 59, 34] aims at solving a linear system of equations, by minimizing
the corresponding least squares error measure, with the additional requirements that the solution
is both sparse and “smooth”. More precisely, let {(ai, bi)}Ni=1 be a set of samples, where ai ∈ Rd
and bi ∈ R, the problem can be then formulated as follows:

min
u∈Rd

{
1

2
‖Au− b‖2 + λ1 ‖u‖1 + λ2 ‖Du‖1

}
,

where A =
[
aT1 , a

T
2 , . . . , a

T
N

]T ∈ RN×d, b ∈ RN , D ∈ Rd×(d−1) defined by (Du)i = ui+1 − ui and
λ1, λ2 > 0 are regularizing parameters. This problem also fits well in our general model (M) by
taking h (v) = ‖v‖1 and F = [I,D]T .

Another closely related problem, is when the least squares error measure is replaced by the
logistic regression measure. In this case, we obtain the following optimization problem

min
u∈Rd

{
1

N

N∑
i=1

log
(
1 + exp

(
biu

Tai
))

+ λ1 ‖u‖1 + λ2 ‖Du‖1

}
,

where in this case bi ∈ {−1, 1}, i = 1, 2, . . . , N .

In the above examples, the function h was convex. We turn to some example with a nonconvex
h.

Example 4. Orthogonality Constrained Minimization [25, 1, 43] also known as minimization on
the Stiefel manifold, can be generally formulated as follows:

min
U∈Rp×q

{
ϕ (U) : UTU = I

}
,

where the nonconvex constraint surface is called Stiefel manifold. In this case by choosing the
model function h to be the indicator of the the nonconvex set described by the Stiefel manifold, we
immediately see that this challenging class of problems fits into the general model (M).

Example 5. Blind Image Deconvolution [36, 39, 17] is one of the most challenging problems
in imaging sciences. Similarly to the problem described above in Example 2, we are given a
blurred image B ∈ Rp×q, and the goal is to recover a sharp image U and an unknown blurring
transformation A, which generated the blurred image B through the following linear deconvolution
process B = A∗U+E, where ∗ denotes the convolution operation (of the corresponding dimensions),
A ∈ Rr×s and U ∈ Rp×q, while E ∈ Rp×q is an additive noise. Therefore, by adopting again the
least squares error measure we are focusing on the following optimization problem:

min
A∈Rr×s,U∈Rp×q

{
1

2
‖A ∗ U −B‖2 + h (U,A)

}
,

where h : Rp×q × Rr×s → (−∞,+∞] is a regularizer (nonconvex, and possibly nonsmooth) that
controls both the recovered image U and the blurring transformation A.

Example 6. Regularized Structured Total Least Squares [50, 45, 7] is another interesting application
in imaging sciences that seeks to recover a sharp image out of an observed blurred image. Here,
the blurring transformation is also unknown and should be recovered, but assumed to have some

10



linear structure. Given matrices A,A1, A2, . . . , Ap in Rn×d and a vector of measurements b ∈ Rn,
the resulting model consists of the following nonconvex minimization problem:

min
u∈Rd,w∈Rp

1

2

∥∥∥∥∥
(
A+

p∑
i=1

wiAi

)
u− b

∥∥∥∥∥
2

+
1

2
‖w‖2 + h (u,w)

 ,

where w1, w2, . . . , wp ∈ R are unknown structure components, and h : Rd × Rp → (−∞,+∞] is a
regularizer that controls on one hand the recovered image u and on the other hand the structure
components stored in w.

3 The Convex Setting

We focus on the convex setting, and consider the following particular instance of model (M), which
is the linear composite convex optimization problem defined by

(CM) min
u∈Rd

{ϕ (u) + h (Fu)} ,

where here ϕ : Rd → (−∞,+∞] and h : Rm → (−∞,+∞] are proper, lower semi-continuous and
convex functions, while F : Rd → Rm is a linear mapping.

The main goal of this section is to present a new and simple approach to analyze Lagrangian
based schemes for tackling model (CM), and derive their convergence rates. This relies on a simple
observation, which allows to show that all well-known (as well as other variants, cf. Remark 3.2)
Lagrangian based schemes can be captured and analyzed through one perturbed proximal method
of multipliers that we introduce below. We start by recalling some basic and standard assumptions
with respect to the convex problem (CM).

3.1 Preliminaries on the Convex Model (CM)

We first reformulate problem (CM) in the equivalent form:

(CM) min
u∈Rd,v∈Rm

{ϕ (u) + h (v) : Fu = v} ,

for which according to section 2, the corresponding Lagrangian and augmented Lagrangian, are
respectively defined by

L (u, v, y) = ϕ (u) + h (v) + 〈y, Fu− v〉 ,

and, for any ρ > 0, by

Lρ (u, v, y) = L (u, v, y) +
ρ

2
‖Fu− v‖2 .

Throughout this section the following assumption will be needed.

Assumption A. The Lagrangian L has a saddle point, that is, there exists (u∗, v∗, y∗) such that

L (u∗, v∗, y) ≤ L (u∗, v∗, y∗) ≤ L (u, v, y∗) , ∀ u ∈ Rd, ∀ v, y ∈ Rm.

Under Assumption A, and the convex data assumption for the triplet [ϕ, h, F ] in problem (CM),
it follows that p∗ := L (u∗, v∗, y∗) ∈ R. Furthermore, a saddle point (u∗, v∗, y∗) exists if and only if
the following two conditions hold:

(i) (u∗, v∗) is a solution of problem (CM), i.e., ϕ (u∗) and h (v∗) are finite valued and Fu∗ = v∗.
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(ii) The multiplier y∗ is an optimal solution of the dual problem associated to problem (CM),
which is given by

(DM) d∗ = sup
y∈Rm

{
d (y) := ϕ∗

(
−F T y

)
+ h∗ (y)

}
,

where ϕ∗ and h∗ stand for the Fenchel conjugate functions of ϕ and h, respectively.

Thanks to the convexity of problem (CM), recall that the existence of an optimal dual Lagrange
multiplier y∗ attached to the constraint Fu = v is ensured under the standard constraint qualifica-
tion for problem (CM), that can be formulated as follows1

there exists a ū ∈ ri(domϕ) and a v̄ ∈ ri(dom h) satisfying Fū = v̄,

and that strong duality holds, i.e., p∗ = d∗ ∈ R. Moreover, the set of optimal dual solutions is
nonempty, convex and compact.

We end these preliminaries part on the convex model (CM) with the following elementary result,
which will be useful in the forthcoming analysis.

