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Abstract

We introduce a proximal alternating linearized minimization (PALM) algorithm
for solving a broad class of nonconvex and nonsmooth minimization problems. Build-
ing on the powerful Kurdyka- Lojasiewicz property, we derive a self-contained conver-
gence analysis framework and establish that each bounded sequence generated by
PALM globally converges to a critical point. Our approach allows to analyze various
classes of nonconvex-nonsmooth problems and related nonconvex proximal forward-
backward algorithms with semi-algebraic problem’s data, the later property being
shared by many functions arising in wide variety of fundamental applications. A
by-product of our framework also shows that our results are new even in the con-
vex setting. As an illustration of the results, we derive a new and simple globally
convergent algorithm for solving the sparse nonnegative matrix factorization problem.
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1 Introduction

Minimizing the sum of a finite collections of given functions has been at the heart of
mathematical optimization research. Indeed, such an abstract model is a convenient vehicle
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which includes most practical models arising in a wide range of applications, whereby each
function can be used to describe a specific required property of the problem at hand, either
as an objective or as a constraint or both. Such a structure, while very general, still often
allows one to beneficially exploit mathematical properties of the specific functions involved
to devise simple and efficient algorithms. Needless to say that the literature in optimization
research and its applications covering such a model is huge, and the present paper is not
intended to review it. For some pioneering and early works that realized the potential of
the sum optimization model, see for instance, Auslender [4], and Bertsekas and Tsitsiklis
[12], with references therein.

Recently there has been a revived interest in the design and analysis of algorithms
for solving optimization problems involving sum of functions, in particular is signal/image
processing and machine learning. The main trend is solving very large scale problems,
exploiting special structures/properties of the problem data toward the design of very
simple scheme (e.g., matrix/vector multiplications), yet capable of producing reasonable
approximate solutions efficiently. In order to achieve these goals, the focus of this recent
research has been with a particular emphasis on the development and analysis of algorithms
for convex models which either describe a particular application at hand or is used as a
relaxation for tackling an original nonconvex model. We refer the reader to the two very
recent edited volumes [30] and [34] for a wealth of relevant and interesting works covering
a broad spectrum of theory and applications which reflects this intense research activity.

In this work, we completely depart from the convex setting. Indeed, in many of the
alluded applications, the original optimization model is often genuinely nonconvex and
nonsmooth. This can be seen in a wide array of problems such as: compressed sensing,
matrix factorization, dictionary learning, sparse approximations of signals and images, and
blind decomposition, to mention just a few. We thus consider a broad class of nonconvex-
nonsmooth problems of the form

(M) minimizex,yΨ (x, y) := f (x) + g (y) +H (x, y)

where the functions f and g are extended valued (i.e., allowing the inclusion of constraints)
and H is a smooth function (see more precise definitions in the next section). We stress that
throughout this paper, no convexity whatsoever will be assumed in the objective or/and
the constraints. Moreover, we note that the choice of two block of variables is for the sake
of simplicity of exposition. Indeed, all the results derived in this paper hold true for a finite
number of block-variables, see Section 3.6.

This model is rich enough to cover many of the applications mentioned above, and was
recently studied in the work of Attouch et al. [2] which also provides the motivation of the
present work. The standard approach to solve Problem (M) is via the so-called Gauss-Seidel
iteration scheme, popularized in modern era under the name alternating minimization.
That is, starting with some given initial point (x0, y0), we generate a sequence

{(
xk, yk

)}
k∈N
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via the scheme

xk+1 ∈ argminx Ψ
(
x, yk

)
yk+1 ∈ argminy Ψ

(
xk+1, y

)
.

Convergence results for the Gauss-Seidel method, also known as coordinate descent
method, can be found in several studies, see e.g., [4, 12, 29, 35]. One of the key assumptions
necessary to prove convergence is that the minimum in each step is uniquely attained, see
e.g., [36]. Otherwise, as shown in Powell [32], the method may cycle indefinitely without
converging. In the convex setting, for a continuously differentiable function Ψ, assuming
strict convexity of one argument while the other is fixed, every limit point of the sequence{(
xk, yk

)}
k∈N generated by this method minimizes Ψ, see e.g., [12]. Very recently, in [10],

global rate of convergence results have been derived for block coordinate gradient projection
algorithm for convex and smooth constrained minimization problems.

Removing the strict convexity assumption can be achieved by coupling the method with
a proximal term, that is to consider the proximal regularization of the Gauss-Seidel scheme:

xk+1 ∈ argminx

{
Ψ
(
x, yk

)
+
ck
2

∥∥x− xk∥∥2
}

(1.1)

yk+1 ∈ argminy

{
Ψ
(
xk+1, y

)
+
dk
2

∥∥y − yk∥∥2
}
, (1.2)

where ck and dk are positive real numbers. In fact, such an idea was already suggested by
Auslender in [6]. It was further studied in [7] with a nonquadratic proximal term to handle
linearly constrained convex problems, and further results can be found in [19]. In all these
works, only convergence of the subsequences can be established. In the nonconvex and
nonsmooth setting, which is the focus of this paper, the situation becomes much harder,
see e.g., [35].

