
Stochastic Proximal Linear Method for Structured Non-convex

Problems

Tamir Hazan∗ Shoham Sabach† Sergey Voldman‡

February 4, 2020

Abstract

In this work, motivated by the challenging task of learning a deep neural network, we consider
optimization problems which consist of minimizing a finite-sum of non-convex and non-smooth
functions, where the non-smoothness appears as the maximum of non-convex functions with
Lipschitz continuous gradient. Due to the large size of the sum, in practice, we focus here on
stochastic first-order methods and propose the Stochastic Proximal Linear Method (SPLM) that
is based on minimizing an appropriate majoraizer at each iteration and is guaranteed to almost
surely converge a critical point of the objective function, where we also proves its convergence
rate in finding critical points.

2010 Mathematics Subject Classification: Primary 90C25; Secondary 26B25, 49M27, 52A41,
65K05.
Keywords: Non-convex non-smooth minimization, proximal-gradient algorithms, stochastic, con-
vergence analysis.

1 Introduction

In recent years deep neural networks drive much of the research in machine learning applications,
from computer vision, natural language processing, to gaming. Examples include image convolu-
tional neural networks that dominate the state-of-the-art in computer vision, recurrent neural net-
works that dominate the state-of-the-art in speech recognition and deep Q-networks that achieved
human expert level in gaming.

Learning a deep neural network amounts to optimize a sum of non-convex non-smooth func-
tions. While current theory does not provide convergence guarantees for optimizing deep learners,
stochastic gradient descent variants turn to be very effective in machine learning. In this work,
motivated by the structure of deep learning optimization problems, which is the sum of non-convex
and non-smooth functions, we focus on a special case, where the non-smoothness appears as the
maximum of non-convex functions with Lipschitz continuous gradient. We develop the Stochastic
Proximal Linear Method (SPLM), which is desgined to exploit this structure via simple compu-
tational steps. In addition, we prove that SPLM is guaranteed to almost surely reach a critical
point of the objective function at hand. For this purpose we majorize the objective function and
show that the majorization function has the same critical points as the learning objective. We
support our convergence analysis with an additional result showing that SPLM has an O(m2/ε2)

∗Faculty of Industrial Engineering, The Technion, Haifa, 32000, Israel. E-mail: tamir.hazan@technion.ac.il
†Faculty of Industrial Engineering, The Technion, Haifa, 32000, Israel. E-mail: ssabach@ie.technion.ac.il.
‡Faculty of Industrial Engineering, The Technion, Haifa, 32000, Israel. E-mail: sergeyv@campus.technion.ac.il

1

convergence rate, where ε is the desired accuracy and m is the number of involved functions in
the finite sum. To the best of our knowledge, this is the only stochastic gradient-based algorithm
that is provably convergent for non-convex and non-smooth optimization that is suitable for deep
learning networks.

1.1 Related work

Optimization algorithms have gained a lot of attraction in the last decades, especially in relation to
machine learning applications, for a review paper we point the readers to [6]. In the last five years
, with the emergence of deep neural networks, the sub-field of non-convex optimization attracted
worldwide research activities conducted at several directions (for a taste of applications, see [28, 15]).
A main direction of research, that is very common, revolves around stochastic optimization methods.
Such methods gained and intensive popularty due to the huge size of the problems to be solved
in this domain of applications, that usually preclude applying deterministic methods. This line of
research was initiated with the development of the Stochatic Gradient Descent (SGD) method in
the seminal work of Robbins and Monro [21], which paved the way to many contributions mostly
in the convex setting (see [6] and the references therein). On the other hand, in the non-convex
setting, the situation is much more difficult and the research is in its infancy.

Motivated by the application at hand, especially the training of neural networks, the finite-sum
model (properly defined below) becomes a source for most of the research in this area. We will
highlight a few directions of fruitful research in this area. Algorithms which use variance reduction
technique, first in the convex setting [24, 13, 10] and later on in the non-convex setting [18]. In [9],
a block coordinate stochastic proximal gradient, was established. Another direction is of methods
which are able to escape from saddle points and guaranteed to converge to second order stationary
points. For instance, [26] show that adaptive methods, such as Adam and RMSProp, are faster than
SGD. In [8] the authors provide provide an accelerated method with similar guarantees. The work
[12] showed that a noise-injected version of the SGD method converges to a local minima instead of
critical points, as long as the underlying non-convex function is strict-saddle. The work [16] shows
that gradient descent, starting from a random point, almost surely converges to a local minimum of
a strict-saddle function. Some works on second order methods that improve the convergence rate
of first order method include, e.g., [1, 7, 20].

A common assumption to all these works and most of the research in these directions, is that
the involved functions in the finite-sum are smooth and even with Lipschitz continuous gradient.
This is a very restrictive assumption which limits the applicability of the proposed methods in many
practical situations. In this work we depart from this assumption and study a finite-sum model,
which allow non-smoothness to these functions using the max-function, as we describe next.