Lemma 3.1 (Objective and Feasibility Approximation). Let (u∗, v∗, y∗) be a saddle point for L.
Suppose, for every δ ≥ 0 and α > 0, that

ϕ (u) + h (v)− (ϕ (u∗) + h (v∗)) + α ‖Fu− v‖ ≤ δ, ∀ u ∈ Rd, ∀ v ∈ Rm. (3.1)

Then, for every couple (u, v) ∈ Rd × Rm which satisfies (3.1), the following assertions hold:

(i) ϕ (u) + h (v)− (ϕ (u∗) + h (v∗)) ≤ δ.

(ii) ‖Fu− v‖ ≤ 2α−1δ whenever 2 ‖y∗‖ ≤ α.

Proof. Since α ‖Fu− v‖ ≥ 0, the first assertion follows at once from the premise (3.1). Now, since
(u∗, v∗, y∗) is a saddle point of L, we have that L (u∗, v∗, y∗) ≤ L (u, v, y∗), i.e.,

ϕ (u∗) + h (v∗) ≤ ϕ (u) + h (v) + 〈y∗, Fu− v〉 , ∀ u ∈ Rd, ∀ v ∈ Rm,

which combined with (3.1) yields

α ‖Fu− v‖ ≤ δ + 〈y∗, Fu− v〉 ≤ δ + ‖y∗‖ · ‖Fu− v‖ ,

and hence, with α > 0 such that 2 ‖y∗‖ ≤ α, the desired claim (ii) immediately follows.

3.2 Proximal Method of Multipliers and Fundamental Lagrangian Based Schemes

The Proximal Method of Multipliers (PMM) invented by Rockafellar [52], emerges from the Aug-
mented Lagrangian scheme (discussed above in section 2) by adding two (weighted) quadratic
proximal terms in the minimization step with respect to the two primal variables u and v. The
PMM takes the following form:

1For any convex function F : Rd → (−∞,+∞] we denote by domF := {u : F (u) <∞} its domain, and for any
convex set S, riS stands for the relative interior of S.
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PMM – Proximal Method of Multipliers

1. Input: M1 ∈ Sd+, M2 ∈ Sm+ and µ ∈ (0, 2).

2. Initialization: Start with any
(
u0, v0, y0

)
∈ Rd × Rm × Rm.

3. Main step: For k = 0, 1, . . . generate the sequence
{(
uk, vk, yk

)}
k∈N as follows

(
uk+1, vk+1

)
= argminu,v

{
Lρ
(
u, v, yk

)
+

1

2
‖u− uk‖2M1

+
1

2
‖v − vk‖2M2

}
, (3.2)

yk+1 = yk + µρ
(
Fuk+1 − vk+1

)
. (3.3)

The PMM of Rockafellar [52] (with M1 = M2 = cI for some c > 0, and µ = 1) emerges from a
primal-dual application of the proximal point algorithm (as opposed to a dual application, which
leads to the usual ALS described above). One advantage of the PMM is that as long as M1,M2 � 0,
it manufactures strongly convex minimization problems. As a consequence, as shown in [52], it can
be proven that the generated sequence converges to a saddle point of the associated Lagrangian
to problem (CM), under mild assumptions on the problem’s data. Note that here we introduce a
positive paramater µ ∈ (0, 2) which allows to scale the step-size in the multiplier update for a larger
step-size which could enhance the overall performance of the scheme. This idea was suggested in
[27] with µ being the golden ratio in the context of the so-called ADMM (which we discuss below),
and as shown in [27], under some additional assumptions preserves the convergence of this scheme.

Clearly, the basic ALS is recovered from the PMM when M1 = M2 = 0. In that case, we need
to assume that the minimization step is well-defined, i.e., admits a nonempty solution set. This can
be warranted, for instance, under usual coercivity, or more generally through additional conditions
on the problem’s data that can be obtained through standard asymptotic (recession) analysis tools,
see e.g., [4]. In what follows, we always assume that the minimization steps are well-defined.

Remark 3.1. It should be noted that actually, the augmented Lagrangian Lρ already includes a
quadratic proximal term with respect to the variable v, and therefore we could avoid giving an
additional proximal term for this variable. However, sometimes the model (CM) can be described
through a more general linear constraint of the form Fu+Gv = b, for which it can then be useful
to add a proximal term for the v variable. For simplicity of exposition, we have adopted here the
simpler formulation of the form Fu = v, i.e., G = −I and b = 0, which in general is sufficient to
describe most applications of interest. All our results can be adapted for the more general linear
constraint. Thus, for the sake of completeness, and potential use within the more general linear
constraint, here we will keep the proximal terms for both variables u and v.

Much like the classical ALS, a main drawback of the PMM is that for convex problems like
model (CM), which exhibit nice separability in the variables u and v, the presence of the coupling
quadratic term Q (u, v) := ‖Fu− v‖2 destroys it. Thus, on the practical side, this renders the joint
minimization a very difficult or impossible computational task. Nevertheless, as we shall see below,
the PMM remains of central importance from the theoretical perspective.

To overcome the just alluded difficulty in the PMM, and beneficially exploit the structure
of model (CM), we now describe three classical approaches to eliminate the quadratic coupling
term which lead to the following three fundamental Lagrangian based schemes. Recall that since
the multiplier update remains the same for any Lagrangian based scheme, we only describe the
minimization steps of these methods with respect to the primal variables u and v.
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• Linearized PMM (L-PMM). This idea was developed by Chen and Teboulle [21] in the
context of the PMM. By linearizing the coupling quadratic term Q around the current it-
eration

(
uk, vk

)
, the joint minimization step of PMM splits into the favorable easier steps

(presuming as usual access to the prox maps of ϕ and h) that can be performed in parallel:

uk+1 = argminu

{
ϕ (u) +

〈
F T
(
yk + ρ

(
Fuk − vk

))
, u− uk

〉
+

1

2
‖u− uk‖2M1

}
, (3.4)

vk+1 = argminv

{
h (v) +

〈
yk + ρ

(
vk − Fuk

)
, v − vk

〉
+

1

2
‖v − vk‖2M2

}
. (3.5)

This class of algorithms is particularly useful for developing parallel methods for solving
nonlinear programs with block structures.