The present work is motivated by two very recent papers by Attouch et al. [2, 3], which
appear to be the first works in the general nonconvex and nonsmooth setting, establishing in
[2] convergence of the sequences generated by the proximal Gauss-Seidel scheme (see (1.1)
and (1.2)), while in [3], a similar result was proven for the well-known proximal-forward-
backward (PFB) algorithm applied to the nonconvex and nonsmooth minimization of the
sum of a nonsmooth function with a smooth one (i.e., Problem (M) with no y). Their
approach relies on assuming that the objective function Ψ to be minimized satisfies the
so-called Kurdyka- Lojasiewicz (KL) property [22, 25], which was developed for nonsmooth
functions by Bolte et al. [16, 17] (see Section 2.4).

In both of these works, the suggested approach gains its strength from the fact that the
class of functions satisfying the KL property is considerably large, and cover a wealth of
nonconvex-nonsmooth functions arising in many fundamental applications, see more in the
forthcoming Section 3 and in the Appendix.

Clearly, the scheme (1.1) and (1.2) always produce a nonincreasing sequence of function
values, i.e., for all k ≥ 0 we have

Ψ
(
xk+1, yk+1

)
≤ Ψ

(
xk, yk

)
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and the sequence
{

Ψ
(
xk, yk

)}
k∈N is bounded from below by inf Ψ. Thus, with inf Ψ > −∞,

the sequence
{

Ψ
(
xk, yk

)}
k∈N converges to some real number, and as proven in [2], assuming

that the objective function Ψ satisfies the KL property, every bounded sequence generated
by the proximal regularized Gauss-Seidel scheme (1.1) and (1.2) converges to a critical
point of Ψ. These are nice properties for the alluded scheme above. However, this scheme
is conceptual, and not really a “true” algorithm, in the sense that it suffers from (at least)
two main drawbacks. First, each step requires exact minimization of a nonconvex and
nonsmooth problem. Secondly, it is a nested scheme which implies two nontrivial issues:
(i) accumulations of computational errors in each step, and (ii) how and when to stop each
step before passing to the next.

The above drawbacks motivates a very simple and naive approach, which can be traced
back to [5] for smooth unconstrained minimization. Thus, for the more general Problem
(M), for each block of coordinate perform one gradient step on the smooth part, while
a proximal step is taken on the nonsmooth part. This idea contrasts with the entirely
implicit step required by the proximal version of the Gauss-Seidel method (1.1) and (1.2),
that is here, we consider an approximation of this scheme via the well-known and standard
proximal linearization of each subproblem. This yields the Proximal Alternating Linearized
Minimization (PALM) algorithm, whose exact description is given in Section 3.1. Thus, the
root of our method can be viewed as nothing else but an alternating minimization approach
for the so-called Proximal Forward-Backward (PFB) algorithm. Let us mention that the
PFB algorithm has been extensively studied and successfully applied in many contexts in
the convex setting, see e.g., the recent monograph of Bauschke-Combettes [8] for a wealth
of fundamental results and references therein.

Now, we briefly streamline the novelty of our approach and our contributions. First,
the coupling of the Gauss-Seidel proximal scheme with PFB does not seem to have been
analyzed in the literature within such a general nonconvex and nonsmooth setting proposed
here. It allows to eliminate the difficulties evoked above with the scheme (1.1) and (1.2)
and leads to a simple and tractable algorithm PALM, with global convergence results for
nonconvex and nonsmooth semi-algebraic problems.

Secondly, while a part of the convergence result we develop in this article falls in the
scope of a general convergence mechanism introduced and described in [3], we present here a
self-contained thorough proof that avoids the use of these abstract results. The motivation
stems from the fact that we target applications for which KL property holds at each point of
the underlying space. Functions having this property are called KL functions. A very wide
class of KL functions is provided by tame functions; these include in particular nonsmooth
semi-algebraic and real subanalytic functions (see, e.g., [2] and references therein). This
property allows, through a “uniformization” result inspired by [1] (see Lemma 3.6) to
considerably simplify the main arguments of the convergence analysis and avoid involved
induction reasoning.

A third consequence of our approach is to provide a step-by-step analysis of our algo-
rithm which singles out, at each stage of the convergence proof, the essential tools that
are needed to get to the next stage. This allows one to understand the main ingredients
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at play and to evidence the exact role of KL property in the analysis of algorithms in the
nonconvex and nonsmooth setting, see more details in Section 3.2, where we outline a sort
of “recipe” for proving global convergence results that could be of benefit to analyze many
other optimization algorithms.

A fourth implication is that our block coordinate approach allows to get rid of a restric-
tive assumption inherent to the proximal forward-backward algorithm and which is often
overlooked: the gradient of the smooth part H has to be globally Lipschitz continuous.
This requirement often reduces the potential of applying PFB in concrete applications.
On the contrary, our approach provides a flexibility that allows to deal with more general
problems (e.g., componentwise quadratic forms) or with some ill-conditioned quadratic
problems. Indeed, the stepsizes in PALM may be adjusted componentwise in order to fit
as much as possible the structure of the problem at hand, see Section 4 for an interesting
application. Another by-product of this work is that it can also be applied to the convex
version of Problem (M) for which convergence results are quite limited. Indeed, even for
convex problems our convergence results are new (see the Appendix). Finally, to illustrate
our results, we present a simple algorithm proven to converge to a critical point for a broad
class of nonconvex and nonsmooth nonnegative matrix factorization problems, which to
the best of our knowledge appears to be the first globally convergent algorithm for this
important class of problems.