1.2 Our setting and optimization model

In contrast to the works mentioned above, our work considers the composition of the max-function
with smooth and non-convex functions. Such compositions are instrumental in building deep learn-
ers, either by using the ReLU transfer function (mathematically defined by f (t) = max {0, t})
or using max-pooling (a common down sampling operation that takes the maximal sample over
certain part of the data). To be precise, in this paper we are focusing on the finite-sum model of
the following form

min
w∈Rp

{
g (w) :=

1

m

m∑
i=1

gi (w)

}
,

2

where each function gi : Rp → R, i = 1, 2, . . . ,m, is of the following form

gi (w) = max
ŷ∈Y

gi,ŷ (w) ,

and Y is a certain index set (see precise definition in the following section) and gi,ŷ are assumed to
be continuously differentiable functions with Lipschitz continuous gradient.

The objective of the present work is to tackle this non-convex and non-smooth sum model by
exploiting structure features which will be in the basis of the proposed method. Our work provides
a stochastic version of the Proximal Linear Method (PLM) recently studied by Bolte and Pauwels
[5], which is a deterministic algorithm that is proven to globally converges to critical points of g
where m = 1. The stochastic extension of PLM, which we denote by SPLM, allows one addressing
applications, which consist of large sum, like in deep learning, where the gradient of each function
in the finite-sum has a significant computational and memory overhead.

2 Background

In deep learning, the basic learner unit is a linear classifier. In multi-class setting, a data point
x ∈ Rd is classified to a class y ∈ Y by its parameters W ∈ R|Y |×d according to the highest scoring
value of Wx. Therefore, in order to make these notations clear, when we write (Wx)y we mean
the y-coordinate (can be thought as an index) of the vector Wx.

Given a training data set S = {(x1, y1) , (x2, y2) , . . . , (xm, ym)}, which consists of data points
x and their labels y ∈ Y , a linear classifier is learned by minimizing a loss function ` (Wx, y) that
penalizes misclassified points. The training loss minimization problem takes the following form

min
W

1

m

∑
(x,y)∈S

` (Wx, y) .

Two classical examples are the log-loss function ` (Wx, y) = log(
∑

ŷ exp((Wx)ŷ))− (Wx)y, which

is used in logistic regression, and the hinge loss ` (Wx, y) = maxŷ{ˆ̀(ŷ, y)+(Wx)ŷ−(Wx)y}, which

is used in support vector machines, when ˆ̀(ŷ, y) is a label loss, i.e., ˆ̀(ŷ, y) ≥ 0 and ˆ̀(y, y) = 0.
Both these loss functions are convex and thus can beminimized by (Sub)Gradient-based Descent
Methods, which are guaranteed to reach the global optimum of the training problem. Due to the
fact that contemporary data sets consist of significant amount of data points, a major concern
is to relax the memory constraints of the applied optimization algorithm, which is usually cured
by appling Stochastic Gradient-based Descent Methods to a single data point or a small batch
of data points. The expected value of the stochastic (sub)gradient is the true (sub)gradient and
convergence to the global optimum of the convex problem at hand can be derived (see, for instance,
[6]).

Deep neural networks consist of array of linear classifiers. For notational convenience we describe
fully connected networks with l-layers. The neurons in the k-th layer are linear classifiers whose
parameters are the rows in the matrix W k. The input vector of the k-th layer, denoted by xk ∈ Rd,
is a function of the parameters of the previous layers, namely xk

(
W 0,W 1, . . . ,W k−1

)
. The entries

of xk are computed from the response of its preceding layer classifiers W k−1xk−1, followed by a
transfer function, that is, xk = f

(
W k−1xk−1

)
. The function f (·) introduces non-linearities to

the process. Consequently, the deep learning optimization objective is non-convex. Moreover, in
most architectures, the transfer function is the non-smooth ReLU function f (t) = max {0, t} and

3

consequently the learning objective is non-smooth as well as non-convex. Therefore, learning a
network with l-layers, amounts to the following optimization problem

min
w

1

m

∑
(x,y)∈S

`
(
W lxl, y

)
,

where xk = f
(
W k−1xk−1

)
, k ∈ {1, 2, . . . , l}, and w is the concatenation of all neurons in the

network
(
W l,W l−1, . . . ,W 0

)
.

Unfortunately, contemporary algorithms, when applied to these architectures, are not guaran-
teed to converge to a critical point of the corresponding objective function. In the following we
develop an almost surely convergent algorithm for this non-smooth and non-convex learning objec-
tive. Our non-smooth component appears in the loss function, e.g., the hinge loss. The transfer
functions we are using are the smooth softplus functions f (t) = log (1 + exp (t)), which smoothly
approximate the ReLU function. Therefore, in this case the situation exactly fits into our general
model (see Section 1.2), and can be written as follows

g (w) =
1

m

m∑
i=1

gi (w) =
1

m

m∑
i=1

max
ŷ∈Y

gi,ŷ (w) =
1

m

m∑
i=1

max
ŷ

{
ˆ̀(ŷ, y) +

(
W lxli

)
ŷ
−
(
W lxli

)
yi

}
. (2.1)

We use the shorthand gi (w) to denote the loss of the i-th training example to avoid notational
overhead. Also, we note that

(
W lxl

)
y

has a Lipschitz continuous gradient and its Lipschitz constant
depends on the norm of x and W .

The main difficulty with our non-smooth component, which is introduced by the max-function,
comes from the non-convexity of gi (w). Clearly, if W lxl would have been a convex function of
w =

(
W l,W l−1, . . . ,W 0

)
, then the function g (w) would have been convex as well and its sub-

differential would have been the subset of vectors d for which g (w)− g (u)− 〈d,w − u〉 ≥ 0. Since
deep learners introduce non-convexity, we deal with the following extension of sub-differential to
non-convex functions (cf. [23, Definition 8.3]).