• Proximal Alternating Direction Method of Multipliers (PADMM). The Proximal
ADMM (with µ = 1) was introduced by Eckstein [23] (with M1 = c1I and M2 = c2I for
some c1, c2 > 0). It consists of applying the alternating minimization approach to the joint
minimization of PMM in order to eliminate the quadratic coupling:

uk+1 = argminu

{
Lρ
(
u, vk, yk

)
+

1

2
‖u− uk‖2M1

}
, (3.6)

vk+1 = argminv

{
Lρ
(
uk+1, v, yk

)
+

1

2
‖v − vk‖2M2

}
. (3.7)

The use of positive definite matrices allows for more flexibility to consider other practical
variants of PADMM (see examples below). With M1 = M2 = 0, we recover the so-called well-
known Alternating Direction of Multipliers (ADMM) introduced by Glowinski and Marroco
[30] and Gabay and Mercier [29]. This method has received much attention in the past and
recent literature, see e.g., [24, 11, 27, 28, 31, 60, 62, 16], and as shown in [24] ADMM is in fact a
special case of the Douglas-Rachford splitting method [22]. Actually, splitting/decomposition
methods take their origin through the work of Douglas-Rachford [22] and were developed for
the more general problem of finding the zero of the sum of two monotone operators via the
abstract setting of maximal monotone operators [52, 53, 48, 41]. We refer to the monograph
of Bauschke and Combettes [5] for an extensive and comprehensive treatment within the
general operator setting, and references therein.

• Linearized PADMM (L-PDAMM). Here, we combine both strategies above, namely
linearization and alternating minimization. For example, with a fixed vk, by linearizing the
quadratic coupling term u → 2−1ρ‖Fu − vk‖2 around the current iteration uk, we obtain a
Linearized PADMM

uk+1 = argminu

{
ϕ (u) + ρ

〈
F T
(
Fuk − vk

)
, u− uk

〉
+

1

2
‖u− uk‖2M1

}
, (3.8)

vk+1 = argminv

{
Lρ
(
uk+1, v, yk

)
+

1

2
‖v − vk‖2M2

}
. (3.9)

Here, the v-step is simple as long as the function h is proximal “friendly”. However, in
the presence of a more general constraint (see Remark 3.1), we could also use a linearizing
technique in this step to derive a simple step.

He and Yuan [32] was the first work proving ergodic global rate of convergence for PADMM and
L-PADMM through a variational inequality framework. Shefi and Teboulle [56] provide a unified
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analysis to establish ergodic global rate of convergence for L-PMM and PADMM and L-PADMM,
and also show that the latter includes the algorithm of Chambolle and Pock [19].

We will now show that all the above methods (and other variants) can be seen through the
lens of one simple scheme, which in turn leads to derive a simplified proof technique and unified
analysis to establish their convergence properties.

3.3 One Scheme for All: A Perturbed PMM and its Global Rate Analysis

Main observation: The just described PMM, L-PMM, PADMM and L-PADMM schemes (and
other possible variants) can simply be recovered and analyzed at once, through what we call a
Perturbed PMM that we introduce next.

Before proceeding, for simplicity of exposition it will be convenient to use the following compact
notations.

• Let ξ := (u, v), and L := (F,−Im). Then, problem (CM) reads

min
{

Ψ (ξ) : Lξ = 0, ξ ∈ Rd × Rm
}
≡ min {Ψ (ξ) : ξ ∈ F} ,

with objective Ψ (ξ) := ϕ (u) + h (v), and feasible set F =
{

(u, v) ∈ Rd × Rm : Fu = v
}
≡{

ξ ∈ Rd × Rm : Lξ = 0
}

.

• M := Diag(M1,M2), is the diagonal block matrix with diagonal blocks M1 and M2.

• For any sequence
{(
uk, vk, yk

)}
k∈N and any integer N ≥ 1, we define the corresponding

ergodic sequence
{(

uN ,vN ,yN
)}

N∈N by

uN =
1

N

N−1∑
k=0

uk+1, vN =
1

N

N−1∑
k=0

vk+1, yN =
1

N

N−1∑
k=0

yk+1, and ξN = (uN ,vN ). (3.10)

• For any matrix P ∈ Sq+, any k ≥ 0 and any three vectors a, ak, ak+1 ∈ Rq, we define

∆k (a, P ) :=
1

2

∥∥∥a− ak∥∥∥2
P
− 1

2

∥∥∥a− ak+1
∥∥∥2
P
. (3.11)

When P ≡ Iq, the identity matrix, we simply write ∆k (a, Iq) ≡ ∆k (a).

With these notations at hand, we introduce the following main scheme, which stands at the heart
of our ability to unify the analysis of all the four mentioned methods.

Perturbed PMM

1. Input: M = Diag(M1,M2), with M1 ∈ Sd+, M2 ∈ Sm+ and µ ∈ (0, 2).

2. Initialization: Start with any (ξ0, y0) ≡
(
u0, v0, y0

)
∈ Rd × Rm × Rm.

3. Main step: For k = 0, 1, . . . generate the sequence
{(
uk, vk, yk

)}
k∈N as follows:

choose dk ∈ Rd×m and compute

ξk+1 = argminξ

{
Lρ
(
ξ, yk

)
+
〈
dk, ξ

〉
+

1

2
‖ξ − ξk‖2M

}
, (3.12)

yk+1 = yk + µρLξk+1. (3.13)
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The perturbation vector dk, k ∈ N, plays a central role that will be made clearer later. In fact
below we will show that besides the PMM, which is obviously obtained with dk ≡ 0, k ∈ N, all
fundamental Lagrangian based schemes described above can be simply recovered and analyzed at
once, through a proper choice of the vector dk, of the matrix M and of the parameter µ.

The forthcoming simple result on the Perturbed PMM is essentially the key to establish the
main convergence properties of all the Lagrangian based algorithms just discussed above.

Lemma 3.2 (Fundamental Estimate for the Perturbed PMM). Let {(ξk, yk)}k∈N be a sequence
generated by the Perturbed PMM. For any ξ ∈ F and y ∈ Rm, we have

L
(
ξk+1, y

)
− L (ξ, y) ≤ ∆k (ξ,M) +

1

µρ
∆k (y) +Rk (ξ,M) , (3.14)

where Rk (ξ,M) := −1
2‖ξ

k+1 − ξk‖2M −
(

2−µ
2µ2ρ

)
‖yk+1 − yk‖2 −

〈
dk, ξk+1 − ξ

〉
.

Proof. Let S (ξ) =
〈
yk, Lξ

〉
+ ρ

2‖Lξ‖
2 +

〈
dk, ξ

〉
. Then, within our compact notations, the primal

iteration (3.12) reads:

ξk+1 = argminξ

{
Ψ (ξ) + S (ξ) +

1

2
‖ξ − ξk‖2M

}
.

Invoking Lemma 2.3 with the above functions Ψ and S, we obtain for any ξ ∈ Rd × Rm

Ψ
(
ξk+1

)
−Ψ (ξ) +

〈
yk + ρLξk+1, Lξk+1 − Lξ

〉
+
〈
dk, ξk+1 − ξ

〉
≤ ∆k (ξ,M)− 1

2
‖ξk+1 − ξk‖2M .