Outline of the paper. The paper is organized as follows. In the next section we
define the problem, make precise our setting, and we collect a few preliminary basic facts
on nonsmooth analysis, on proximal maps for nonconvex functions and we introduce the KL
property. In Section 3 we state the algorithm PALM, derive some elementary properties
and then develop a systematic approach to establish our main convergence results (see
Section 3.2). In particular we clearly specify when and where the KL property is playing
a fundamental role in the overall convergence analysis. Section 4 illustrates our results
on a broad class of nonconvex and nonsmooth matrix factorization problems. Finally, to
make this paper self-contained, we include an appendix which summarizes some well-known
and relevant results on the KL property including some useful examples of KL functions.
Throughout the paper, our notations are quite standard and can be found, for example, in
[33].

2 The Problem and Some Preliminaries

2.1 The Problem and Basic Assumptions

We are interested in solving the nonconvex and nonsmooth minimization problem

(M) minimize Ψ (x, y) := f (x) + g (y) +H (x, y) over all (x, y) ∈ Rn × Rm.

Following [2], we take the following as our blanket assumption.
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Assumption A. (i) f : Rn → (−∞,+∞] and g : Rm → (−∞,+∞] are proper and
lower semicontinuous functions.

(ii) H : Rn × Rm → R is a C1 function.

2.2 Subdifferentials of Nonconvex and Nonsmooth Functions

Let us recall few definitions concerning subdifferential calculus (see, for instance, [27, 33]).
Recall that for σ : Rd → (−∞,+∞] a proper and lower semicontinuous function, the
domain of σ is defined through domσ :=

{
x ∈ Rd : σ (x) < +∞

}
.

Definition 2.1 (Subdifferentials). Let σ : Rd → (−∞,+∞] be a proper and lower semi-
continuous function.

(i) For a given x ∈ domσ, the Fréchet subdifferential of σ at x, written ∂̂σ(x), is the set
of all vectors u ∈ Rd which satisfy

lim inf
y 6=x y→x

σ(y)− σ(x)− 〈u, y − x〉
‖y − x‖

≥ 0.

When x /∈ domσ, we set ∂̂σ (x) = ∅.

(ii) The limiting-subdifferential [27], or simply the subdifferential, of σ at x ∈ Rn, written
∂σ (x), is defined through the following closure process

∂σ (x) :=
{
u ∈ Rd : ∃ xk → x, σ

(
xk
)
→ σ (x) and uk ∈ ∂̂σ

(
xk
)
→ u as k →∞

}
.

Remark 2.1. (i) We have ∂̂σ (x) ⊂ ∂σ (x) for each x ∈ Rd. In the previous inclusion,
the first set is closed and convex while the second one is closed (see [33, Theorem 8.6,
page 302]).

(ii) Let
{(
xk, uk

)}
k∈N be a sequence in graph (∂σ) that converges to (x, u) as k → ∞.

By the very definition of ∂σ (x), if σ(xk) converges to σ(x) as k →∞, then (x, u) ∈
graph (∂σ).

(iii) In this nonsmooth context, the well-known Fermat’s rule remains barely unchanged.
It formulates as: “if x ∈ Rd is a local minimizer of σ then 0 ∈ ∂σ (x)”.

(iv) Points whose subdifferential contains 0 are called (limiting-)critical points.

(v) The set of critical points of σ is denoted by critσ.

Definition 2.2 (Sublevel sets). Being given real numbers α and β we set

[α ≤ σ ≤ β] :=
{
x ∈ Rd : α ≤ σ (x) ≤ β

}
.

We define similarly [α < σ < β]. The level sets of σ are simply denoted by

[σ = α] :=
{
x ∈ Rd : σ (x) = α

}
.

6



Let us recall a useful result related to our structured Problem (M), see e.g., [33].

Proposition 2.1 (Subdifferentiability property). Assume that the coupling function H in
Problem (M) is continuously differentiable. Then for all (x, y) ∈ Rn × Rm we have

∂Ψ (x, y) = (∇xH (x, y) + ∂f (x) ,∇yH (x, y) + ∂g (y)) = (∂xΨ (x, y) , ∂yΨ (x, y)) . (2.1)

Remark 2.2. Recall that for any set S, both S + ∅ and S × ∅ are empty sets, so that the
above formula makes sense over the whole product space Rn × Rm.

2.3 Proximal Map for Nonconvex Functions

We need to recall the fundamental Moreau proximal map for a nonconvex function (see
[33, page 20]). It is at the heart of the PALM algorithm.

