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1 Introduction

In this paper we consider the following general convex optimization problem

min {f (X,Y) := g (X + Y) +RX (X) +RY (Y) : X,Y ∈ E} , (1)

where E is a finite-dimensional normed vector space over the reals, g : E→ R
is assumed to be continuously differentiable and strongly convex, while RX :
E → (−∞,+∞] and RY : E → (−∞,+∞] are proper, lower semicontinuous
and convex functions which can be thought of either as regularization func-
tions, or indicator functions1 of certain closed and convex feasible sets X and
Y.

Problem (1) captures several important problems of interest, perhaps the
most well-studied is that of Robust Principal Component Analysis (PCA) [3,
14,11], in which the goal is to (approximately) decompose an m × n input
matrix M into the sum of a low-rank matrix X and a sparse matrix Y. The
underlying optimization problem for Robust PCA can be written as (see, for
instance, [11])

min

{
1

2
‖X + Y −M‖2F : ‖X‖nuc ≤ τ, ‖Y‖1 ≤ s, X,Y ∈ Rm×n

}
, (2)

where ‖·‖F denotes the Frobenius norm, ‖·‖nuc denotes the nuclear norm, i.e.,
the sum of singular values, which is a highly popular convex surrogate for
low-rank penalty, and ‖·‖1 is the entry-wise `1-norm, which is a well-known
convex surrogate for entry-wise sparsity.

Other variants of interest of Problem (2) are when the data matrix M is a
corrupted covariance matrix, in which case it is reasonable to further constrain
X to be positive semidefinite, i.e., use the constraints X � 0 and Tr(X) ≤ τ .
In the case that M is assumed to have several fully corrupted rows or columns,
a popular alternative to the `1-norm regularizer on the variable Y is to use
either the norm ‖·‖1,2 (sum of `2-norm of rows) in case of corrupted rows, or
the norm ‖·‖2,1 (sum of `2-norm of columns) in case of corrupted columns, as
a regularizer/constraint [15]. Finally, moving beyond Robust PCA, a different

choice of interest for the loss g (·) could be g (Z) := (1/2) ‖AZ−M‖2F , where
A is a linear sensing operator such that ATA is positive definite (so g (·) is
strongly convex).

In this paper we present an algorithm and analyses that build on the
special structure of Problem (1), which improve upon state-of-the-art com-
plexity bounds, under several different assumptions. A common key to all
of our results is the ability to exploit the strong convexity of g(·) to obtain
improved complexity bounds. Here it should be noted that while g (·) is as-
sumed to be strongly convex, Problem (1) is in general not strongly convex

in (X,Y). This can already be observed when choosing g (z) := 1
2 ‖z‖

2
2, and

1 An indicator function of a set is defined to be 0 in the set and +∞ outside.
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RX (·) = RY (·) = 0, where x,y ∈ Rd. In this case, denoting the overall ob-

jective as f (x,y) := 1
2 ‖x + y‖22, it is easily observed that the Hessian matrix

of f (·, ·) is given by ∇2f (x,y) = (I I)
>

(I I), and hence is not full-rank.

The fastest known convergence rate for first-order methods applicable to
Problem (1), is achievable by accelerated gradient methods such as Nesterov’s
optimal method [12] and FISTA [2], which converge at a rate of O(1/t2),
where t denoted the number of performed iterations. However, in the con-
text of low-rank matrix optimization problems such as Robust PCA, these
methods require to compute a full-rank singular value decomposition on each
iteration to update the low-rank component, which is often prohibitive for
large scale instances. A different type of first-order methods is the Conditional
Gradient (CG) Method (a.k.a Frank-Wolfe algorithm) and variants of [6–10,
17]. In the context of low-rank matrix optimization, the CG method simply
requires to compute an approximate leading singular vector pair of the nega-
tive gradient at each iteration, i.e., a rank-one SVD. Hence, in this case, the
CG method is much more scalable, than projection/proximal based methods.
However, the rate of convergence is slower, e.g., if both RX (·) and RY (·) are
indicator functions of certain closed and convex sets X and Y, then the conver-
gence rate of the conditional gradient method is of the form O((D2

X +D2
Y)/t),

where DX and DY denote the Euclidean diameter of the corresponding fea-
sible sets X and Y, where the diameter of a subset C of Rd is defined by
DC = maxx1,x2∈C ‖x1 − x2‖2.

Recently, two variants of the conditional gradient method for low-rank
matrix optimization were suggested, which enjoy faster convergence rates when
the optimal solution has low rank (which is indeed a key implicit assumption
in such problems), while requiring to compute only a single low-rank SVD on
each iteration [5,1]. However, both of these new methods require the objective
function to be strongly convex, which as we discussed above, does not hold
in our case. Nevertheless, both our algorithm and our analysis are inspired by
these two works. In particular, we generalize the low-rank SVD approach of
[1] to non-strongly-convex problems of the form of Problem (1), which include
arbitrary regularizers or constraints.

In another recent related work [11], which also serves as a motivation for
this current work, the authors considered a variant of the conditional gradient
method tailored for low-rank and robust matrix recovery problems such as
Problem (2), which combines standard conditional gradient updates of the
low-rank variable (i.e., rank-one SVD) and proximal gradient updates for the
sparse noisy component. However, both the worst-case convergence rate and
running time do not improve over the standard conditional gradient method.
Combining conditional gradient and proximal gradient updates for low-rank
models was also considered in [4] for solving a convex optimization problem
related to temporal recommendation systems.

Finally, it should be noted that while developing efficient non-convex op-
timization-based algorithms for Robust PCA with provable guarantees is an
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active subject (see, e.g., [13,16]), such works fall short in two aspects: (a)
they are not flexible as the general model (1), which allows for instance to
impose a PSD constraint on the low-rank component or to consider various
sparsity-promoting regularizers for the sparse component Y, and (b) all prov-
able guarantees are heavily based on assumptions on the input matrix M (such
as incoherence of the singular value decomposition of the low-rank component
or assuming certain patterns of the sparse component), which can be quite
limiting in practice. This work, on the other hand, is completely free of such
assumptions.

To overcome the shortcomings of previous methods applicable to Problem
(1), in this paper we present a first-order method, which combines two well-
known ideas, for tackling Problem (1). In particular we show that under several
assumptions of interest, despite the fact that the objective in Problem (1) is
in general not strongly convex, it is possible to leverage the strong convexity
of g (·) towards obtaining better complexity results, while applying update
steps that are scalable to large scale problems. Informally speaking, our main
improved complexity bounds are as follows:

1. In the case that both RX (·) and RY (·) are indicators of compact and con-
vex sets (as in Problem (2)), we obtain convergence rate ofO(min{D2

X , D
2
Y}/t).