Definition 2.1 (Subdifferentials). Let g : Rp → (−∞,+∞] be a proper and lower semicontinuous
function.

(i) For a given w ∈ domh, the Fréchet subdifferential of g at w, written ∂̂g (w), is the set of all
vectors d ∈ Rp which satisfy

lim inf
u 6= w
u→ w

g (u)− g (w)− 〈d, u− w〉
‖u− w‖

≥ 0.

When w /∈ dom g, we set ∂̂g (w) = ∅.

(ii) The limiting-subdifferential, or simply the subdifferential, of g at w ∈ Rp, written ∂g (w), is
defined through the following closure process

∂g (w) :=
{
d ∈ Rp : ∃ wk → w, g

(
wk
)
→ g (w) and dk ∈ ∂̂g

(
wk
)
→ d as k →∞

}
.

Both sub-differential sets ∂̂g (w) and ∂g (w) are closed sets for any w ∈ Rp, while the set ∂̂g (w)
is also convex (see [23, Theorem 8.6]). We also have that ∂̂g (w) ⊂ ∂g (w) for any w ∈ Rp.

4

3 Algorithm and Convergence Analysis

In this section we are focusing on the optimization problem defined in (2.1). Specifically, minimizing

g (w) =
1

m

m∑
i=1

gi (w) =
1

m

m∑
i=1

max
ŷ∈Y

gi,ŷ (w) .

Our main objective is to devise a stochastic algorithm to tackle the minimization of g (w) which
can handle large scale instances (meaning large m). Motivated by the recent work of Bolte and
Pauwels [5] (see also [2, 17, 19]), in order to achieve our main goal we propose a stochastic version
of the Prox Linear Method, which is recorded now.

Stochastic Prox-Linear Method – SPLM

1. Initialization: start with any w0 ∈ Rp.

2. For each t = 0, 1, . . .

Choose a positive definite matrix M , choose randomly an index
i ∈ {1, 2, . . . ,m} uniformly at random and compute

wt+1 = argminw∈Rp

{
max
ŷ∈Y

{
hi,ŷ

(
w,wt

)}
+

1

2

∥∥w − wt∥∥2

M

}
, (3.1)

where hi,ŷ
(
w,wt

)
= gi,ŷ

(
wt
)

+
〈
∇gi,ŷ

(
wt
)
, w − wt

〉
.

We recall that the weighted norm is defined by ‖w‖M :=
√
wTMw, where M is a positive

definite matrix, which means that M � βI for some β > 0.

The random index i as well as the matrix M may differ in each iteration and should be noted
by the iteration index, namely Mt. Instead, we omit the iteration index and use M for clarity.
Interestingly, the SPLM algorithm is a generalization of the SGD Method to linear classifiers, indeed
when applied to support vector machines, the SPLM algorithm reduces to the primal estimated
sub-gradient solver (Pegasos) [25].

The main idea of SPLM (as of the deterministic version) is to beneficially exploit the structure
of the objective function g (·) by replacing each non-convex inner function gi,ŷ (·) with its linear
approximation around given point w̄, which is denoted in the algorithm by hi,ŷ (w, w̄), and then we
also add a proximal quadratic term. The idea of linearizing smooth functions and adding proximal
terms stands in the basis of many optimization methods, such as proximal gradient (see [27] for a
recent review paper).

Before providing the convergence analysis, we would like to say few words about how to compute
an iteration of SPLM. Since we replace the function gi,ŷ (·) by its linear approximation hi,ŷ (·, ·),
inside the “max”, the obtained subproblem of step (3.1), consists of an unconstrained minimization
of the sum of a strongly convex function and a non-smooth and convex function that can not
be explicilty solved. However, fortenatly, this problem fits exactly to the model that was studied
recently in the paper of Beck and Teboulle [3], where a Fast Dual-Based Proximal Gradient (FDPG)
Method was proposed and analyzed. Therefore, a solution to this subproblem, at each iteration,
will be approximated by applying the FDPG Method (see more details in Section 4).

5

3.1 Mathematical Toolbox

The convergence analysis of the SPLM method will be developed in the following sub-section. To
this end we will need some technical results on the involved functions in our optimization model and
algorithm. We begin with a result regarding the subdifferential of the non-convex and non-smooth
objective function g (·).

Lemma 3.1. Assume that gi,ŷ : Rp → R are continuously differentiable functions. Then, for all
w ∈ Rp, we have

1

m

m∑
i=1

∂gi (w) = ∂g (w) .

Proof. We first define a function ϕ : Rmn → (−∞,+∞] by

ϕ (z) =
1

m

m∑
i=1

ϕi (zi) ,

where ϕi (zi) = maxŷ∈Y zi,ŷ and zi ∈ Rn. In addition, we define

G (x) = [G1 (x) , G2 (x) , . . . , Gm (x)] , where Gi (x) = [gi1 (x) , gi2 (x) , . . . , gin (x)]T ,

where n = |Y |. Then, it follows that g (x) = ϕ (G (x)). By using the chain rule (see [23, Theorem
10.6]) and since ϕ (·) is a convex function, we obtain that

∂g (x) = ∇G (x)T ∂ϕ (G (x)) =
1

m
∇G (x)T (∂ϕ1 (G1 (x))× ∂ϕ2 (G2 (x))× · · · × ∂ϕm (Gm (x))) ,

where the last equality follows from the structures of ϕ (·) and G (see [23, Proposition 10.5]).
Therefore

∂g (x) =
1

m

m∑
i=1

∇Gi (x)T ∂ϕi (Gi (x)) =
1

m

m∑
i=1

∂gi (x) ,

which yields the desired result.