Let σ : Rd → (−∞,∞] be a proper and lower semicontinuous function. Given x ∈ Rd

and t > 0, the proximal map associated to σ and its corresponding Moreau proximal
envelope are defined respectively by:

proxσt (x) := argmin

{
σ (u) +

t

2
‖u− x‖2 : u ∈ Rd

}
(2.2)

and

mσ (x, t) := inf

{
σ (u) +

1

2t
‖u− x‖2 : u ∈ Rd

}
.

Proposition 2.2 (Well-definedness of proximal maps). Let σ : Rd → (−∞,∞] be a proper
and lower semicontinuous function with infRd σ > −∞. Then, for every t ∈ (0,∞) the set
proxσ1

t

(x) is nonempty and compact, in addition mσ (x, t) is finite and continuous in (x, t).

Note that here proxσt is a set-valued map. When σ := δX , the indicator function of a
nonempty and closed set X, i.e., for the function δX : Rd → (−∞,+∞] defined, for all
x ∈ Rd, by

δX (x) =

{
0, if x ∈ X,
+∞, otherwise,

the proximal map reduces to the projection operator onto X, defined by

PX (v) := argmin {‖u− v‖ : u ∈ X} . (2.3)

The projection PX : Rd ⇒ Rd has nonempty values and defines in general a multi-valued
map, as opposed to the convex case where orthogonal projections are guaranteed to be
single-valued.
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2.4 The Kurdyka- Lojasiewicz Property

The Kurdyka- Lojasiewicz property plays a central role in our analysis. Below, we recall the
essential elements. We begin with the following extension of  Lojasiewicz gradient inequality
[25] as introduced in [2] for nonsmooth functions. First, we introduce some notation. For
any subset S ⊂ Rd and any point x ∈ Rd, the distance from x to S is defined and denoted
by

dist (x, S) := inf {‖y − x‖ : y ∈ S} .

When S = ∅, we have that dist (x, S) =∞ for all x.

Let η ∈ (0,+∞]. We denote by Φη the class of all concave and continuous functions
ϕ : [0, η)→ R+ which satisfy the following conditions

(i) ϕ (0) = 0;

(ii) ϕ is C1 on (0, η) and continuous at 0;

(iii) for all s ∈ (0, η): ϕ′ (s) > 0.

Now we define the Kurdyka- Lojasiewicz (KL) property.

Definition 2.3 (Kurdyka- Lojasiewicz property). Let σ : Rd → (−∞,+∞] be proper and
lower semicontinuous.

(i) The function σ is said to have the Kurdyka- Lojasiewicz (KL) property at u ∈ dom ∂σ :={
u ∈ Rd : ∂σ (u) 6= ∅

}
if there exist η ∈ (0,+∞], a neighborhood U of u and a func-

tion ϕ ∈ Φη, such that for all

u ∈ U ∩ [σ (u) < σ (u) < σ (u) + η] ,

the following inequality holds

ϕ′ (σ (u)− σ (u)) dist (0, ∂σ (u)) ≥ 1. (2.4)

(ii) If σ satisfy the KL property at each point of dom ∂σ then σ is called a KL function.

It is easy to establish that KL property holds in the neighborhood of noncritical points
(see, e.g., [2]), thus the truly relevant aspect of this property is when ū is critical, i.e.,
when 0 ∈ ∂σ (ū). In that case it warrants that σ is sharp up to a reparameterization of its
values: “σ is amenable to sharpness”. Indeed inequality (2.4) can be proved to imply

dist (0, ∂ (ϕ ◦ (σ (u)− σ (u)))) ≥ 1

for all convenient u (simply use the “one-sided” chain-rule [33, Theorem 10.6]). This
means that the subgradients of the function u → ϕ ◦ (σ (u)− σ (ū)) have a norm greater
than 1, no matter how close is the point u to the critical point ū (provided that σ (u) >
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σ (ū)). This property is called sharpness while the reparameterization function ϕ is called
a desingularizing function of σ at u. As it is described further into detail, this geometrical
feature has dramatic consequences in the study of first-order descent methods (see also [3]).

A remarkable aspect of KL functions is that they are ubiquitous in applications, for ex-
ample, semi-algebraic, subanalytic and log-exp are KL functions (see [1, 2, 3] and references
therein). These facts originates in the pioneering and fundamental works of  Lojasiewicz [25]
and Kurdyka [22]; works which were recently extended to nonsmooth functions in [16, 17].
In the Appendix we recall a nonsmooth semi-algebraic version of KL property, Theorem 5.1,
which covers many problems arising in optimization and which plays a central role in the
convergence analysis of our algorithm for the Nonnegative Matrix Factorization problem.
For the reader’s convenience, other related facts and pertinent results are also summarized
in the same appendix.