Since L
(
ξ, yk

)
= Ψ (ξ) +

〈
yk, Lξ

〉
, the above can be written as,

L
(
ξk+1, yk

)
−L

(
ξ, yk

)
−ρ
〈
Lξk+1, Lξ

〉
+
〈
dk, ξk+1 − ξ

〉
≤ ∆k (ξ,M)−1

2
‖ξk+1−ξk‖2M−ρ‖Lξk+1‖2.

Therefore, for any ξ ∈ F (i.e., with Lξ = 0), using the multiplier update (see (3.13)), the above
reduces to

L
(
ξk+1, yk

)
− L

(
ξ, yk

)
+
〈
dk, ξk+1 − ξ

〉
≤ ∆k (ξ,M)− 1

2
‖ξk+1 − ξk‖2M −

1

µ2ρ
‖yk+1 − yk‖2.

On the other hand, using again (3.13), followed by the three points identity, we have

L
(
ξk+1, y

)
−L

(
ξk+1, yk

)
= 〈y−yk, Lξk+1〉 =

1

µρ
〈y−yk, yk+1−yk〉 =

1

µρ
∆k (y)+

1

2µρ
‖yk+1−yk‖2.

Adding the two relations above and collecting terms, we obtain for any ξ ∈ F and any y ∈ Rm,

L
(
ξk+1, y

)
− L

(
ξ, yk

)
≤ ∆k (ξ,M) +

1

µρ
∆k (y) +Rk (ξ,M) ,

where

Rk (ξ,M) = −1

2
‖ξk+1 − ξk‖2M −

(
2− µ
2µ2ρ

)
‖yk+1 − yk‖2 −

〈
dk, ξk+1 − ξ

〉
.

Noting that L
(
ξ, yk

)
≡ L (ξ, y) for any ξ ∈ F , the proof is completed.
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The Residual Bound. As we shall see, the quantity

Rk (ξ,M) := −1

2
‖ξk+1 − ξk‖2M −

(
2− µ
2µ2ρ

)
‖yk+1 − yk‖2 −

〈
dk, ξk+1 − ξ

〉
, (3.15)

as derived in Lemma 3.2, governs the rate of convergence analysis of the perturbed PMM, and
hence of all the four methods described above. For that purpose, we will just need to verify the
following assumption, which will be shown to hold true for any of the well-known Lagrangian based
schemes, by simply choosing an adequate matrix M .

Assumption R. For any ξ ∈ F , and any integer N ≥ 1, there exists a nonnegative constant Cρ (ξ)
such that:

N−1∑
k=0

Rk (ξ,M) ≤ Cρ (ξ)

2
.

Note that the constant Cρ (·) is, of course, independent of N . It will determine the value of the
constant in the bound of the efficiency estimate (rate of convergence) of each method. As an
appetizer, for the PMM, we clearly have dk = 0, k ∈ N, and hence since µ ∈ (0, 2), from (3.15) we
obviously have that Rk (ξ,M) ≤ 0, and hence Assumption R trivially holds with Cρ (ξ) ≡ 0.

We are now ready to state and prove the main rate of convergence result for the perturbed
PMM.

Theorem 3.1 (An O(1/N) Rate of Convergence for the Perturbed PMM). Let {(ξk, yk)}k∈N be
a sequence generated by the Perturbed PMM, and let (ξ∗, y∗) be a saddle point of problem (CM).
Assume that Assumption R holds. Then, for any integer N ≥ 1, and any positive α > 0 such that
α ≥ 2‖y∗‖, we have

Ψ
(
ξN
)
−Ψ (ξ∗) ≤ Bρ,α (ξ∗,M)

2N
, (3.16)

‖LξN‖ ≤ Bρ,α (ξ∗,M)

αN
, (3.17)

where Bρ,α (ξ∗,M) := ‖ξ∗ − ξ0‖2M + Cρ (ξ∗) + 1
µρ

(
‖y0‖+ α

)2
.

Proof. Applying Lemma 3.2, and summing (3.14) over k = 0, 1, . . . , N − 1, it follows that for any
ξ ∈ F and y ∈ Rm,

N−1∑
k=0

L
(
ξk+1, y

)
−NL (ξ, y) ≤ 1

2
‖ξ − ξ0‖2M +

1

2µρ
‖y − y0‖2 +

N−1∑
k=0

Rk (ξ,M) .

Since ξ → L (ξ, y) is convex, thanks to Jensen’s inequality, and Assumption R, it follows that

L
(
ξN , y

)
− L (ξ, y) ≤ 1

2N

(
‖ξ − ξ0‖2M +

1

µρ
‖y − y0‖2 + Cρ (ξ)

)
, ∀ ξ ∈ F , ∀ y ∈ Rm.

Recalling our compact notations, and the definition of L, applying the latter at ξ = ξ∗ ∈ F we get:

Ψ(ξN )−Ψ(ξ∗) + 〈y, LξN 〉 ≤ 1

2N

(
‖ξ∗ − ξ0‖2M + Cρ (ξ∗) +

1

µρ
‖y − y0‖2

)
, ∀ y ∈ Rm.

Maximizing both sides of this inequality over ‖y‖ ≤ α, we thus obtain,

Ψ
(
ξN
)
−Ψ (ξ∗) + α‖LξN‖ ≤ 1

2N
Bρ,α (ξ∗,M) ,

with Bρ,α (ξ∗,M) = ‖ξ∗ − ξ0‖2M + Cρ (ξ∗) + 1
µρ

(
‖y0‖+ α

)2
, and the first assertion (3.16) follows.

Since, α ≥ 2‖y∗‖, applying Lemma 3.1 with δ := (2N)−1Bρ,α(ξ∗,M), proves the second assertion
(3.17).
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This generic rate of convergence result is all we need to derive rate of convergence for the four
fundamental Lagrangian based schemes mentioned above, as well as other variants , cf. Remark
3.2.

3.4 Special Cases of the Perturbed PMM: Fundamental Schemes

In order to apply the result obtained above on various Lagrangian based schemes, we need to
identify the perturbation vector dk (used in step (3.12)) in each method, namely to cast each
method as a particular case of the perturbed PMM, and then verify for each case that Assumption
R holds. Let us illustrate this on the PADMM.