In particular when X is constrained, for example, via a low-rank promot-
ing constraint, such as the nuclear-norm, our method requires on each
iteration only a SVD computation of rank=rank(X∗), where X∗ is part of
certain optimal solution (X∗,Y∗). This result improves (in terms of run-
ning time), in a wide regime of parameters, mainly when min{D2

X , D
2
Y} <<

max{D2
X , D

2
Y}, over the conditional gradient method which converges with

rate of O(max{D2
X , D

2
Y}/t), and over accelerated gradient methods which

require, in the context of low-rank matrix optimization problems, a full-
rank SVD computation on each iteration.

2. In the case that RY (·) is an indicator of a strongly convex set (e.g., an
`p-norm ball for p ∈ (1, 2]), our method achieves a fast convergence rate
of O(1/t2). As in the previous case, if X is constrained/regularized via
the nuclear norm, then our method only requires a SVD computation of
rank=rank(X∗). To the best of our knowledge, this is the first result that
combines an O(1/t2) convergence rate and low-rank SVD computations in
this setting. In particular, in the context of Robust PCA, such a result
allows us to replace a traditional sparsity-promoting constraint of the form
‖Y‖1 ≤ τ with ‖Y‖1+δ ≤ τ ′, for some small constant δ. Using the `1+δ-
norm instead of the `1-norm gives rise to a strongly convex feasible set and,
as we demonstrate empirically in Section 3.2, may provide a satisfactory
approximation to the `1-norm constraint in terms of sparsity.

3. In the case that either RX (·) or RY (·) are strongly convex (though not
necessarily differentiable), our method achieves a linear convergence rate.
In fact, we show that even if only one of the variables is regularized by a
strongly convex function, then the entire objective of Problem (1) becomes
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Cond. Grad.[10] FISTA [2] Algorithm 1

setting rate SVD rate SVD rate SVD

rank rank rank

τ >> s (“high SNR regime”) τ2/t 1 τ2/t2 n s2/t rank(X∗)

τ << s (“low SNR regime”) s2/t 1 s2/t2 n τ2/t 1

Y := {Y : ‖Y‖1+δ ≤ s}
max{s,τ}2

t
1

max{s,τ}2
t2

n s2n
2 1−δ
1+δ

t2
rank(X∗)

RY (Y) = λ1 ‖Y‖1 + λ2 ‖Y‖2F 1/t 1 e−Θ(
√
λ2t) n e−Θ(λ2t) rank(X∗)

Table 1: Comparison of convergence rates and iteration complexity bounds for
Robust PCA problems (see Problem (2)) with a n×n input matrix M. For all
methods the computational bottleneck is a single SVD computation to update
the variable X, hence we focus on the rank of the required SVD. For clarity
of presentation the results are given in simplified form. The dependence on n
in the rate for Algorithm 1 in the third row comes from the strong convexity
parameter of the set Y.

strongly convex in (X,Y). Here also, in the case of a nuclear norm con-
straint/regularization on one of the variables, we are able to leverage the
use of only low-rank SVD computations. In the context of Robust PCA
such a natural strongly convex regularizer may arise by replacing the `1-
norm regularization on Y with the elastic net regularizer, which combines
both the `1-norm and the squared `2-norm, and serves as a popular alter-
native to the `1-norm regularizer in LASSO.

A quick summary of the above results in the context of Robust PCA problems,
such as Problem (2), is given in Table 1. See Section 3.2 in the sequel for a
detailed discussion.

2 Preliminaries

Throughout the paper we let E denote an arbitrary finite-dimensional normed
vector space over R where ‖·‖ and ‖·‖∗ denote the primal and dual norms over
E, respectively.

2.1 Smoothness and strong convexity of functions and sets

Definition 1 (smooth function) Let f : E→ R be a continuously differen-
tiable function over a convex set K ⊆ E. We say that f is β-smooth over K with
respect to ‖·‖, if for all x,y ∈ K it holds that f (y) ≤ f (x)+〈y − x,∇f (x)〉+
(β/2) ‖x− y‖2.

Definition 2 (strongly convex function) Let f : E→ R be a continuously
differentiable function over a convex set K ⊆ E. We say that f is α-strongly
convex over K with respect to ‖·‖, if it satisfies for all x,y ∈ K that f (y) ≥
f (x) + 〈y − x,∇f (x)〉+ (α/2) ‖x− y‖2.
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The above definition combined with the first-order optimality condition im-
plies that for a continuously differentiable and α-strongly convex function f ,
if x∗ = arg minx∈K f (x), then for any x ∈ K it holds that f (x) − f (x∗) ≥
(α/2) ‖x− x∗‖2.

This last inequality further implies that the magnitude of the gradient of
f at a point x, ‖∇f (x)‖∗ is at least of the order of the square-root of the
objective value approximation error at x, that is, f (x) − f (x∗). Indeed, this
follows since√

2

α
(f (x)− f (x∗)) · ‖∇f (x)‖∗ ≥ ‖x− x∗‖ · ‖∇f (x)‖∗

≥ 〈x− x∗,∇f (x)〉
≥ f (x)− f (x∗) ,

where the second inequality follows from Holder’s inequality and the third
from the convexity of f . Thus, at any point x ∈ K, it holds that

‖∇f (x)‖∗ ≥
√
α

2
·
√
f (x)− f (x∗). (3)

Definition 3 (strongly convex set) We say that a convex set K ⊂ E is
α-strongly convex with respect to ‖·‖ if for any x,y ∈ K, any γ ∈ [0, 1]
and any vector z ∈ E such that ‖z‖ = 1, it holds that γx + (1− γ) y +

γ (1− γ) (α/2) ‖x− y‖2 z ∈ K. That is,K contains a ball of radius γ (1− γ) (α/2) ‖x− y‖2
induced by the norm ‖·‖ centered at γx + (1− γ) y.

For more details on strongly convex sets, examples and connections to opti-
mization, we refer the reader to [6].

3 Algorithm and Results

As discussed in the introduction, in this paper we study efficient algorithms
for the minimization model (1), where, throughout the paper, our blanket
assumption is as follows

Assumption 1 – g : E→ R is β-smooth and α-strongly convex.
– RX : E → (−∞,+∞] and RY : E → (−∞,+∞] are proper, lower semi-

continuous and convex functions.

It should be noted that since RX (·) (similarly for RY (·)) is assumed to be
extended-valued function, it allows the inclusion of a constraint through the
indicator function of the corresponding constraint set. Indeed, in this case one
will consider RX (X) := ιX (X), where X ⊂ E is a nonempty, closed and
convex.