3 PALM Algorithm and Convergence Analysis

3.1 The Algorithm PALM

As outlined in the Introduction, PALM can be viewed as alternating the steps of the PFB
scheme. It is well-known that the proximal forward-backward scheme for minimizing the
sum of a smooth function h with a nonsmooth one σ can simply be viewed as the proximal
regularization of h linearized at a given point xk, i.e.,

xk+1 ∈ argminx∈Rd

{〈
x− xk,∇h

(
xk
)〉

+
t

2

∥∥x− xk∥∥2
+ σ (x)

}
, (t > 0) , (3.1)

that is, using the proximal map notation defined in (2.2), we get

xk+1 ∈ proxσt

(
xk − 1

t
∇h
(
xk
))

. (3.2)

Adopting this scheme on Problem (M) we thus replace Ψ in the iterations (1.1) and (1.2)
(cf. the Introduction) by their approximations which are obtained through the proximal
linearization of each subproblems, i.e., Ψ is replaced by

Ψ̂
(
x, yk

)
=
〈
x− xk,∇xH

(
xk, yk

)〉
+
ck
2

∥∥x− xk∥∥2
+ f (x) , (ck > 0) ,

and

̂̂
Ψ
(
xk+1, y

)
=
〈
y − yk,∇yH

(
xk+1, yk

)〉
+
dk
2

∥∥y − yk∥∥2
+ g (y) , (dk > 0) .

Thus alternating minimization on the two blocks (x, y) yields the basis of the algorithm
PALM we propose here.
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PALM: Proximal Alternating Linearized Minimization

1. Initialization: start with any (x0, y0) ∈ Rn × Rm.

2. For each k = 0, 1, . . . generate a sequence
{(
xk, yk

)}
k∈N as follows:

2.1. Take γ1 > 1, set ck = γ1L1

(
yk
)

and compute

xk+1 ∈ proxfck

(
xk − 1

ck
∇xH

(
xk, yk

))
. (3.3)

2.2. Take γ2 > 1, set dk = γ2L2

(
xk+1

)
and compute

yk+1 ∈ proxgdk

(
yk − 1

dk
∇yH

(
xk+1, yk

))
. (3.4)

PALM needs minimal assumptions to be analyzed.

Assumption B. (i) infRn×Rm Ψ > −∞, infRn f > −∞ and infRm g > −∞.

(ii) For any fixed y the function x → H (x, y) is C1,1
L1(y), namely the partial gradient

∇xH (x, y) is globally Lipschitz with moduli L1 (y), that is

‖∇xH (x1, y)−∇xH (x2, y)‖ ≤ L1 (y) ‖x1 − x2‖ , ∀x1, x2 ∈ Rn.

Likewise, for any fixed x the function y → H (x, y) is assumed to be C1,1
L2(x).

(iii) For i = 1, 2 there exists λ−i , λ
+
i > 0 such that

inf
{
L1

(
yk
)

: k ∈ N
}
≥ λ−1 and inf

{
L2

(
xk
)

: k ∈ N
}
≥ λ−2 (3.5)

sup
{
L1

(
yk
)

: k ∈ N
}
≤ λ+

1 and sup
{
L2

(
xk
)

: k ∈ N
}
≤ λ+

2 . (3.6)

(iv) ∇H is Lipschitz continuous on bounded subsets of Rn × Rm. In other words, for
each bounded subsets B1 × B2 of Rn × Rm there exists M > 0 such that for all
(xi, yi) ∈ B1 ×B2, i = 1, 2:

‖(∇xH (x1, y1)−∇xH (x2, y2) ,∇yH (x1, y1)−∇yH (x2, y2))‖
≤M ‖(x1 − x2, y1 − y2)‖ . (3.7)

A few words on Assumption B are now in order.

Remark 3.1. (i) Assumption B(i) ensures that Problem (M) is inf-bounded. It also
warrants that the algorithm PALM is well defined through the proximal maps for-
mulas (3.3) and (3.4) (see Proposition 2.2).
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(ii) The partial Lipschitz properties required in Assumption B(ii) are at the heart of
PALM which is designed to fully exploit the block-Lipschitz property of the problem
at hand.

(iii) The inequalities (3.5) in Assumption B(iii) guarantees that the proximal steps in
PALM remain always well-defined. As we describe below these two properties are
not demanding at all.

Indeed, consider a function H whose gradient is Lipschitz continuous block-wise as
in Assumption B(ii). Take now two arbitrary positive constants µ−1 and µ−2 , replace
the Lipschitz modulis L1(y) and L2(x) by L′1(y) = max

{
L1(y), µ−1

}
and L′2(x) =

max
{
L2(x), µ−2

}
, respectively. The functions L′1(y) and L′2(x) are still some Lipschitz

moduli of ∇xH (·, y) and ∇yH (x, ·), respectively. Moreover

inf {L′1(y) : y ∈ Rm} ≥ µ−1 and inf {L′2(x) : x ∈ Rn} ≥ µ−2 .

Thus the inequalities (3.5) are trivially fulfilled with these new Lipschitz modulis and
with λ−i = µ−i (i = 1, 2).

(iv) Assumption B(iv) is satisfied whenever H is C2 as a direct consequence of the Mean
Value Theorem. Similarly, the inequalities (3.6) in Assumption B(iii), can be obtained
by assuming that H is C2 and that the generated sequence

{(
xk, yk

)}
k∈N is bounded.

Before deriving the convergence results for PALM, in the next subsection we outline
our proof methodology.

3.2 An Informal General Proof Recipe

Fix a positive integer N . Let Ψ : RN → (−∞,+∞] be a proper and lower semicontinuous
function which is bounded from below and consider the problem

(P ) inf
{

Ψ (z) : z ∈ RN
}
.