The above proposition holds trivially for smooth functions, since the subdifferential of each gi,
i = 1, 2, . . . ,m, contains only the gradient. For convex functions, the subdifferential may contain
more than one vector, nevertheless the above statement holds true (under classic regularity assump-
tions) see, for example, [22]. Unfortunately, the above proposition does not hold for any non-convex
and non-smooth function, since we are dealing with the more general notation of subdifferential
(see Definition 2.1). However, it holds in our setting since we exploit the convexity of the “max”
function and the differentiability of the inner functions.

Next, we use a standard descent lemma for functions with Lipschitz continuous gradient to
show that in our non-smooth setting, which consists of a maximum of functions with Lipschitz
continuous gradient, we can also obtain an upper majoraizer (which is not quadratic).

Lemma 3.2. Assume that gi,ŷ : Rp → R are continuously differentiable functions with ∇gi,ŷ
assumed Li,ŷ-Lipschitz continuous. Then

g (u) ≤ g (v) +
1

m

m∑
i=1

max
ŷ∈Y
〈∇gi,ŷ (v) , u− v〉+

L

2
‖u− v‖2 , ∀ u, v ∈ Rp, (3.2)

where L = 1
m

∑m
i=1 maxŷ∈Y Li,ŷ.

6

Proof. Let 1 ≤ i ≤ m and ŷ ∈ Y . Due to the Lipschitz property of ∇gi,ŷ we have from the
well-known Descent Lemma (see [4]) and the definition of g (see (2.1)) that

gi,ŷ (u) ≤ gi,ŷ (v) + 〈∇gi,ŷ (v) , u− v〉+
Li,ŷ

2
‖u− v‖2 . (3.3)

Maximizing (3.3) over all ŷ ∈ Y , using the definition of gi (see (2.1)) and splitting the max term
on the right-hand side yields

gi (u) ≤ gi (v) + max
ŷ∈Y
〈∇gi,ŷ (v) , u− v〉+ max

ŷ∈Y

Li,ŷ
2
‖u− v‖2 . (3.4)

Summing (3.4) over i = 1, 2, . . . ,m and dividing by m, yields the result.

The idea behind the main step of SPLM, which is based on the observation obtained in Lemma
3.2, comes from the fact that the function to be minimized at iteration t majorize the randomly
chosen function gi (·). More precisely, let M be a positive definite matrix such that M � βI for
some β > 0, we define an auxiliary function Ψβ : Rp × Rp → R by

Ψβ (w1, w2) =
1

m

m∑
i=1

Ψi
β (w1, w2) , (3.5)

where, for all i = 1, 2, . . . ,m, we have

Ψi
β (w1, w2) = max

ŷ∈Y
{gi,ŷ (w1) + 〈∇gi,ŷ (w1) , w2 − w1〉}+

β

2
‖w2 − w1‖2M . (3.6)

In the following result we prove that the function Ψβ indeed majorize the objective function g
and we also prove that critical points of this majorizing function are critical points of the original
function g. For the case of m = 1 see similar results in [2, 5].

Proposition 3.1 (Properties of Ψβ). Let M be a positive definite matrix such that M � βI for
some. The following statements hold true:

(i) Ψβ (w1, w1) = g (w1) for all w1 ∈ Rp.

(ii) Suppose that β ≥
m∑
i=1

maxŷ∈Y Li,ŷ. Then, for all w2 ∈ Rp, we have

Ψβ (w1, w2) ≥ g (w2) .

(iii) ∂w2Ψβ (w1, w1) ⊆ ∂g (w1), for all w1 ∈ Rp.

Proof. The first item follows by a simple substitution of w2 = w1 in (3.5) and (3.6). The proof of
the second item follows along the lines of the proof of Lemma 3.2. Now we will prove the last item.
Using [23, Exercise 8.31], we have that the subdifferential of gi (see (2.1)) is given by

∂gi (w1) =
∑

ŷ∈Ŷ (w1)

λŷ∇gi,ŷ (w1) , (3.7)

where λ ∈ ∆n :=
{
λ ∈ Rn+ :

∑n
j=1 λj = 1

}
(here n = |Ŷ (w1) |) and

Ŷ (w1) = {ŷ ∈ Y : gi,ŷ (w1) = gi (w1)} .

7

The subdifferential of Ψi
β with respect to w2, is given by

∂w2Ψi
β (w1, w2) =

∑
ŷ∈Ỹ (w1,w2)

λŷ∇gi,ŷ (w1) , (3.8)

where

Ỹ (w1, w2) =

{
ŷ ∈ Y : hi,ŷ (w1, w2) = max

y∈Y
hi,y (w1, w2)

}
. (3.9)

Setting w2 = w1 in (3.9) yields

Ỹ (w1, w1) = {ŷ ∈ Y : gi,ŷ (w1) = gi (w1)} = Ŷ (w1) .