We now present the main algorithmic framework, which will be used to
derive all of our results.
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Algorithm 1 Alternating Conditional Gradient Proximal Gradient Method

1: input: {ηt}t≥1 ⊂ [0, 1] - a sequence of step-sizes.
2: X1 is an arbitrary point in domRX , Y1 is an arbitrary point in domRY .
3: for t = 1, 2, . . . do
4: Wt = arg min

W∈E
{RY (W) + 〈W,∇g (Xt + Yt)〉},

5: Vt = arg min
V∈E

{
φt (V) := RX (V) + 〈V,∇g (Xt + Yt)〉+ ηtβ

2
‖V + Wt − (Xt + Yt)‖2

}
,

{in fact it suffices that φt (Vt) ≤ φt (X∗) for some optimal solution (X∗,Y∗)}
6: (Xt+1,Yt+1) = (1− ηt) (Xt,Yt) + ηt (Vt,Wt),
7: end for

Algorithm 1 is based on three well-known corner stones in continuous opti-
mization: alternating minimization, conditional gradient, and proximal gradi-
ent. Since Problem (1) involves two variables X and Y, we update each one of
them separately and differently in an alternating fashion. Indeed, the Y vari-
able is first updated using a conditional gradient step (see step (4)) and then
the alternating idea comes into a play and we use the updated information in
order to update the X variable using a proximal gradient step (see step (5))2.

3.1 Outline of the main results

Let us denote by f∗ the optimal value of the optimization Problem (1). In the
sequel we prove the following three theorems on the performance of Algorithm
1. For clarity, below we present a concise and simplified version of the results.
In section 4, in which we provide complete proofs for these theorems, we also
restate them with complete detail. In all three theorems we assume that As-
sumption 1 holds true, and we bound the convergence rate of the sequence
{(Xt,Yt)}t≥1 produced by Algorithm 1 with a suitable choice of step-sizes
{ηt}t≥1.

Theorem 1 Assume that RY := ιY where Y is a nonempty, closed and convex
subset of E. There exists a choice of step-sizes such that Algorithm 1 converges
with a rate of O

(
βD2
Y/t
)
.

Remark 1 Note that since X and Y are in principle interchangeable, The-
orem 1 implies a rate of O(βmin{D2

X , D
2
Y}/t). This improves over the rate

of O(βmax{D2
X , D

2
Y}/t) achieved by standard analyses of projected/proximal

gradient methods and the conditional gradient method.

Theorem 2 Assume RX := ιX where X is a nonempty, closed and con-
vex subset of E and RY := ιY , where Y is a strongly convex and closed

2 We note that a practical implementation of Algorithm 1 for a specific problem, such as
Problem (2), may require to account for approximation errors in the computation of Wt or
Vt, since exact computation is not always practically feasible. Such considerations which can
be easily incorporated both into Algorithm 1 and our corresponding analyses (see examples
in [10,5,1]), are beyond the scope of this current paper, and for the simplicity and clarity
of presentation, we assume all such computations are precise.
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subset of E. There exists a choice of step-sizes such that Algorithm 1 con-
verges with a rate of O(1/t2). Moreover, if there exists G > 0 such that
minX∈X ,Y∈Y ‖∇g (X + Y)‖∗ ≥ G, then using a fixed step-size, Algorithm 1
converges with a rate of O(exp(−Θ(t))).

Remark 2 While a rate of O(1/t2) for the conditional gradient method over
strongly convex sets was recently showed to hold in [6], it should be noted that
it does not apply in the case of Theorem 2, since only the set Y is assumed
to be strongly convex. In particular, both the set of sums X +Y ⊂ E and the
product set X × Y ⊂ E×E need not be strongly convex.

Theorem 3 Assume that RY(·) is strongly convex. Then, there exists a fixed
step-size such that Algorithm 1 converges with a rate of O(exp(−Θ(t))).

3.2 Putting our results in the context of Robust PCA problems

As discussed in the Introduction, this work is mostly motivated by low-rank
matrix optimization problems such as Robust PCA (see Problem (2)). Thus,
towards better understanding of our results for this setting, we now briefly
detail the applications to Problem (2). As often standard in such problems,
we assume that there exists an optimal solution (X∗,Y∗) such that the signal
matrix X∗ is of rank at most r∗, where r∗ << min{m,n}3.

3.2.1 Using low-rank SVD computations

Note that the computation of Vt in Algorithm 1, which is used to update the
estimate Xt+1, simply requires that Vt satisfies ‖Vt‖nuc ≤ τ and∥∥∥∥Vt −

(
Xt + Yt −Wt −

1

ηt
∇t
)∥∥∥∥2

F

≤
∥∥∥∥X∗ − (Xt + Yt −Wt −

1

ηt
∇t
)∥∥∥∥2

F

,

(4)
where we use the short notation ∇t := ∇g (Xt + Yt). Since X∗ is assumed to
have rank at most r∗, it follows that

RHS of (4) ≥ min
X∈C

∥∥∥∥X− (Xt + Yt −Wt −
1

ηt
∇t
)∥∥∥∥2

F

, (5)

where C := {X : ‖X‖nuc ≤ τ, rank(X) ≤ r∗}. The solution to the minimiza-
tion problem on the RHS of (5) is given simply by computing the rank-r∗ sin-
gular value decomposition of the matrix At = (Xt + Yt −Wt − (1/ηt)∇t),
and projecting the resulted vector of singular values onto the `1-norm ball of
radius τ (which can be done in O(r∗ log(r∗)) time). Thus, indeed the time to
compute the update for Xt+1 on each iteration of Algorithm 1 is dominated by

3 Our results could be easily extended to the case in which (X∗,Y∗) is nearly of rank
r∗, i.e., of distance much smaller than the required approximation accuracy ε to a rank r∗

matrix, however for the sake of clarity we simply assume that (X∗,Y∗) is of low-rank.
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a single rank-r∗ SVD computation. This observation holds for all the following
discussions in this section as well. This low-rank SVD approach was already
suggested in the recent work [1], that studied smooth and strongly convex
minimization over the nuclear-norm ball (which differs from our setting).

3.2.2 Improved complexities for low/high SNR regimes

In case that (X∗,Y∗) is an (say, unique) optimal solution to Problem (2),

which satisfies ‖Y∗‖2F << ‖X∗‖
2
F , i.e., a high signal-to-noise ratio regime, we

expect that DX >> DY , where DX and DY are the Euclidean diameters of the
nuclear norm ball and the `1-norm ball, respectively. In this case, the result of
Theroem 1 is appealing since the convergence rate depends only on D2

Y and not
onD2

X+D2
Y as standard algorithms/analyses. In the opposite case, i.e.,DX <<

DY , which naturally corresponds to a low signal-to-noise ratio regime, since
X and Y are interchangeable in our setting, we can reverse their roles in the
optimization and get via Theorem 1 dependency only on DX . Moreover, now
the nuclear-norm constrained variable (assuming the role of Y in Algorithm 1)
is only updated via a conditional gradient update, i.e., requires only a rank-one
SVD computation on each iteration. In particular, statistical recovery results
such as the seminal work [3], show that under suitable assumptions on the
data, exact recovery is possible in both of these cases, even for instance, when
‖Y∗‖2F / ‖X∗‖

2
F = poly(n).

3.2.3 Replacing the `1 constraint with an `1+δ constraint

The `1-norm is traditionally used in Robust PCA to constrain/regularize the
sparse noisy component. The standard geometric intuition is that since the
boundary of the `1-norm ball becomes sharp near the axes, this choice pro-
motes sparse solutions. This property also holds for an `p-norm ball where
p is sufficiently close to 1. Thus, it might be reasonable to replace the `1-
norm constraint on Y with an `1+δ-norm constraint for some small constant
δ, which results in a strongly convex feasible set for the variable Y (see [6]).
Using Theorem 2, we will obtain an improved convergence rate of O(1/t2) in-
stead of O(1/t), practically without increasing the computational complexity
per iteration (since Y is updated via a conditional gradient update and linear
optimization over a `p-norm ball can be carried-out in linear time [6]).