Suppose we are given a generic algorithm A which generates a sequence
{
zk
}
k∈N via

the following:
z0 ∈ RN , zk+1 ∈ A

(
zk
)
, k = 0, 1, . . . .

The objective is to prove that the whole sequence generated by the algorithm A converges
to a critical point of Ψ.

In the light of [1, 3], we outline a general methodology which describes the main steps
to achieve this goal. In particular we put in evidence how and when the KL property is
entering in action. Basically, the methodology consists of three main steps.

(i) Sufficient decrease property: Find a positive constant ρ1 such that

ρ1

∥∥zk+1 − zk
∥∥2 ≤ Ψ

(
zk
)
−Ψ

(
zk+1

)
, ∀k = 0, 1, . . . .

11



(ii) A subgradient lower bound for the iterates gap: Assume that the sequence
generated by the algorithm A is bounded.1 Find another positive constant ρ2, such
that ∥∥wk+1

∥∥ ≤ ρ2

∥∥zk+1 − zk
∥∥ , wk ∈ ∂Ψ

(
zk
)
, ∀k = 0, 1, . . . .

These first two requirements above are quite standard and shared by essentially most
descent algorithms, see e.g., [2]. Note that when properties (i) and (ii) hold, then for any
algorithm A one can show that the set of accumulations points is a nonempty, compact
and connected set (see Lemma 3.5 (iii) for the case of PALM). One then need to prove that
it is a subset of the critical points of Ψ on which Ψ is constant.

Apart from the aspects concerning the structure of the limiting set (nonempty, com-
pact and connected), these first two steps depend on the structure of the specific chosen
algorithm A. Therefore the constants ρ1 and ρ2 are fit to the current given algorithm. The
third step, needed to complete our goal, namely to establish global convergence to a critical
point of Ψ, doesn’t depend at all on the structure of the specific chosen algorithm A.

Rather, it requires an additional assumption on the class of functions Ψ to be minimized.
It is here that the KL property enters in action: relying on the descent property of the
algorithm, and on a uniformization of the KL property (see Lemma 3.6) below, the third
and last step amounts to:

(iii) Using the KL property: Assume that Ψ is a KL function and show that the
generated sequence

{
zk
}
k∈N is a Cauchy sequence.

This basic approach can in principle be applied to any algorithm and is now systemat-
ically developed for PALM.

3.3 Basic Convergence Properties

We first establish some basic properties of PALM under our Assumptions A and B. We
begin by recalling the well-known and important descent lemma for smooth functions, see
e.g., [12, 29].

Lemma 3.1 (Descent lemma). Let h : Rd → R be a continuously differentiable function
with gradient ∇h assumed Lh-Lipschitz continuous. Then,

h (u) ≤ h (v) + 〈u− v,∇h (v)〉+
Lh
2
‖u− v‖2 , ∀ u, v ∈ Rd. (3.8)

The main computational step of PALM involves a proximal map step of a proper and
lower semicontinuous but nonconvex function. The next result shows that the well-known
key inequality for the proximal-gradient step in the convex setting (see, e.g., [9]) can be
easily extended to the nonconvex setting to warrant sufficient decrease of the objective
function after a proximal map step.

1For instance, it suffices to assume that Ψ is coercive to obtain a bounded sequence via (i); see also
Remark 3.4.
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Lemma 3.2 (Sufficient decrease property). Let h : Rd → R be a continuously differentiable
function with gradient ∇h assumed Lh-Lipschitz continuous and let σ : Rd → (−∞,+∞]
be a proper and lower semicontinuous function with infRd σ > −∞. Fix any t > Lh. Then,
for any u ∈ domσ and any u+ ∈ Rd defined by

u+ ∈ proxσt

(
u− 1

t
∇h (u)

)
(3.9)

we have

h
(
u+
)

+ σ
(
u+
)
≤ h (u) + σ (u)− 1

2
(t− Lh)

∥∥u+ − u
∥∥2
. (3.10)

Proof. First, it follows immediately from Proposition 2.2 that u+ is well-defined. By the
definition of the proximal map given in (2.2) we get

u+ ∈ argminv∈Rd

{
〈v − u,∇h (u)〉+

t

2
‖v − u‖2 + σ (v)

}
,

and hence in particular, taking v = u, we obtain〈
u+ − u,∇h (u)

〉
+
t

2

∥∥u+ − u
∥∥2

+ σ
(
u+
)
≤ σ (u) . (3.11)

Invoking first the descent lemma (see Lemma 3.1) for h, and using then inequality (3.11),
we get

h
(
u+
)

+ σ
(
u+
)
≤ h (u) +

〈
u+ − u,∇h (u)

〉
+
Lh
2

∥∥u+ − u
∥∥2

+ σ
(
u+
)

≤ h (u) +
Lh
2

∥∥u+ − u
∥∥2

+ σ (u)− t

2

∥∥u+ − u
∥∥2

= h (u) + σ (u)− 1

2
(t− Lh)

∥∥u+ − u
∥∥2
.

This proves that (3.10) holds.