This proves that ∂w2Ψi
β (w1, w1) ⊆ ∂gi (w1) for all i = 1, 2, . . . ,m. By summing this inclusion over

1 ≤ i ≤ m and using Lemma 3.1, the desired result follows.

3.2 Convergence Analysis of SPLM

In this section we will present our main result concerning the convergence and rate of SPLM. We
show that the sequence generated by SPLM almost surely (in short a.s.) converges to a critical
point of the problem at hand.

To this end we use an inherent property that holds in our setting, defined in (2.1), namely
that for every i = 1, 2, . . . ,m there exists y for which gi,y (w) = 0. The property holds since the
hinge-loss on the correct prediction is zero.

Our convergence and rate of convergence analysis of SPLM will be divided into two steps.
We first show that the random sequences g

(
w0
)
, g
(
w1
)
, . . . and subgradients u0, u1, . . . that are

generated by the SPLM algorithm form a supermartingale with respect to Ft := σ
(
w1, w2, . . . , wt

)
.

Let i = 1, 2, . . . ,m. For simplicity we denote

H (w1, w2) :=
1

m

m∑
i=1

Hi (w1, w2) where Hi (w1, w2) := max
ŷ∈Y

hi,ŷ (w1, w2) , (3.10)

and hi,ŷ (w1, w2) = gi,ŷ (w1)+〈∇gi,ŷ (w1) , w2 − w1〉. We denote by ∂2Hi (w1, w2) the subdifferential
of Hi (·, ·) with respect to the second variable.

Proposition 3.2. Let
{
wt
}
t∈N be a sequence generated by SPLM and suppose that M � βI, where

β = Lm/γ, γ < 2 and L = 1
m

∑m
i=1 maxŷ∈Y Li,ŷ. Define, for all t ∈ N, the random variables

Gt = g
(
wt
)

and

Ut = c

m∑
i=1

∥∥uti∥∥2

M−2 , where uti ∈ ∂2Hi

(
wt+1, wt

)
and c =

β

m

(
1

m
− L

2β

)
. (3.11)

Then, E [Gt+1|Ft] +Ut ≤ Gt for all t ∈ N. In particular, {Gt}t∈N a.s. converges to a non-negative
random variable G∞ and {Ut}t∈N a.s. converges to 0.

Proof. Since gi,ŷ (w) ≡ 0, i = 1, 2, . . . ,m, for some ŷ ∈ Y , it follows from (2.1) that gi is non-
negative function, and therefore g is also a non-negative function, implying the non-negativity of
Gt, t ∈ N.

8

Plugging u = wt+1 and v = wt in Lemma 3.2 and taking expectation conditioned on Ft yields

E
[
g
(
wt+1

)∣∣Ft] ≤ g (wt)+
1

m

m∑
i=1

E
[

max
ŷ∈Y

〈
∇gi,ŷ

(
wt
)
, wt+1 − wt

〉∣∣∣∣Ft]
+
L

2
E
[∥∥wt+1 − wt

∥∥2
∣∣∣Ft] . (3.12)

Using the optimality condition of wt+1 (see (3.1)), there exists uti ∈ ∂Hi

(
wt, wt+1

)
such that

uti +M
(
wt+1 − wt

)
= 0. (3.13)

From the definition of Hi

(
w,wt

)
, i = 1, 2, . . . ,m, as the maximum of linear functions it follows

that
∂2Hi

(
wt+1, wt

)
= conv

({
∇gi,ŷ

(
wt
)}

ŷ∈Ȳ

)
, (3.14)

where Ȳ :=
{
ȳ ∈ Y : Hi

(
wt+1, wt

)
= hi,ŷ

(
wt+1, wt

)}
. This means that

E
[
ui
t
∣∣Ft] = (1/m)

m∑
l=1

utl .

Combining (3.12) and (3.13) yields

E
[
g
(
wt+1

)∣∣Ft] ≤ g (wt)− 1

m2

m∑
i=1

m∑
l=1

max
ŷ∈Y

〈
∇gi,ŷ

(
wt
)
,M−1utl

〉
+

L

2m

m∑
i=1

∥∥uti∥∥2

M−2

≤ g
(
wt
)
− 1

m2

m∑
i=1

max
ŷ∈Y

〈
∇gi,ŷ

(
wt
)
,M−1uti

〉
+

L

2m

m∑
i=1

∥∥uti∥∥2

M−2 , (3.15)

where the second inequality is due to the fact that ∇gi,ŷ(wt) = 0 for some ŷ ∈ Y , i = 1, 2, . . . ,m,
and thus

max
ŷ∈Y

〈
∇gi,ŷ

(
wt
)
,M−1utl

〉
≥ 0, 1 ≤ i, l ≤ m.