In order to demonstrate the plausibility of using the `1+δ-norm instead of
`1-norm, in Table 2 we present results on synthetic data (similar to those done
in [3]), which show that already for a moderate value of δ = 0.2 we obtain
quite satisfactory recovery results.

3.2.4 Replacing the `1-norm regularizer with an elastic net regularizer

In certain cases it may be beneficial to replace the `1-norm constraint (or
regularizer) of the variable Y in Problem (2) with an elastic net regularizer,
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δ = 0.05 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

‖X−X∗‖2F / ‖X∗‖
2
F 9.2× 10−5 6.0× 10−4 4.3× 10−2 0.25 0.61

‖Y −Y∗‖2F / ‖Y∗‖
2
F 1.5× 10−6 6.4× 10−6 4.2× 10−4 2.5× 10−3 6.1× 10−3

Table 2: Empirical results for solving Problem (2) with `1+δ-norm constraint
on Y instead of `1-norm. The input matrix is M = X∗+Y∗, where X∗ = UV>

for U,V ∈ Rn×r with entries sampled i.i.d. from N (0, 1/n) with n = 100 and
r = 10. Every entry in Y∗ is set i.i.d. to 0 w.p. 0.9 and to either +1 or −1 w.p.
0.05. For simplicity we set exact bounds τ = ‖X∗‖nuc and s = ‖Y∗‖1+δ. First
row gives the relative recovery error of the low-rank signal and the second row
gives the relative recovery error of the sparse noise component, averaged over
10 i.i.d. experiments.

i.e., to take RY (Y) = λ1 ‖Y‖1 + λ2 ‖Y‖2F , for some λ1, λ2 > 0. The elastic
net is a popular alternative to the standard `1-norm regularizer for problems
such as LASSO (see, for instance [18]). As opposed to the `1-norm regularizer,
the elastic net is strongly convex (though not differentiable). Thus, with such
a choice for RY (·), by invoking Theorem 3, Algorithm 1 guarantees a linear
convergence rate. We note that when using the elastic net regularizer, the
computation of Wt on each iteration of Algorithm 1 requires to solve the
optimization problem:

arg min
W∈E

{
〈W,∇t〉+ λ1 ‖W‖1 + λ2 ‖W‖2F

}
= arg min

W∈E

{
λ1 ‖W‖1 + λ2

∥∥∥∥W +
1

2λ2
∇t
∥∥∥∥2
F

}
,

where we again use the short notation ∇t = ∇g (Xt + Yt). In the optimization
problem above, the RHS admits a well-known closed-form solution given by
the shrinkage/soft-thresholding operator, which can be computed in linear time
(i.e., O(mn) time), see for instance [2].

4 Rate of Convergence Analysis

In this section we provide the proofs for Theorems 1, 2, and 3. Throughout
this section and for the simplicity of the yet to come developments we denote,
for all t ≥ 1, Zt := Xt + Yt, Ut := Vt + Wt, and Qt := (Xt,Yt). Note
that, using these notations we obviously have that Zt+1 = (1− ηt) Zt + ηtUt.
Similarly, for an optimal solution Q∗ := (X∗,Y∗) of Problem (1) we denote
Z∗ := X∗ + Y∗.

We will need the following technical result which forms the basis for the
proofs of all stated theorems.



Improved Complexities of Conditional Gradient-Type Methods 11

Proposition 1 Let {(Xt,Yt)}t≥1 be a sequence generated by Algorithm 1.
Then, for all t ≥ 1, we have that

f (Qt+1) ≤ (1− ηt) f (Qt) + ηt (g (Zt) +RX (X∗) +RY (Wt))

+ ηt 〈X∗ + Wt − Zt,∇g (Zt)〉+ η2t β
(
‖Zt − Z∗‖2 + ‖Wt −Y∗‖2

)
.

(6)

Proof Fix t ≥ 1. Observe that by the update rule of Algorithm 1 (see step 6
of the algorithm), it holds that

Xt+1 + Yt+1 = (1− ηt) (Xt + Yt) + ηt (Vt + Wt) .

Thus, since g (·) is β-smooth, it follows that

g (Xt+1 + Yt+1) ≤ g (Xt + Yt) + ηt 〈(Vt + Wt)− (Xt + Yt) ,∇g (Xt + Yt)〉

+
η2t β

2
‖(Xt + Yt)− (Vt + Wt)‖2

= g (Zt) + ηt 〈Vt + Wt − Zt,∇g (Zt)〉+
η2t β

2
‖Zt −Vt −Wt‖2 .

Using the above inequality we can write,

f (Xt+1,Yt+1) = g (Xt+1 + Yt+1) +RX (Xt+1) +RY (Yt+1)

≤ g (Zt) +RX (Xt+1) +RY (Yt+1) + ηt 〈Vt + Wt − Zt,∇g (Zt)〉

+
η2t β

2
‖Zt −Vt −Wt‖2

≤
(a)

(1− ηt) (g (Zt) +RX (Xt) +RY (Yt))

+ ηt (g (Zt) +RX (Vt) +RY (Wt))

+ ηt 〈Vt + Wt − Zt,∇g (Zt)〉+
η2t β

2
‖Xt + Yt −Vt −Wt‖2

= (1− ηt) f (Xt,Yt) + ηt (g (Zt) +RX (Vt) +RY (Wt))

+ ηt 〈Vt + Wt − Zt,∇g (Zt)〉+
η2t β

2
‖Zt −Vt −Wt‖2

≤
(b)

(1− ηt) f (Xt,Yt) + ηt (g (Zt) +RX (X∗) +RY (Wt))

+ ηt 〈X∗ + Wt − Zt,∇g (Zt)〉+
η2t β

2
‖Zt −X∗ −Wt‖2 , (7)

where (a) follows from the convexity of RX (·) and RY (·), while (b) follows

from the choice of Vt. Using the inequality (a+ b)
2 ≤ 2a2 + 2b2 which holds

true for all a, b ∈ R, we obtain

‖Zt −X∗ + Wt‖2 = ‖Zt −X∗ −Y∗ + (Y∗ −Wt)‖2

≤ 2 ‖Zt − Z∗‖2 + 2 ‖Wt −Y∗‖2 , (8)
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where the last equality follows from the definition of Z∗.
Finally, plugging the RHS of Eq. (8) into the RHS of Eq. (7) completes the

proof of the proposition.

We now prove Theorem 1. For convenience, we first state the theorem in full
details.