Remark 3.2. (i) The above result is valid for any t > 0. The condition t > Lh ensures
a sufficient decrease in the value of h (u+) + σ (u+).

(ii) If the function σ is taken as the indicator function δX of a nonempty, closed and
nonconvex subset X, then the proximal map reduces to the projection PX , that is

u+ ∈ PX
(
u− 1

t
∇h (u)

)
and we recover the sufficient decrease property of the Projected Gradient Method
(PGM) in the nonconvex case.
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(iii) In the case when σ is a convex, proper and lower semicontinuous function, we can
take t = Lh (and even t > Lh

2
). Indeed, in that case, we can apply the global

optimality condition characterizing u+ defined in (3.9) to get instead of (3.11) the
stronger inequality

σ
(
u+
)

+
〈
u+ − u,∇h (u)

〉
≤ σ (u)− t

∥∥u+ − u
∥∥2

(3.12)

which together with the descent lemma (see Lemma 3.1) yields

h
(
u+
)

+ σ
(
u+
)
≤ h (u) + σ (u)−

(
t− Lh

2

)∥∥u+ − u
∥∥2
.

(iv) In view of item (iii), when applying PALM with convex functions f and g, the con-
stants ck and dk, k ∈ N, can simply be taken as L1

(
yk
)

and L2

(
xk+1

)
, respectively.

Equipped with this result, we can now establish some useful properties for PALM under
our Assumptions A and B. In the sequel for convenience we often use the notation

zk :=
(
xk, yk

)
, ∀k ≥ 0.

Lemma 3.3 (Convergence properties). Suppose that Assumptions A and B hold. Let{
zk
}
k∈N be a sequence generated by PALM. The following assertions hold.

(i) The sequence
{

Ψ
(
zk
)}

k∈N is nonincreasing and in particular

ρ1

2

∥∥zk+1 − zk
∥∥2 ≤ Ψ

(
zk
)
−Ψ

(
zk+1

)
, ∀k ≥ 0, (3.13)

where
ρ1 = min

{
(γ1 − 1)λ−1 , (γ2 − 1)λ−2

}
.

(ii) We have

∞∑
k=1

∥∥xk+1 − xk
∥∥2

+
∥∥yk+1 − yk

∥∥2
=
∞∑
k=1

∥∥zk+1 − zk
∥∥2
<∞, (3.14)

and hence limk→∞
∥∥zk+1 − zk

∥∥ = 0.

Proof. (i) Fix k ≥ 0. Under our Assumption B(ii), the functions x → H (x, y) (y is
fixed) and y → H (x, y) (x is fixed) are differentiable and have a Lipschitz gradient
with modulis L1 (y) and L2 (x), respectively. Using the iterative steps (3.3) and (3.4),
applying Lemma 3.2 twice, first with h (·) := H

(
·, yk

)
, σ := f and t := ck > L1(yk),

and secondly with h (·) := H
(
xk+1, ·

)
, σ := g and t := dk > L2(xk+1), we obtain

successively

H
(
xk+1, yk

)
+ f

(
xk+1

)
≤ H

(
xk, yk

)
+ f

(
xk
)
− 1

2

(
ck − L1

(
yk
)) ∥∥xk+1 − xk

∥∥2

= H
(
xk, yk

)
+ f

(
xk
)
− 1

2
(γ1 − 1)L1

(
yk
) ∥∥xk+1 − xk

∥∥2
,
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and

H
(
xk+1, yk+1

)
+ g

(
yk+1

)
≤ H

(
xk+1, yk

)
+ g

(
yk
)
− 1

2

(
dk − L2

(
xk+1

)) ∥∥yk+1 − yk
∥∥2

= H
(
xk+1, yk

)
+ g

(
yk
)
− 1

2
(γ2 − 1)L2

(
xk+1

) ∥∥yk+1 − yk
∥∥2
.

Adding the above two inequalities, we thus obtain for all k ≥ 0,

Ψ
(
zk
)
−Ψ

(
zk+1

)
= H

(
xk, yk

)
+ f

(
xk
)

+ g
(
yk
)
−H

(
xk+1, yk+1

)
− f

(
xk+1

)
− g

(
yk+1

)
≥ 1

2
(γ1 − 1)L1

(
yk
) ∥∥xk+1 − xk

∥∥2
+

1

2
(γ2 − 1)L2

(
xk+1

) ∥∥yk+1 − yk
∥∥2
. (3.15)

From (3.15) it follows that the sequence
{

Ψ
(
zk
)}

k∈N is nonincreasing, and since Ψ is
assumed to be bounded from below (see Assumption B(i)), it converges to some real
number Ψ. Moreover, using the facts that L1

(
yk
)
≥ λ−1 > 0 and L2

(
xk+1

)
≥ λ−2 > 0

(see Assumption B(iii)), we get for all k ≥ 0:

1

2
(γ1 − 1)L1

(
yk
) ∥∥xk+1 − xk

∥∥2
+

1

2
(γ2 − 1)L2

(
xk+1

) ∥∥yk+1 − yk
∥∥2

≥ 1

2
(γ1 − 1)λ−1

∥∥xk+1 − xk
∥∥2

+
1

2
(γ2 − 1)λ−2

∥∥yk+1 − yk
∥∥2

≥ ρ1

2

∥∥xk+1 − xk
∥∥2

+
ρ1

2

∥∥yk+1 − yk
∥∥2
. (3.16)

Combining (3.15) and (3.16) yields the following

ρ1

2

∥∥zk+1 − zk
∥∥2 ≤ Ψ

(
zk
)
−Ψ

(
zk+1

)
, (3.17)

and assertion (i) is proved.