On the other hand, from (3.14) we have that

uti =
∑
ŷ∈Ȳ

λŷ∇gi,ŷ
(
wt
)
,

where λ ∈ ∆n. In addition, for all i = 1, 2, . . . ,m, we have that∥∥uti∥∥2

M−2 =
∥∥M−1uti

∥∥2 ≤
∥∥∥M−1/2

∥∥∥2 ∥∥∥M−1/2uti

∥∥∥2

≤ 1

β

∑
ŷ∈Ȳ

λŷ
〈
M−1uti,∇gi,ŷ

(
wt
)〉

≤ 1

β
max
ŷ∈Ȳ

〈
M−1uti,∇gi,ŷ

(
wt
)〉

≤ 1

β
max
ŷ∈Y

〈
M−1uti,∇gi,ŷ

(
wt
)〉
,

where the first inequality is due to the fact that M � βI, the second inequality follows from the
fact that λ ∈ ∆n and the last inequality follows from the fact that Ȳ ⊂ Y . Using this fact in (3.15)

9

yields that

E
[
g
(
wt+1

)∣∣Ft] ≤ g (wt)− β

m2

m∑
i=1

∥∥uti∥∥2

M−2 +
L

2m

m∑
i=1

∥∥uti∥∥2

M−2

= g
(
wt
)
− β

m

(
1

m
− L

2β

) m∑
i=1

∥∥uti∥∥2

M−2 .

From the definition of Ut (see (3.11)) we obtain that

E [Gt+1|Ft] + Ut ≤ Gt, ∀ t ∈ N. (3.16)

Since we assumed that γ < 2, it is clear that β ≥ Lm/2 and we have that Ut ≥ 0. Using the
supermartingale convergence theorem, combined with (3.16) and the fact that Gt and Ut, t ∈ N,
are non-negative random variables, we obtain that {Gt}t∈N converges a.s., as t → ∞, to a certain
non-negative random variable G∞ and that {Ut}t∈N converges a.s. to 0, as required.

The above result proves that objective function values Gt = g
(
wt
)

that are generated by the
SPLM algorithm is almost surely converges to a certain limit point G∞. It also proves that the
(sub)gradients of H

(
wt+1, wt

)
, t ∈ N, almost surely converges to zero, namely, a limiting point

of the sequence of (sub)gradients is a critical point of H and therefore from Proposition 3.1 is a
critical point of the original objective function g.

Now we are ready to prove our main result about the rate of convergence of SPLM.

Theorem 3.1. Let
{
wt
}
t∈N be a sequence generated by SPLM. Assume that g is bounded from

below on Rd by some ḡ. Let ut = 1
m

∑m
i=1 u

t
i where uti ∈ ∂Hi

(
wt+1, wt

)
, i = 1, 2, . . . ,m, and

suppose that M � βI, where β = Lm/γ, γ < 2 and L = 1
m

∑m
i=1 maxŷ∈Y Li,ŷ. Then, we have that

min
t=0,1,...,T−1

E
[∥∥ut∥∥

M−2

]
≤ ε, (3.17)

after T ≥ L(2−γ)
2γε2

(
g
(
w0
)
− ḡ
)

iterations.

Proof. Suppose now that β = Lm/γ where γ < 2. Thus, in this case, we have that Ut (as defined
in (3.11)) is positive for all t ∈ N. Plugging β into Ut yields

Ut = c
m∑
i=1

∥∥uti∥∥2

M−2 , (3.18)

where

c =
L(2− γ)

2γm
. (3.19)

Since we proved in Proposition 3.2 that {Yt}t∈N converges a.s. to 0, it follows that
{
uti
}
t∈N also

converges a.s. to 0 for all i = 1, 2, . . . ,m. Taking expectation of (3.11) yields that

E [Ut] ≤ E [Gt]− E [Gt+1] . (3.20)

Summing (3.20) over t = 0, 1, . . . , T − 1 and dividing by T yields

min
t=0,1,...,T−1

E [Ut] ≤
1

T

T−1∑
t=0

E [Ut] ≤
1

T
(E [G0]− E [GT]) ≤ 1

T

(
g
(
w0
)
− ḡ
)
, (3.21)

10

where the first inequality holds due to the fact that the minimum is less than the average. From
(3.18) and the convexity of ‖·‖2M−2 we obtain

∥∥ut∥∥2

M−2 =

∥∥∥∥∥ 1

m

m∑
i=1

uti

∥∥∥∥∥
2

M−2

≤ 1

m

m∑
i=1

∥∥uti∥∥2

M−2 =
1

mc
Ut. (3.22)

Combining (3.22) together with (3.21), using Jensen’s inequality and plugging c (see (3.19)) yields

min
t=0,1,...,T−1

E
[∥∥ut∥∥

M−2

]2
M−2 ≤ min

t=0,1,...,T−1
E
[∥∥ut∥∥2

M−2

]
≤ 1

mcT

(
g
(
w0
)
− ḡ
)

=
2γ

(2− γ)LT

(
g
(
w0
)
− ḡ
)
,

which proves the desired sub-linear rate of convergence result.

An immediate consequence of Theorem 3.1 is the non-asymptotic rate of convergence of the
sequence

{∥∥wt+1 − wt
∥∥}

t∈N. Indeed, from (3.21) it follows that

min
t=0,1,...,T−1

E
[∥∥wt+1 − wt

∥∥] ≤√ 2m2γ

(2− γ)LT
(g (w0)− ḡ).

To conclude, in this work we presented a novel algorithm for finding critical points of non-convex and
non-smooth function, whose non-smoothness is given by the maximum of smooth and non-convex
functions. The proposed algorithm combines stochastic gradient descent with the Proximal Linear
Method, and minimizes at each iteration a majorizing function, whose critical points included in
the set of critical points of the original objective function, with a rate of O(m2/ε2). We demonstrate
below the effectiveness of our approach on learning VGG networks.