Writing the optimality conditions of the two primal steps of the PADMM (see (3.6) and (3.7))
we get {

0 ∈ ∂ϕ
(
uk+1

)
+ F T

(
yk + ρ

(
Fuk+1 − vk

))
+M1

(
uk+1 − uk

)
,

0 ∈ ∂h
(
vk+1

)
− yk − ρ

(
Fuk+1 − vk+1

)
+M2

(
vk+1 − vk

)
,

which is equivalent to{
0 ∈ ∂uLρ

(
uk+1, vk+1, yk

)
+ ρF T

(
vk+1 − vk

)
+M1

(
uk+1 − uk

)
,

0 ∈ ∂vLρ
(
uk+1, vk+1, yk

)
+M2

(
vk+1 − vk

)
.

The last two inclusions simply read

ξk+1 = argminξ

{
Lρ
(
ξ, yk

)
+
〈
dk, ξ

〉
+

1

2
‖ξ − ξk‖2M

}
, with dk ≡

(
ρF T

(
vk+1 − vk

)
,0
)
,

thus showing that the PADMM is a particular instance of the perturbed PMM. The next result
shows that Assumption R holds.

Lemma 3.3 (Residual Bound for PADMM). Let
{(
uk, vk, yk

)}
k∈N be a sequence generated by

PADMM. Then, for any M1,M2 � 0, and any 0 < µ < 2 − ρ (ρ+ λmin(M2))
−1, we have Cρ (ξ) =

ρ‖v∗ − v0‖2 for every ξ ∈ F .

Proof. As just shown above, here we have that dk ≡
(
ρF T

(
vk+1 − vk

)
,0
)
, and hence in this case

for all ξ ∈ F

Rk (ξ,M) = −1

2
‖ξk+1 − ξk‖2M −

(
2− µ
2µ2ρ

)
‖yk+1 − yk‖2 − ρ

〈
vk+1 − vk, Fuk+1 − v

〉
, (3.18)

where we have used the fact that ξ ∈ F , i.e., Fu = v. Using the multiplier update, we have

ρ
〈
vk − vk+1, Fuk+1 − v

〉
= ρ

〈
vk − vk+1, vk+1 − v

〉
+ ρ

〈
vk − vk+1, Fuk+1 − vk+1

〉
= ρ∆k (v)− ρ

2
‖vk+1 − vk‖2 +

1

µ

〈
vk − vk+1, yk+1 − yk

〉
≤ ρ∆k (v)− 1

2

(
ρ− 1

s

)
‖vk+1 − vk‖2 +

s

2µ2
‖yk+1 − yk‖2,

where the last inequality follows from using the fact: 〈a, b〉 ≤ (s/2) ‖a‖2 +(1/2s) ‖b‖2 for any s > 0.
Plugging this into (3.18) yields (recalling the definition of M and ξ)

Rk (ξ,M) ≤ ρ∆k (v)− 1

2
‖uk+1−uk‖2M1

− 1

2µ2

(
2− µ
ρ
− s
)
‖yk+1−yk‖2− 1

2
‖vk+1−vk‖2M2+(ρ−1/s)I .
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Since µ ∈ (0, 2), by taking s := (2− µ) /ρ > 0, we get

M2 +

(
ρ− 1

s

)
I = M2 +

(
ρ− ρ

2− µ

)
I � 0 whenever 0 < µ < 2− ρ

ρ+ λmin(M2)
.

Thus, it follows from the above inequality that Rk (ξ,M) ≤ ρ∆k (v) and hence

N−1∑
k=0

Rk (ξ,M) ≤ ρ

2

N−1∑
k=0

(
‖v − vk‖2 − ‖v − vk+1‖2

)
=
ρ

2

(
‖v − v0‖2 − ‖v − vN‖2

)
≤ ρ

2
‖v − v0‖2,

proving that Cρ (ξ) = ρ‖v − v0‖2.

From here, applying Theorem 3.1, we immediately get the rate of convergence of PADMM with
its bound constant by plugging the obtained value for Cρ (ξ). Similarly, the same can be easily
done for all the other decomposition schemes, which can be shown to be particular instances of
the perturbed PMM. We omit the details, and just summarize below the results that can be easily
verified for these methods.

• PMM: dk = (0,0) with any M1,M2 � 0 and µ ∈ (0, 2). Then, we have Cρ (ξ∗) = 0.

• Linearized PMM: dk = ρ
(
F T
(
vk+1 − vk

)
, F
(
uk+1 − uk

))
with any

M1 = P − ρF TF and M2 = Q− ρI,

where λmin(P ) ≥ λmax(F TF ) and λmin(Q) ≥ ρ. Then, for any 0 < µ < 2− t where

t = 2ρ ·max

{
1

ρ+ λmin(M2)
,

λmax(F TF )

ρλmax(F TF ) + λmin(M1)

}
,

we have Cρ (ξ) = ρ‖u∗ − u0‖2
FTF

+ ρ‖v∗ − v0‖2

• Proximal ADMM: dk = ρ
(
F T
(
vk+1 − vk

)
,0
)

with any M1,M2 � 0. Then, for any

0 < µ < 2− ρ (ρ+ λmin(M2))
−1, we have Cρ (ξ) = ρ‖v∗ − v0‖2.

• Linearized PADMM: dk = ρ
(
F T
(
vk+1 − vk

)
,0
)

with any M1 = P − ρF TF (where

λmin(P ) ≥ λmax(F TF )) and M2 � 0. Then, for any 0 < µ < 2 − ρ (ρ+ λmin(M2))
−1, we

have Cρ (ξ) = ρ‖v∗ − v0‖2.

Remark 3.2. Other combinations of the above scenarios can be similarly derived. For instance,
it is also easy to consider a variant of the perturbed PMM for the case where the function ϕ is
smooth with a Lipschitz continuous gradient. In that case we can linearize the function ϕ, and
then we can use the well-known descent lemma, to adapt the bound in the key estimate of Lemma
3.2, and from there derive the corresponding O(1/N) rate from Theorem 3.1. Finally, note that
the global pointwise convergence of the described algorithms can also be derived as a by-product
of the above analysis using classical arguments. For sake of brevity we omit the details.

4 The Nonconvex Setting

We are back to our general nonconvex and nonlinear composite model

(M) min
u∈Rd

{Φ (u) ≡ ϕ (u) + h (F (u))} ,

with the following problem data:
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• ϕ : Rd → R is a continuously differentiable function.

• h : Rm → (−∞,+∞] is a proper and lower semi-continuous function.

• F : Rd → Rm (m ≤ n) is a continuously differentiable map.