Theorem 4 Assume that RY := ιY where Y is a nonempty, closed and convex
subset of E. Let {(Xt,Yt)}t≥1 be a sequence generated by Algorithm 1 with
the following step-sizes:

ηt =

{
α
2β , if t ≤ t0,

2
t−t0+ 4β

α

, if t > t0,
(9)

where t0 := max
{

0,
⌈
2β/ (α) ln

(
2C/

(
αD2
Y
))⌉}

, for C satisfying C ≥ f (X1,Y1)−
f∗. Then, for all t ≥ t0 + 1 it holds that

f (Xt,Yt)− f (X∗,Y∗) ≤
4βD2

Y

t− t0 − 1 + 4β
α

.

Proof From the choice of Wt we have that

〈Wt,∇g (Zt)〉+RY (Wt) ≤ 〈Y∗,∇g (Zt)〉+RY (Y∗) . (10)

Now, using this in Proposition 1, we get for all t ≥ 1, that

f (Qt+1) ≤ (1− ηt) f (Qt) + ηt (g (Zt) +RY (Y∗) +RX (X∗))

+ ηt 〈X∗ + Y∗ − Zt,∇g (Zt)〉+ η2t β
(
‖Zt − Z∗‖2 + ‖Wt −Y∗‖2

)
≤ (1− ηt) f (Qt) + ηt (g (Zt) +RY (Y∗) +RX (X∗))

+ ηt 〈X∗ + Y∗ − Zt,∇g (Zt)〉+ η2t β
(
‖Zt − Z∗‖2 +D2

Y

)
, (11)

where the last inequality follows from the fact that Wt,Y
∗ ∈ Y. On the other

hand, from the strong convexity of g (·) we obtain that

g (Zt) + 〈X∗ + Y∗ − Zt,∇g (Zt)〉 ≤ g (Z∗)− α

2
‖Zt − Z∗‖2 .

Therefore, by combining these two inequalities we derive that

f (Qt+1) ≤ (1− ηt) f (Qt) + ηtf (Q∗)− ηt
(α

2
− ηtβ

)
‖Zt − Z∗‖2 + η2t βD

2
Y .

Subtracting f (Q∗) from both sides of the inequality and by denoting ht :=
f (Qt)− f (Q∗), we obtain that ht+1 ≤ (1− ηt)ht + η2t βD

2
Y holds true for all

0 < ηt ≤ α/ (2β). The result now follows from simple induction arguments
and the choice of step-sizes detailed in the theorem (for details see Lemma 1
in the appendix below).

Before proving Theorem 2 we would like to comment about the constant C,
which was used in the result above and appears in the step-size.
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Remark 3 The constant C, even though appears in the step-size of the algo-
rithm, can be easily bounded from above as we describe now. Suppose, we are
setting the points W1 and V1 to be used in our algorithm as follows:

W1 = arg min
W∈E

{RY (W) + 〈W,∇g (X1 + Y1)〉} ,

and
V1 = arg min

V∈E
{RX (V) + 〈V,∇g (X1 + Y1)〉} .

For these choices we obviously have (using optimality conditions) that

RY (W1) +RX (V1) + 〈W1 + V1,∇g (X1 + Y1)〉 ≤ RY (Y∗) +RX (X∗)

+ 〈Y∗ + X∗,∇g (X1 + Y1)〉 .

Hence, using the gradient inequality on the function g, yields that

f (X1,Y1)− f∗ = g (X1,Y1)− g (X∗,Y∗) +RY (Y1) +RX (X1)−RY (Y∗)−RX (X∗)

≤ 〈(X1 + Y1)− (Y∗ + X∗) ,∇g (X1 + Y1)〉+RY (Y1) +RX (X1)

−RY (W1)−RX (V1) + 〈(Y∗ + X∗)− (W1 + V1) ,∇g (X1 + Y1)〉
= 〈(X1 + Y1)− (W1 + V1) ,∇g (X1 + Y1)〉+RY (Y1) +RX (X1)

−RY (W1)−RX (V1) .

The obtained bound does not depend on the optimal solution and therefore
can be computed explicitly.

It should be noted that in the case of Robust PCA (e.g., Problem (2)),
we have that RX (X) = ι‖·‖nuc≤τ (X) and RY (Y) = ι‖·‖1≤s (Y). In this case,
computing the matrices W1 and V1 is computationally very efficient, since it
requires to compute a single leading singular vectors pair, and solving a single
linear minimization problem over an `1-ball, respectively.

Now, we turn to prove Theorem 2. Again, we first state the theorem in full
details.

Theorem 5 Assume that RX := ιX where X is a nonempty, closed and con-
vex subset of E and RY := ιY , where Y is an γ-strongly convex and closed
subset of E. Let {(Xt,Yt)}t≥1 be a sequence generated by Algorithm 1 using

the step-size ηt = (t− 1 + 6β/α)
−1

for all t ≥ 1. Then, for all t ≥ 1 it holds
that

f (Xt,Yt)− f∗ ≤
9 max

{
128β2

αγ2 ,
4β2

α2 (f (X1,Y1)− f∗)
}

(
t− 1 + 6βα

)2 .

Moreover, if there exists G > 0 such that minX∈X ,Y∈Y ‖∇g (X + Y)‖∗ ≥ G,
then using a fixed step-size ηt = min{α/ (2β) , γG/ (8β)} for all t ≥ 1, guar-
antees that

f (Xt,Yt)− f∗ ≤ (f (X1,Y1)− f∗) · exp

(
−min

{
α

2β
,
γG

8β

}
(t− 1)

)
.
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Proof Fix some iteration t ≥ 1 and define the point W̃t := 1
2 (Wt + Y∗) −

(γ/8) ‖Wt −Y∗‖2 Pt where Pt ∈ arg minP∈E,‖P‖≤1 〈P,∇g (Zt)〉. Note that

since Y is an γ-strongly convex set, it follows from Definition 3 that W̃t ∈
Y. Moreover, from the optimal choice of Wt we have that 〈Wt,∇g (Zt)〉 ≤〈
W̃t,∇g (Zt)

〉
. Thus, we have that

〈X∗ + Wt − Zt,∇g (Zt)〉 ≤
〈
X∗ + W̃t − Zt,∇g (Zt)

〉
=

〈
X∗ −Xt +

Wt + Y∗

2
− γ

8
‖Wt −Y∗‖2 Pt −Yt,∇g (Zt)

〉
≤
(a)

〈
X∗ −Xt +

Y∗ + Y∗

2
− γ

8
‖Wt −Y∗‖2 Pt −Yt,∇g (Zt)

〉
=
(b)
〈Z∗ − Zt,∇g (Zt)〉 −

γ

8
‖Wt −Y∗‖2 · ‖∇g (Zt)‖∗ ,

(12)

where (a) follows from the fact that 〈Wt −Y∗,∇g (Zt)〉 ≤ 0 , and (b) follows
from the definition of Pt and Holder’s inequality.