It should be noted that the studied model can not be tackled by Stochastic Gradient Descent
(SGD) and its variants since they all require a smooth component in their objective function.
Therefore, to the best of our knowledge, the only algorithm that can be used in this setting is the
Stochastic Sub-Gradient Descent (SSGD). However, the SSGD has no provable rate of convergence
in the non-convex setting. On the other hand, we have shown that the proposed SPLM algorithm
converges, namely the norm of the subgradient vanishes, at rate of O(m2/ε2). As our experiments
below demonstrate, also in practice the proposed SPLM algorithm is significantly better than
SSGD.

4 Experimental Evaluation

4.1 Solving the Inner Optimization Problem of SPLM

Fix t ≥ 1. Each iteration of SPLM requires solving an optimization problem (see (3.1)) that can
be written as follows

min
w∈Rp

{
max
ŷ∈Y
{〈aŷ, w〉+ bŷ}+

β

2

∥∥w − wt∥∥2
}
, (4.1)

where atŷ = ∇gi,ŷ
(
wt
)

and btŷ = gi,ŷ
(
wt
)
−
〈
∇gi,ŷ

(
wt
)
, wt
〉
. Let A ∈ R|Y |×p be a matrix whose

columns are the vectors atŷ for ŷ ∈ Y .

11

As mentioned in Section 3, at each iteration we apply a predefined number (denoted by K) of
iteration of the FDPG method of Beck and Teboulle [3] to solve the minimization problem (4.1).
The explicit steps of the FDPG method in our case are as follows.

FDPG for minimization step in SPLM

0. Input: fix L ≥ ‖A‖
2

β and K ∈ N.

1. Initialization: start with any z1 = y0 ∈ − 1
L∆n, t1 = 1.

2. For each k = 1, 2, . . . ,K compute

z̄k = wt +
1

β
AT zk

yk = − 1

L
P∆n

(
1

L

(
Az̄k + btŷ − Lzk

))

tk+1 =
1 +

√
1 + 4t2k

2

zk+1 = yk +
tk − 1

tk+1
(yk − yk+1)

We applied the SPLM algorithm to solve the optimization problem during the training of a
neural network. We compared SPLM to SGD using a smoothed version of the VGG network, i.e.,
we used the transfer function f (t) = log (1 + exp (t)), and replaced the max-pooling components
with the mean-pooling. The total number of parameters in the network denoted by p is about 15
million. In our experiments we used the CIFAR10 dataset.

Our first experiments designed to check the influence of the inner iterations of the FDPG
method on the overall performances, in terms of the achieved objective function values, of the
SPLM algorithm. To this end we have tried four configurations of number of inner iterations: 1,
2, 3 and 5. Figure 1 depicts the loss of the SGD and the SPLMk algorithms versus time, where
k stands for the number of inner FDPG iterations used to solve the optimization problem at each
iteration of the SPLM.

As can be seen from this experiment, 3 inner iterations is a good balance between the time we
spent on solving the inner sub-problems and the overall performance of the algorithm. Therefore,
in our next experiment we fixed the number of inner iterations to be 3.

Next, we also compared the performance of the SPLM algorithm to the ADAM algorithm (see
[14]), which is a very popular algorithm for training deep neural networks. The figure below depicts
the loss of SGD, SPLM and ADAM for the smoothed network with again 15 million parameters,
and provides a very promising evidence for the superiority of SPLM over the two other methods.

12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
2

10
3

time[sec]

lo
g 10

(lo
ss

)

SGD

SPLM5

SPLM3

SPLM2

SPLM1

(a) Batch size = 1, β = 0.0001

0 0.5 1 1.5 2 2.5

time[sec] 105

101

102

103

lo
g 10

(lo
ss

)

SGD

SPLM5

SPLM3

SPLM1

(b) Batch size = 5, β = 0.001

0 0.5 1 1.5 2 2.5

time[sec] 105

102

103

lo
g 10

(lo
ss

)

SGD

SPLM5

SPLM3

SPLM1

(c) Batch size = 10, β = 0.01

0 0.5 1 1.5 2 2.5

time[sec] 105

102

103

lo
g 10

(lo
ss

)

SGD

SPLM6

SPLM4

SPLM2

(d) Batch size = 10, β = 0.02

Figure 1: Comparing SPLM to SGD

In another experiment, we have tested the effect of changing the weight matrices Mt, t ∈
N. In this case, we have exactly used the idea of [11], where they suggest to incorporate the
previously computed gradients. Here, in each experiments, we used variety if step-sizes and also
checked different numbers of inner FDPG iterations (denoted with n superscript number). First,
we compared the non-adaptive SPLM with the matrix Mt = βI (where β = 0.001) to two versions
of the adaptive SPLM (denoted below by ADAP-SPLM), for which the weight matrices satisfy
Mt � β1I and Mt � β2I (where β1 = 0.001 and β2 = 0.005).

This experiment provide an evidence that the adaptive version of SPLM can perform better for
suitable parameters of β and even for smaller number of inner iterations.