As exemplified in subsection 2.3, this structure is very flexible and captures many fundamental
optimization problems arising in disparate applications. As opposed to the development and anal-
ysis of Lagrangian based schemes in the convex setting, the nonconvex model is much harder and
quite challenging, and the literature remains scarce. Not only the lack of convexity already renders
the problem difficult, but also the nonlinear nature of the map F (·), which in turn adds severe
difficulties preventing us to apply the tools and approaches used in the convex setting. In this
section, we briefly describe some very recent results as developed in Bolte et al. [15], highlighting
the main difficulties, and outlining a general abstract approach, which paves the way to analyze
Lagrangian based methods for the general nonconvex model (M).

4.1 The Nonconvex Nonlinear Composite Optimization - Preliminaries

As explained in section 2, we first reformulate problem (M) in the equivalent split form:

(M) min
u∈Rd,v∈Rm

{ϕ (u) + h (v) : F (u) = v} .

The classical Lagrangian L : Rd × Rm × Rm → (−∞,+∞] is defined, as before, by

L (u, v, y) ≡ ϕ (u) + h (v) + 〈y, F (u)− v〉 ,

and the associated augmented Lagrangian is defined as follows

Lρ (u, v, y) := ϕ (u) + h (v) + 〈y, F (u)− v〉+
ρ

2
‖F (u)− v‖2 ,

where ρ > 0 is a penalty parameter.

To ensure the well-posedness of the algorithms to come, we assume for any fixed y ∈ Rm, that

inf
u,v
Lρ (u, v, y) > −∞.

To work with nonconvex functions we need some appropriate subdifferentials that we now record.
All these results can be found in greater details in the book of Rockafellar and Wets [54].

Definition 4.1 (Subdifferentials). Let ψ : Rd → (−∞,+∞] be a proper and lower semi-continuous
function with domψ :=

{
z ∈ Rd : ψ (z) <∞

}
.

(i) For a given z ∈ domψ, the Frechet subdifferential of ψ at z, denoted by ∂̂ψ (z) is the set of
all vectors v ∈ Rd satisfying

lim inf
x→z
x 6=z

ψ (x)− ψ (z)− 〈v, x− z〉
‖x− z‖

≥ 0.

(ii) The limiting subdifferential of ψ at z, denoted by ∂ψ (z) is the set of all vectors v ∈ Rd for
which there exist two sequences {zk}k∈N and {vk}k∈N such that vk ∈ ∂ψ

(
zk
)

and

lim
k→∞

(
zk, ψ

(
zk
)
, vk
)

= (z, ψ (z) , v) .
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(iii) The horizon subdifferential of ψ at z, denoted by ∂∞ψ (z) is the set of all vectors v ∈ Rd
for which there exist a sequence of real numbers {tk}k∈N such that limk→∞ tk = 0 and two
sequences {zk}k∈N and {vk}k∈N such that vk ∈ ∂ψ

(
zk
)

and

lim
k→∞

(
zk, ψ

(
zk
)
, tkv

k
)

= (z, ψ (z) , v) .

To ensure the validity of calculus rules for problem (M), we need to assume a constraint quali-
fication. We record below a central one that is relevant to our model (M).

Assumption B. The following constraint qualification condition holds for problem (M),

[CQ] ∇F (u)T z = 0, z ∈ ∂∞h (F (u)) =⇒ z = 0.

In the classical nonlinear programming case, which is a special case of model (M), (cf. Example
1 in section 2.3), the general condition [CQ] simply reduces to the classical Mangasarian-Fromovitz
constraint qualification condition: there is no vector z 6= 0, which satisfies ∇F (u)T z = 0.

The condition [CQ] is also crucial to guarantee the subdifferential calculus rules and the chain
rule, which are needed to write the first order optimality condition for model (M). More precisely,
if u is a local minimum of problem (M) satisfying condition [CQ], then there exists z ∈ Rm such
that ∇ϕ (u) + ∇F (u)T z = 0 with z ∈ ∂h (F (u)). Thus, for model (M), under [CQ], the set of
critical points of problem (M) reads as:

crit Φ =
{
u ∈ Rd : 0 ∈ ∇ϕ (u) +∇F (u)T ∂h (F (u))

}
.

Next, we introduce a fundamental and classical concept of regularity needed to handle the
nonlinearity of the map F (·), see Milnor [46].

Definition 4.2 (Uniform Regularity). Let Ω ⊂ Rd be an open set, F : Ω→ Rm be a C1 map, and
∅ 6= S ⊂ Ω. The mapping F is uniformly regular on S with constant γ > 0 if the following holds:∥∥∥∇F (u)T v

∥∥∥ ≥ γ ‖v‖ , ∀u ∈ S, v ∈ Rm.

For a given u ∈ Ω, we can equivalently define

γ (F, u) := min
{∥∥∥∇F (u)T v

∥∥∥ : ‖v‖ = 1
}
,

and that γ (F, u) is nonzero means, that ∇F (u) is surjective, or that ∇F (u)∇F (u)T is positive
definite.

A main issue in Lagrangian based methods is to handle simultaneously the penalty parameter,
the data constants and the constraint qualification condition. However, as we know, augmented
Lagrangian methods are based on relaxing the classical Lagrangian, and hence are obviously un-
feasible. The looser is the relaxation, the more unfeasible is the method. The looseness of the
relaxation is measured through the penalty parameter ρ, which is used to penalize the constraint
F (u) = v in Lρ, namely:

lim
ρ→+∞

Lρ (u, v, y) =

{
ϕ (u) + h (F (u)) , if F (u) = v,

+∞, otherwise.

While in the convex setting, and with a linear map F , we can globally control the behavior of the
points generated by a Lagrangian based scheme, in the nonconvex and nonlinear setting, the lack
of feasibility creates new and severe difficulties in the sense that an unfeasible method generates
points that might be out of control, inducing three major obstacles:
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• Constraint qualification condition may fail.

• Problem’s data input, such as global Lipschitz constants, may become unknown, or out of
reach.

• The inherent min-max dynamics of Lagrangian based methods clearly imply that the aug-
mented Lagrangian function alternatively increases and decreases. Therefore, we can not
warrant/measure the crucial descent property needed in the convergence analysis through it.

In the forthcoming subsection, we describe the key ideas and building blocks of the theory, which
allow to address these three main obstacles.

4.2 ALBUM - Adaptive Lagrangian Based MUltiplier Method

In the remaining parts of this section, we have briefly outlined the fundamental ideas and theoretical
tools that were developed in [15], and we refer the reader to that work for the specific details, proofs,
more results and references.

The main underlying ideas allowing us to address the alluded obstacles rely on the following
ingredients:

• Define an information zone to be a region for which regularity is under control and data
constants are known.