Plugging Eq. (12) into Eq. (6), and recalling that Wt ∈ Y (hence,RY (Wt) =
RY (Y∗) = RX (X∗) = 0), we have that

f (Xt+1,Yt+1) ≤ (1− ηt) f (Xt,Yt) + ηtg (Zt) + ηt 〈X∗ + Wt − Zt,∇g (Zt)〉

+ η2t β
(
‖Zt − Z∗‖2 + ‖Wt −Y∗‖2

)
≤ (1− ηt) f (Xt,Yt) + ηtg (Zt) + ηt 〈Z∗ − Zt,∇g (Zt)〉

+ η2t β ‖Zt − Z∗‖2 − ηt ‖Wt −Y∗‖2
(γ

8
‖∇g (Zt)‖∗ − ηtβ

)
≤
(a)

(1− ηt) f (Xt,Yt) + ηtg (Z∗)− ηt ‖Zt − Z∗‖2
(α

2
− ηtβ

)
− ηt ‖Wt −Y∗‖2

(γ
8
‖∇g (Zt)‖∗ − ηtβ

)
= (1− ηt) f (Xt,Yt) + ηtf (X∗,Y∗)− ηt ‖Zt − Z∗‖2

(α
2
− ηtβ

)
− ηt ‖Wt −Y∗‖2

(γ
8
‖∇g (Zt)‖∗ − ηtβ

)
, (13)

where (a) follows from the strong convexity of g(·) since we have that

〈Z∗ − Zt,∇g (Zt)〉 ≤ g (Z∗)− g (Zt)−
α

2
‖Zt − Z∗‖2 .

Using again the strong convexity of g (·), we have from Eq. (3) that

‖∇g (Zt)‖∗ ≥
√
α

2
·
√
g (Zt)− g (Z∗) =

(a)

√
α

2
·
√
f (Xt,Yt)− f (X∗,Y∗)

=

√
α

2
·
√
ht,
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where ht := f (Xt,Yt)−f (X∗,Y∗), and (a) follows sinceRX (Xt) = RY (Yt) =
RX (X∗) = RY (Y∗) = 0. Therefore, by subtracting f (X∗,Y∗) from both
sides of (13), we get that

ht+1 ≤ (1− ηt)ht − ηt
(α

2
− ηtβ

)
‖Zt − Z∗‖2

− ηt ‖Wt −Y∗‖2
(
γ

8

√
α

2
·
√
ht − ηtβ

)
.

Thus, we obtain the recursion: ht+1 ≤ (1− ηt)ht for all ηt ≤ min
{
γ
√
α
√
ht/

(
8
√

2β
)
, α/ (2β)

}
.

In particular, setting ηt as stated in the theorem yields the stated conver-
gence rate via a simple induction argument, given in Lemma 2 (see appendix
for a proof).

In order to prove the second part of the theorem, i.e., a linear rate of
convergence in the case that the gradients are bounded from below, we observe
that plugging the bound G on the magnitude of the gradients into the RHS
of Eq. (13), directly gives

f (Xt+1,Yt+1) ≤ (1− ηt) f (Xt,Yt) + ηtf (X∗,Y∗)

− ηt ‖Zt − Z∗‖2
(α

2
− ηtβ

)
− ηt ‖Wt −Y∗‖2

(
γG

8
− ηtβ

)
.

Thus, for any ηt ≤ min {α/ (2β) , γG/ (8β)}, by subtracting f (X∗,Y∗) from
both sides, we obtain ht+1 ≤ (1− ηt)ht. In particular, setting ηt = min {α/ (2β) , γG/ (8β)}
for all t ≥ 1 and using elementary manipulations, gives the linear rate stated
in the theorem.

Before stating in details Theorem 3 and proving it, we would like to prove that
the additional assumption made in this result, i.e., that RX (·) or RY (·) is δ-
strongly convex, actually guarantees that the whole objective function f (·, ·)
is also strongly convex. The following result is valid when the function g is
strongly convex with respect to the Euclidean norm.

Proposition 2 Assume that RX or RY is δ-strongly convex with respect to
the Euclidean norm. Then, the objective function f (·, ·) of Problem (1), is τ -
strongly convex with respect to the Euclidean norm, where τ =

(
δ + 2α−

√
δ2 + 4α2

)
/2.

Proof Throughout the proof we let ‖·‖ denote the Euclidean norm over E.
Without the loss of generality we assume that RX is δ-strongly convex. Let
Q1 = (X1,Y1) and Q2 = (X2,Y2) be two points in E × E and λ ∈ [0, 1].
Then, by the definition of strong convexity, we have that

RX (λX1 + (1− λ) X2) ≤ λRX (X1)+(1− λ)RX (X2)−λ (1− λ) δ

2
‖X1 −X2‖2 ,

and

g (P) ≤ λg (X1 + Y1)+(1− λ) g (X2 + Y2)−λ (1− λ)α

2
‖X1 + Y1 −X2 −Y2‖2 ,
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where P = λ (X1 + Y1)+(1− λ) (X2 + Y2). On the other hand, for any s > 0,
we have that

‖X1 + Y1 −X2 −Y2‖2 ≥ (1− s) ‖X1 −X2‖2 +
s− 1

s
‖Y1 −Y2‖2 ,

where we have used the fact that (a+ b)
2 ≥ (1− s) a2 + (s− 1) b2/s for all

a, b ∈ R, and that the norm is the Euclidean norm. Combining all these facts
and using the fact that RY (·) is convex yields that

f (λQ1 + (1− λ) Q2) = g (P) +RX (λX1 + (1− λ) X2) +RY (λY1 + (1− λ) Y2)

≤ λf (Q1) + (1− λ) f (Q2)− λ (1− λ) δ

2
‖X1 −X2‖2

− λ (1− λ)α (1− s)
2

‖X1 −X2‖2 −
λ (1− λ)α (s− 1)

2s
‖Y1 −Y2‖2

= λf (Q1) + (1− λ) f (Q2)− λ (1− λ)

2
(δ + α (1− s)) ‖X1 −X2‖2

− λ (1− λ)α (s− 1)

2s
‖Y1 −Y2‖2

≤ λf (Q1) + (1− λ) f (Q2)− λ (1− λ) τ(s)

2
‖Q1 −Q2‖2 ,

where τ(s) = min {δ + α (1− s) , α (s− 1) /s} and the last inequality follows
from the definitions of Q1 and Q2. It is easy to check that τ(s) gets its max-
imum with respect to s when s =

(
δ +
√
δ2 + 4α2

)
/ (2α). Therefore we get

that f (·, ·) is strongly convex with parameter
(
δ + 2α−

√
δ2 + 4α2

)
/2.

Thanks to Proposition 2, Problem (1) becomes an unconstrained minimization
of a strongly convex function. Therefore, we can expect to achieve a linear rate
of convergence of Algorithm 1 as we prove below. We now state first Theorem
3 in full details and then prove it.