Lastly, we implemented the ADAM version of SPLM (denoted below by ADAM-SPLM), mean-

0 1 2 3 4 5 6 7

x 10
4

10
2

10
3

time[sec]

lo
g 10

(lo
ss

)

ADAM
SGD
SPLM

13

0 1 2 3 4 5 6 7 8 9 10

time[sec] 104

102

103

lo
g

10
(lo

ss
)

ADAP-SPLM1

ADAP-SPLM2

SPLM1

ing the weights of the initial gradients used to compute the matrix Mt decay over the iterates t.
Again, we have checked different step-size and number of inner iterations.

0 5 10 15

time[sec] 104

102

103

lo
g 10

(lo
ss

)

ADAM-SPLM3

ADAM-SPLM5

SPLM3

(a) SPLM with β = 0.01

0 5 10 15

time[sec] 104

102

103

lo
g 10

(lo
ss

)

ADAM-SPLM3

ADAM-SPLM5

SPLM3

(b) SPLM with β = 0.02

0 1 2 3 4 5 6 7 8 9 10

time[sec] 104

102

103

lo
g

10
(lo

ss
)

ADAM-SPLM1

ADAM-SPLM2

SPLM1

(c) SPLM with β = 0.001

We see clearly that this adaptive version of the SPLM method outperforms the non-adaptive
version in all cases.

References

[1] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan and T. Ma. Finding approximate local minima
for nonconvex optimization in linear time. Symposium on Theory of Computing, 2017.

14

[2] A. Auslender. An extended sequential quadratically constrained quadratic programming al-
gorithm for nonlinear, semidefinite, and second-order cone programming. J. Optim. Theory
Appl., 156(2):183–212, 2013.

[3] A. Beck and M. Teboulle. A fast dual proximal gradient algorithm for convex minimization
and applications. Oper. Res. Lett., 42(1):1–6, 2014.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Englewood Cliffs, NJ: Prentice hall, 1989.

[5] J. Bolte and E. Pauwels. Majorization-minimization procedures and convergence of SQP
methods for semi-algebraic and tame programs. Math. Oper. Res., 41(2):442–465, 2016.

[6] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018.

[7] Y. Carmon, J. C. Duchi, O. Hinder and A. Sidford. Convex until proven guilty: Dimension-free
acceleration of gradient descent on non-convex functions. Proceedings of the 34th International
Conference on Machine Learning-Volume 70, 654–663, 2017.

[8] Y. Carmon, , J. C. Duchi, O. Hinder and A. Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

[9] D. Davis, B. Edmunds and M. Udell. The sound of apalm clapping: Faster nonsmooth non-
convex optimization with stochastic asynchronous palm. Advances in Neural Information
Processing Systems, 226–234, 2016.

[10] A. Defazio, F. Bach and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. Advances in neural information pro-
cessing systems, 1646–1654, 2014.

[11] Y. Duchi, E. Hazan and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011.

[12] R. Ge, F. Huang, C. Jin and Y. Yuan. Escaping from saddle points-online stochastic gradient
for tensor decomposition. Conference on Learning Theory, 797–842, 2015.

[13] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 315–323, 2013.

[14] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] H. Lee and H. Kwon. Going deeper with contextual CNN for hyperspectral image classification.
IEEE T. Image Process., 26(10):4843–4855, 2017.

[16] J. D. Lee, M. Simchowitz, M. I. Jordan and B. Recht. Gradient descent only converges to
minimizers. Conference on Learning Theory, 1246–1257, 2016.

[17] A. S. Lewis, and S. J. Wright. A proximal method for composite minimization. Math. Program.,
158(1-2):501–546, 2016.

[18] S. Liu, B. Kailkhura, P. Y. Chen, P. Ting, S. Chang and L. Amini. Zeroth-order stochastic
variance reduction for nonconvex optimization. Advances in Neural Information Processing
Systems, 3727–3737, 2018.

15

[19] E. Pauwels. The value function approach to convergence analysis in composite optimization.
Oper. Res. Lett., 44(6):790–795, 2016.

[20] S. J. Reddi, A. Hefny, S. Sra, B. Poczos and A. Smola. Stochastic variance reduction for
nonconvex optimization. International Conference on Machine Learning, 314–323, 2016.

[21] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Stat., 400–407,
1951.

[22] R. T. Rockafellar. Convex Analysis. Princeton Mathematical Series, No. 28. Princeton Uni-
versity Press, Princeton, N.J., 1970.

[23] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317. Springer-Verlag, Berlin,
1998.

[24] M. Schmidt and N. Le Roux and F. Bach. Minimizing finite sums with the stochastic average
gradient. Math. Program., 162(1-2):1–30, 2017.

[25] S. Shalev-Shwartz, Y. Singer, N. Srebro and A. Cotter. Pegasos: Primal estimated sub-gradient
solver for svm. Math. Program., 127(1):83–112, 2011.

[26] M. Staib, S. J. Reddi, S. Kale, S. Kumar and S. Sra. Escaping saddle points with adaptive
gradient methods. International Conference on Machine Learning, 5956–5965, 2019.

[27] M. Teboulle. A simplified view of first order methods for optimization. Math. Program.,
170:67–96, 2018.

[28] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang and W. Xu. CNN-RNN: A unified framework
for multi-label image classification. Proceedings of the IEEE conference on computer vision
and pattern recognition, 5–16, 2016.

16