• Build a generic Lagrangian based scheme with an adaptive regime aiming at detecting the
information zone, and forcing the iterates to enter and stay within this zone.

• Once the the zone is found, using the adaptive regime, detect an adequate Lyapunov function
ensuring the necessary descent properties.

We start by introducing the notion of information zone, which is in fact an enlargement of the
feasible set.

Definition 4.3 (Information Zone – Enlargement of the Feasible Set). An information zone is a
subset Z of Rd such that there exists d̄ ∈ (0,+∞] for which

Z ⊃
{
u ∈ Rd : dist (F (u) ,domh) ≤ d̄

}
⊃ F ,

where F =
{
u ∈ Rd : F (u) ∈ domh

}
is the feasible set of problem (M).

Equipped with an information zone Z, our second assumption for problem (M) is local regularity
and local smoothness (with respect to the information zone) of the problem’s data.

Assumption C. (i) F is uniformly regular over Z with positive constant γ,

(ii) ∇F is L(F ) Lipschitz continuous over Z,

(iii) ∇ϕ is L(ϕ) Lipschitz continuous over Z.

Throughout the rest of this section, we assume that Assumptions B and C hold.

Our next ingredient is to introduce an adequate Lyapunov function that will allow us to measure
the descent property of the proposed scheme, which due to the min-max dynamics of Lagrangian
based methods, cannot be detected through the usual augmented Lagrangian function.
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Definition 4.4 (A Lyapunov Function). Fix β > 0 and w ∈ Rd. The function Eβ (·), which is
defined by

Eβ (u, v, y, w) := Lρ (u, v, y) + β ‖u− w‖2 ,

is called a Lyapunov function associated to problem (M).

The next result records the key fact showing that Eβ can be beneficially used to identify critical
points of the original problem (M).

Proposition 4.1 (Critical Points Relationships). [15, Proposition 1]. The following implications
hold for all β, ρ > 0

(u, v, y, u) ∈ crit Eβ =⇒ (u, v, y) ∈ critLρ =⇒ u ∈ crit Φ.

Both the information zone and the Lyapunov function Eβ just defined above, will come into
play in a dynamical (adaptive) fashion in the forthcoming algorithm. As already seen, a typical
Lagrangian based method is given by(

u+, v+
)
∈ Aρ (u, v, y) ,

y+ = y + ρ
(
F
(
u+
)
− v+

)
,

where Aρ stands for any minimization black-box map, while the multiplier update y+ remains the
same for any Lagrangian based scheme. We now formalize the definition of the map Aρ, which
captures the mechanism that will essentially govern the convergence of a generic Lagrangian based
scheme, and play an essential role in controlling the relevant parameters in our generic Adaptive
Lagrangian Based mUltiplier Method (ALBUM).

Definition 4.5 (Lagrangian Algorithmic Map). A map Aρ : Rd × Rm × Rm → Rd × Rm is called
a Lagrangian algorithmic map if there exist two constants a, b > 0 such that

(i)
a

2

∥∥u+ − u∥∥2 + Lρ
(
u+, v+, y

)
≤ Lρ (u, v, y) ,

and
(ii)

∥∥∇uLρ (u+, v+, y)∥∥ ≤ b∥∥u+ − u∥∥ .
Note that once we choose the map Aρ, it fully determines the constants a and b. These

constants might depend on the problem’s data input or/and other algorithmic constants. This will
be illustrated later on. With the above framework, we are now ready to state our generic adaptive
Lagrangian based multiplier method.
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Adaptive Lagrangian Based mUltiplier Method – ALBUM

1. Input: Aρ an algorithmic map, with the corresponding parameters a, b > 0.

2. Initialization: Fix δ, ρ0 > 0 and start with any
(
u0, v0, y0

)
where u−1 ≡ u0.

3. Main step: For k = 0, 1, . . . generate the sequence
{(
uk, vk, yk

)}
k∈N as follows

3.1. Primal step (
uk+1, vk+1

)
∈ Aρk

(
uk, vk, yk

)
.

3.2. Multiplier step
yk+1 = yk + ρk

(
F
(
uk+1

)
− vk+1

)
.

3.3. Adaptive step: choose τ ∈
(
0, a2
)
, set βk := b2

ρkγ
, and compute

∆βk := Eβk
(
uk, vk, yk, uk−1

)
− Eβk

(
uk+1, vk+1, yk+1, uk

)
.

If uk+1 /∈ Z or τ
∥∥uk+1 − uk

∥∥2 > ∆βk , set ρk+1 = ρk + δ. Otherwise, set ρk+1 = ρk.

4.3 A Methodology for Global Analysis of Lagrangian Based Methods

Basically, ALBUM aims at forcing uk to enter the information zone Z in finitely many steps
and stay there. The adaptive protocol essentially turns ALBUM into a descent scheme for the
Lyapunov function Eβ: it leads to a finite identification of the zone Z, and warrants sufficient
descent of Eβ through the adaptive step of ALBUM. This crucial adaptive step relies on detecting
weak feasibility, in the sense that we ask for uk ∈ Z, and not for actual feasibility, which would be
obviously impossible given the inherent nonfeasibility of a Lagrangian based scheme! Moreover, it
detects a descent property for Eβ (and again clearly not possible for Lρ!), which implicitly tunes
the algorithm to match the natural step-sizes attached to ϕ and F .

A main remaining ingredient to derive convergence results for ALBUM is then a fundamental
definition characterizing the required properties of a sequence generated by ALBUM, which is
called a Lagrangian sequence.

Definition 4.6 (Lagrangian Sequence). A sequence {wk}k∈N :=
{(
uk, vk, yk

)}
k∈N generated by

ALBUM is called a Lagrangian sequence, if it satisfies the following conditions:

C1 There exists a positive constant a such that

a

2

∥∥∥uk+1 − uk
∥∥∥2 + Lρk

(
uk+1, vk+1, yk

)
≤ Lρk

(
uk, vk, yk

)
, ∀ k ≥ 0.

C2 There exists a positive constant b such that∥∥∥∇uLρk (uk+1, vk+1, yk
)∥∥∥ ≤ b∥∥∥uk+1 − uk

∥∥∥ , ∀ k ≥ 0.

C3 There exists a positive constant c and qk+1 ∈ ∂vLρk
(
uk+1, vk+1, yk

)
such that∥∥∥qk+1

∥∥∥ ≤ c∥∥∥uk+1 − uk
∥∥∥ , ∀ k ≥ 0.

C4 Let v̄ be a limit point of a subsequence
{
vk
}
k∈K of {vk}k∈N, then lim supk∈K⊂N h

(
vk
)
≤ h (v̄).
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Before proceeding, we make the following remarks regarding conditions C1 – C4.