Theorem 6 Assume that RY (·) is δ-strongly convex. Let {(Xt,Yt)}t≥1 be a
sequence generated by Algorithm 1 using the fixed step-size ηt = min{α, δ}/ (2β)
for all t ≥ 1. Then, for all t ≥ 1, we have that

f (Xt,Yt)− f∗ ≤ (f (X1,Y1)− f∗) · exp

(
−min {α, δ}

2β
(t− 1)

)
.

Proof Fix some iteration t ≥ 1. Using the optimal choice of Wt, from the
strong convexity of W → 〈W,∇g (Zt)〉+RY (W ), we have that

〈Wt,∇g (Zt)〉+RY (Wt) ≤ 〈Y∗,∇g (Zt)〉+RY (Y∗)− δ

2
‖Wt −Y∗‖2 .
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Plugging the above inequality into Proposition 1, we have that

f (Xt+1,Yt+1) ≤ (1− ηt) f (Xt,Yt) + ηt (g (Zt) +RX (X∗) +RY (Wt))

+ ηt 〈X∗ + Wt − Zt,∇g (Zt)〉+ η2t β
(
‖Zt − Z∗‖2 + ‖Wt −Y∗‖2

)
≤ (1− ηt) f (Xt,Yt) + ηt (g (Zt) +RX (X∗) +RY (Y∗))

+ ηt 〈Z∗ − Zt,∇g (Zt)〉+ η2t β ‖Zt − Z∗‖2 − ηt ‖Wt −Y∗‖2
(
δ

2
− ηtβ

)
≤
(a)

(1− ηt) f (Xt,Yt) + ηt (g (Z∗) +RX (X∗) +RY (Y∗))

− ηt ‖Zt − Z∗‖2
(α

2
− ηtβ

)
− ηt ‖Wt −Y∗‖2

(
δ

2
− ηtβ

)
= (1− ηt) f (Xt,Yt) + ηtf (X∗,Y∗)

− ηt ‖Zt − Z∗‖2
(α

2
− ηtβ

)
− ηt ‖Wt −Y∗‖2

(
δ

2
− ηtβ

)
,

where (a) follows from the strong convexity of g (·), which implies that

〈Z∗ − Zt,∇g (Zt)〉 ≤ g (Z∗)− g (Zt)−
α

2
‖Zt − Z∗‖2 .

Thus, subtracting f (X∗,Y∗) from both sides and using the notation ht :=
f (Xt,Yt)− f (X∗,Y∗), we conclude that

∀ 0 < ηt ≤
min {α, δ}

2β
: ht+1 ≤ (1− ηt)ht.

The theorem now follows from choosing ηt = min{α, δ}/ (2β) and using stan-
dard manipulations.

5 Numerical Results

In this section we present evidence for the empirical performance of Algorithm
1 on the Robust PCA problem in the constrained formulation given in Problem
(2). Focusing on first-order methods that are scalable to high-dimensional
problems involving optimization problems with a nuclear-norm constraint, we
compare our method to other competing projection-free first-order methods
that avoid using high-rank SVD computations.

We tested Algorithm 1 and compare to two methods: the standard condi-
tional gradient method and the conditional gradient variant proposed in [11],
which adds an additional proximal step to update the sparse component Y, on
top of the standard CG method. See Table 3 for description of the algorithms.

For all algorithms, we apply a line-search procedure to compute the op-
timal convex combination taken in the conditional gradient-like step on each
iteration. This implementation is straightforward for the standard conditional
gradient method (CGCG) and the proposed variant of [11] (CGCG-P). For
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abbv. description

ALT-CGPG Algortihm 1, sparse component Y updated via CG, low-rank compo-
nent X updated via low-rank PG (see Section 3.2.1 for details)

ALT-PGCG Algortihm 1, sparse component Y updated via PG, low-rank compo-
nent X updated via CG

CGCG Both blocks X and Y updated via CG

CGCG-P Algorithm FW-P from [11] - both X,Y updated via CG, followed by
an additional PG update to sparse component Y only

Table 3: Description of the tested algorithms. CG is a short notation for a
conditional gradient update, and PG is a short notation for a proximal gradient
update.

our proposed methods (ALT-CGPG, ALT-PGCG), we set the step-size for
the proximal gradient update on each iteration t to ηt = 2

t+1 (this seems as
a very good and practical approximation to the choice in Theorem 4 once we
neglect the first short phase with a constant step-size, and start immediately
with the second regime of step-sizes). Once we have computed the proximal
gradient update with this step-size (Line 5 of Algorithm 1), we use a line-search
to set the optimal convex combination parameter (used in Line 6 of Algorithm
1). It is straightforward to argue that performing such a line-search instead of
using the pre-fixed value of ηt used for the proximal gradient update, does not
hurt any of the guarantees specified in Theorems 1, 2 and 3, but can be quite
important from a practical point of view.

5.1 Experiments

We generate a synthetic data as follows. We set the dimensions in all exper-
iments to m = n = 1000. We generate the low-rank component by taking
L = 10UV>, where U is an m× r matrix and V is an n× r matrix, where r
varies, and the entries of U and V are i.i.d. standard Gaussian random vari-
ables. The sparse component S is generated by setting S = 10N, where N is a
matrix with i.i.d. standard Gaussian entries, and each entry in S is set to zero
with probability 1− p (independently of all other entries), where p varies. We
then set the observed matrix to M = L + S. For each value of (r, p) we have
generated 15 i.i.d. experiments. See Table 4 for a quick summary.

All algorithms were used with the exact parameters τ = ‖L‖∗ and s =
‖S‖1, and with the same initialization point (X1,Y1) = (0,0). The algorithms
were implemented in Matlab with the svds command used to compute the low-
rank SVD updates. For our algorithm ALT-CGPG we have used a rank-r SVD
to compute the low-rank proximal gradient update (were r is the rank of the
low-rank data component L). For all experiments we measured the function
value (as given in Problem (2)) both as a function of the number of iterations
executed and the overall runtime.

From the results in Figure 1 and Figure 2 it is clear that in each one
of the six scenarios tested (different values of r and p), at least one of the
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config. fig. rank of L (r) sampling freq. in S (p) avg. ‖L‖∗ avg. ‖S‖1
1 1 5 0.001 4.9926e+04 7.9669e+04

2 1 5 0.003 4.9682e+04 2.3806e+05

3 1 25 0.001 2.4872e+05 7.9837e+04

4 1 25 0.003 2.4853e+05 2.3675e+05

5 2 25 0.03 2.4830e+05 2.3914e+06

6 2 130 0.01 1.2589e+06 7.9836e+05

Table 4: Description of data used. The forth and fifth columns give the values
‖L‖∗ and ‖S‖1 averaged over the 15 i.i.d. experiments.

variants of Algorithm 1 (either ALT-CGPG or ALT-PGCG) clearly outper-
forms CGCG and CGCG-P. In particular, when examining the results and
the corresponding norm bounds τ and s (as recorded in Table 4), we can see
evidence for the improved complexity achieved in Theorem 1, which presents
improved convergence bound in low/high Signal-to-Noise regimes (see also dis-
cussion in Section 3.2.2). We can see that, as a rule of thumb, indeed when
‖S‖1 >> ‖L‖∗, updating the sparse component Y via a proximal gradient up-
date in Algorithm 1, results in significantly faster performances than when a
conditional gradient update is used. Similarly, when ‖S‖1 >> ‖L‖∗, we can see
that updating the low-rank component X via a (low-rank) proximal-update in
Algorithm 1, results in significantly faster performances of our algorithm. Per-
haps surprisingly, it also seems that the standard conditional gradient method
(CGCG) outperforms the variant recently proposed in [11] (CGCG-P), with
configuration 5 (r = 25, p = 0.03) being the exception.