• Thanks to the definition of the Lagrangian algorithmic map Aρ, once the map is chosen,
conditions C1 and C2 immediately hold for the sequence {wk}k∈N.

• Condition C1 is actually a partial descent property of the augmented Lagrangian Lρ (·) only
with respect to the primal variable u:

a

2

∥∥∥uk+1 − uk
∥∥∥2 + Lρk

(
uk+1, vk+1, yk

)
≤ Lρk

(
uk, vk, yk

)
, ∀ k ≥ 0.

It pertains to the primal variables (u, v), since by nature the multiplier y is an “ascent
variable”.

• Conditions C2 and C3 provide (sub)gradient bounds of the augmented Lagrangian Lρ (·)
with respect to both primal variables (u, v).

• Condition C4 is a simple sequential assumption on h, it holds, e.g., when h : domh → R is
continuous.

We are now ready to state the main convergence results for ALBUM proven in [15, Theorems
1 and 2] which we record in the following theorem.

Theorem 4.1 (Sequential and Global Convergence). Let {wk}k∈N be generated by ALBUM that
satisfies conditions C1 – C4, i.e., a Lagrangian sequence. Assume that the sequence {wk}k∈N is
bounded. Then the following two assertions hold:

(i) (Subsequence convergence). Let (ū, v̄, ȳ) be a limit point of {wk}k∈N. Then, ū is a critical
point of problem (M).

(ii) (Global convergence). Assume that ϕ, F and h are semi-algebraic. Then, the whole sequence
{wk}k∈N converges to (ū, v̄, ȳ) where ū is a critical point of problem (M).

Note that the second part of the theorem above establishes global convergence, i.e., the whole
sequence generated by ALBUM converges to a critical point of problem (M) with semi-algebraic
data.2 This relies on the fundamental nonsmooth version of the so-called Kurdyka- Lojasiewicz
property. The KL property was introduced in the seminal works [42, 37] for the smooth case, and
[12, 13] for the nonsmooth case, the later includes an in depth study of KL functions and many
relevant references. The KL property is a crucial ingredient toward the global convergence analysis
of descent schemes [3, 14]. A general methodology to prove global convergence of descent methods
is derived in the work of Bolte, Sabach and Teboulle [14] which relies on a key uniformization of
the KL property [14, Lemma 6, p. 478]. While verifying the KL property of a given function is
often a very difficult task, it holds for the class of semi-algebraic functions, which are ubiquitous in
many applications (see [14] for examples), thus making the KL property a powerful tool for proving
convergence of descent schemes for semi-algebraic problems. The central result establishing that
KL holds for the broad class of semi-algebraic functions was derived in the seminal work of Bolte,
Daniilidis and Lewis [12].

2Recall that a subset S of Rd is real semi-algebraic set if constructible by finite systems of polynomial inequalities,
and that a function is semi-algebraic if its graph is semi-algebraic.
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4.4 ALBUM in Action: Global Convergence of Lagrangian Based Schemes

Now we illustrate the application of ALBUM on the two classical schemes PMM and Proximal
ADMM, previously studied in the convex case (see section 3). To this end, in order to put these
two methods in the general framework of ALBUM, we need first to identify the corresponding
algorithmic maps Aρ that update the primal variables u and v (recall that the multiplier update
remains identical for any Lagrangian based scheme).

A Proximal Multipliers Method (PMM)(
uk+1, vk+1

)
∈ argmin(u,v)

{
Lρ
(
u, v, yk

)
+

1

2

∥∥∥u− uk∥∥∥2
M1

}
, (M1 � 0).

It is clear that in this case, the map Aρ stands for the joint minimization of the (partial) proximal
counterpart of the augmented Lagrangian Lρ3.

A Proximal Alternating Direction Method of Multipliers (PADMM)

vk+1 ∈ argminvLρ
(
uk, v, yk

)
,

uk+1 ∈ argminu

{
Lρ
(
u, vk+1, yk

)
+

1

2

∥∥∥u− uk∥∥∥2
M1

}
, (M1 � 0).

In this case we obviously have that the map Aρ consists of alternating minimization applied on the
(partial) proximal counterpart of the augmented Lagrangian Lρ.

It can be shown [15] that both algorithmic maps corresponding to the PMM and PADMM
schemes are Lagrangian algorithmic maps satisfying the premises of Definition 4.5 with the same
parameters:

a = λmin (M1) > 0 and b = λmax (M1) > 0, (since M1 � 0).

The adaptive version of both methods is obtained from ALBUM through their corresponding
maps Aρ just described above. In order to derive the global convergence of any bounded sequence
generated by these two adaptive versions to critical points of problem (M), we need to ensure
that both methods are producing Lagrangian sequences, i.e., that conditions C1 – C4 hold (cf.
Definition 4.6). This was proven in [15, Section 6], which we record in the following result.

Proposition 4.2. Let {wk}k∈N be a sequence generated by either the Adaptive PMM or the Adaptive
PADMM. Then, conditions C1 – C3 hold. If, in addition, {wk}k∈N is bounded, then condition C4
holds true, and hence {wk}k∈N is a Lagrangian sequence.

Equipped with this result for these adaptive versions of PMM and PADMM, we can then apply
Theorem 4.1 to obtain global convergence to critical points of problem (M) in the nonlinear and
nonconvex setting for both methods.

We end by briefly indicating other decomposition variants (as discussed previously in the convex
case) that fit into the ALBUM framework and include

• The classical ADMM. This is obtained by takingM1 = 0 in the PADMM. Under the additional
assumption that u → Lρ (u, v, y) is σ-strongly convex for any fixed v, y ∈ Rm, the global
convergence of ADMM to critical points of the nonlinear composite model (M) can be derived.

3Recall that the use of the partial version on the variable u is enough, since the variable v has a built-in proximal
term through the definition of the augmented Lagrangian.
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• The Proximal Linearized ADMM. Here the model (M) is nonconvex but, F is assumed to
be a linear map, and the condition number of FF T is strictly smaller than 2. The scheme
consists of one gradient iteration of the u-step and it reads as:

vk+1 ∈ argminvLρ
(
uk, v, yk

)
,

uk+1 ∈ argminu

{〈
u− uk,∇uLρ

(
uk, vk+1, yk

)〉
+

1

2

∥∥∥u− uk∥∥∥2
M1

}
, (M1 � 0).

Clearly, in that case, the u-step reduces to an easy explicit formula. The general convergence
results of ALBUM can then be applied to this variant, including the determination of the
penalty parameter in terms of the problem’s data, see [15] for details.
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