Acknowledgments Dan Garber is supported by the ISRAEL SCIENCE FOUN-
DATION (grant No. 1108/18).

6 Appendix

Lemma 1 Consider a sequence {ht}t≥1 ⊂ R+ satisfying the recursion:

∀ t ≥ 1 ∀ηt ∈
(

0,
α

2β

]
: ht+1 ≤ (1− ηt)ht + η2t βD

2
Y .

Then, setting the step-size ηt according to:

ηt =

{
α
2β if t ≤ t0,

2
t−t0+ 4β

α

if t > t0,

where t0 := max
{

0,
⌈
2β/ (α) ln

(
2C/

(
αD2
Y
))⌉}

, for C satisfying C ≥ h1,
guarantees, for all t ≥ t0 + 1 that

ht ≤
4βD2

Y

t− t0 − 1 + 4β
α

.
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(d) r = 5 and p = 0.003
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(g) r = 25 and p = 0.003
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Fig. 1: Results for configurations 1-4. Each configuration presents the average
over 15 i.i.d. runs.
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(a) r = 25 and p = 0.03

0 20 40 60 80 100

time [sec.]

2

4

6

8

10

12

14

fu
n

c
. 

v
a

lu
e

×10
8

ALT-CGPG

ALT-PGCG

CGCG

CGCG-P

(b) r = 25 and p = 0.03
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(c) r = 130 and p = 0.01
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Fig. 2: Results for configurations 5-6. Each configuration presents the average
over 15 i.i.d. runs.

Proof Let us define vt := ht/
(
2βD2

Y
)

for all t ≥ 1. Dividing both sides of the
recursion in the lemma by 2βD2

Y , we obtain the recursion

∀ 0 < ηt ≤
α

2β
: vt+1 ≤ (1− ηt) vt +

η2t
2
. (14)

Let C, t0 and {ηt}t≥1 be as defined in the lemma, and recall that ηt = α/ (2β),
for all t ≤ t0. Using Eq. (14), we have that

vt0+1 ≤ (1− η0)
t0 v1 +

η20
2

t0∑
t=1

(1− η0)
t−1 ≤ C

2βD2
Y
· e−η0t0 +

η20
2
· 1

η0

=
C

2βD2
Y
· e−

αt0
2β +

α

4β
.

Thus, for t0 := max
{

0,
⌈
2β/ (α) ln

(
2C/

(
αD2
Y
))⌉}

, we obtain that vt0+1 ≤
α/ (2β).

We now show that for all t ≥ t0 + 1, it holds that vt ≤ 2/ (t− t0 + 1 + c0)
for c0 := 4β/α − 2. For the base case t = t0 + 1, we indeed have already
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showed that vt0+1 ≤ α/ (2β), as needed. Note that using the step-size choice
ηt := 2/ (t− t0 + 2 + c0) for all t ≥ t0 + 1, as defined in the lemma, we have
that ηt ≤ ηt0+1 = 2/ (3 + c0) < 2/c0 = α/ (2β), and hence we can apply the
recursion (14) for all t ≥ t0 + 1. Thus, assuming the induction holds for some
t ≥ t0+1, using the recursion (14), the induction hypothesis, and our step-size
choice, we have that

vt+1 ≤ vt (1− ηt) +
η2t
2
≤ 2

t− t0 + 1 + c0

(
1− 2

t− t0 + 2 + c0

)
+

2

(t− t0 + 2 + c0)
2

=
2

t− t0 + 2 + c0

(
1 +

1

t− t0 + 1 + c0

)(
1− 2

t− t0 + 2 + c0

)
+

2

(t− t0 + 2 + c0)
2

=
2

t− t0 + 2 + c0

(
1 +

(t− t0 + 2 + c0)− 2 (t− t0 + 1 + c0)− 2 + (t− t0 + 1 + c0)

(t− t0 + 1 + c0) (t− t0 + 2 + c0)

)
=

2

t− t0 + 2 + c0

(
1− 1

(t− t0 + 1 + c0) (t− t0 + 2 + c0)

)
<

2

t− t0 + 2 + c0
.

Hence, the induction implies that vt ≤ 2/ (t− t0 − 1 + 4β/α) for all t ≥ t0 +1.
The proof is completed by recalling that ht = 2βD2

Yvt.

Lemma 2 Consider a sequence {ht}t≥1 ⊂ R+ satisfying the recursion:

∀t ≥ 1 : ht+1 ≤ ht − ηtht,

where 0 < ηt ≤ min{c1
√
ht, c2}, c1 > 0 and 0 < c2 ≤ 1. Then, setting ηt =

3/
(
t− 1 + 3c−12

)
for all t ≥ 1, yields that ht ≤ 9 max{c−21 , c−22 h1}/

(
t− 1 + 3c−12

)2
.

Proof We prove via induction that for suitably chosen positive constants a
and b that ht ≤ a/ (t+ b)

2
for all t ≥ 1.

Fix some iteration t ≥ 1 and suppose the claim holds for ht. We consider
now two cases. First, if ht ≤ a/ (t+ b+ 1)

2
, then, since by the recursion in the

lemma it holds that ht+1 ≤ ht, the claim clearly holds in this case for ht+1.
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For the second case, we assume ht ≥ a/ (t+ b+ 1)
2
. Using this assumption,

the recursion, and the induction hypothesis, we have that

ht+1 ≤ ht − ηtht

≤ a

(t+ b)
2 − ηt

a

(t+ b+ 1)
2

=
a

(t+ b+ 1)
2

((
t+ b+ 1

t+ b

)2

− ηt

)

≤ a

(t+ b+ 1)
2

(
1 +

3

t+ b
− ηt

)
.

Thus, for ηt = 3/ (t+ b), the induction clearly holds.
Since, for the recursion to hold, it is also required that ηt ≤ min{c1

√
ht, c2} ≤

min{c1
√
a/ (t+ b) , c2}, this brings us to the following conditions on a and b

which should be valid for all t ≥ 1:

3

t+ b
≤ c2 and

3

t+ b
≤ c1

√
a

t+ b
.

Thus, we get the requirements b ≥ 3c−12 − 1 and a ≥ 9c−21 .

Finally, since for the base case t = 1 it needs to hold that h1 ≤ a/ (b+ 1)
2
,

we can choose b = 3c−12 −1 and a = 9 max{c−21 , c−22 h1}, which guarantee that.
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