(ii) Let N be a positive integer. Summing (3.17) from k = 0 to N − 1 we also get

N−1∑
k=0

∥∥xk+1 − xk
∥∥2

+
∥∥yk+1 − yk

∥∥2
=

N−1∑
k=0

∥∥zk+1 − zk
∥∥2

≤ 2

ρ1

(
Ψ
(
z0
)
−Ψ

(
zN
))

≤ 2

ρ1

(
Ψ
(
z0
)
−Ψ

)
.

Taking the limit as N →∞, we obtain the desired assertion (ii).
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3.4 Approaching the Set of Critical Points

In order to generate sequences approaching the set of critical points, we first prove the
following result.

Lemma 3.4 (A subgradient lower bound for the iterates gap). Suppose that Assumptions
A and B hold. Let

{
zk
}
k∈N be a sequence generated by PALM which is assumed to be

bounded. For each positive integer k, define

Akx := ck−1

(
xk−1 − xk

)
+∇xH

(
xk, yk

)
−∇xH

(
xk−1, yk−1

)
(3.18)

and
Aky := dk−1

(
yk−1 − yk

)
+∇yH

(
xk, yk

)
−∇yH

(
xk, yk−1

)
. (3.19)

Then
(
Akx, A

k
y

)
∈ ∂Ψ

(
xk, yk

)
and there exists M > 0 such that∥∥(Akx, Aky)∥∥ ≤ ∥∥Akx∥∥+

∥∥Aky∥∥ ≤ (2M + 3ρ2)
∥∥zk − zk−1

∥∥ , ∀k ≥ 1, (3.20)

where
ρ2 = max

{
γ1λ

+
1 , γ2λ

+
2

}
.

Proof. Let k be a positive integer. From the definition of the proximal map (2.2) and the
iterative step (3.3) we have

xk ∈ argminx∈Rn
{〈
x− xk−1,∇xH

(
xk−1, yk−1

)〉
+
ck−1

2

∥∥x− xk−1
∥∥2

+ f (x)
}
.

Writing down the optimality condition yields

∇xH
(
xk−1, yk−1

)
+ ck−1

(
xk − xk−1

)
+ uk = 0

where uk ∈ ∂f
(
xk
)
. Hence

∇xH
(
xk−1, yk−1

)
+ uk = ck−1

(
xk−1 − xk

)
. (3.21)

Similarly from the iterative step (3.4) we have

yk ∈ argminy∈Rm

{〈
y − yk−1,∇yH

(
xk, yk−1

)〉
+
dk−1

2

∥∥y − yk−1
∥∥2

+ g (y)

}
.

Again, writing down the optimality condition yields

∇yH
(
xk, yk−1

)
+ dk−1

(
yk − yk−1

)
+ vk = 0

where vk ∈ ∂g
(
yk
)
. Hence

∇yH
(
xk, yk−1

)
+ vk = dk−1

(
yk−1 − yk

)
. (3.22)
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It is clear, from Proposition 2.1, that

∇xH
(
xk, yk

)
+ uk ∈ ∂xΨ

(
xk, yk

)
and ∇yH

(
xk, yk

)
+ vk ∈ ∂yΨ

(
xk, yk

)
.

From all these facts we obtain that
(
Akx, A

k
y

)
∈ ∂Ψ

(
xk, yk

)
.

We now have to estimate the norms of Akx and Aky. Since ∇H is Lipschitz continuous on

bounded subsets of Rn × Rm (see Assumption B(iv)) and since we assumed that
{
zk
}
k∈N

is bounded, there exists M > 0 such that∥∥Akx∥∥ ≤ ck−1

∥∥xk−1 − xk
∥∥+

∥∥∇xH
(
xk, yk

)
−∇xH

(
xk−1, yk−1

)∥∥
≤ ck−1

∥∥xk − xk−1
∥∥+M

(∥∥xk − xk−1
∥∥+

∥∥yk − yk−1
∥∥)

= (M + ck−1)
∥∥xk − xk−1

∥∥+M
∥∥yk − yk−1

∥∥ .
The moduli L1

(
yk−1

)
being bounded from above by λ+

1 (see Assumption B(iii)), we get
that ck−1 ≤ γ1λ

+
1 and thence∥∥Akx∥∥ ≤ (M + γ1λ

+
1

) ∥∥xk − xk−1
∥∥+M

∥∥yk − yk−1
∥∥

≤
(
2M + γ1λ

+
1

) ∥∥zk − zk−1
∥∥

≤ (2M + ρ2)
∥∥zk − zk−1

∥∥ . (3.23)

On the other hand, from the Lipschitz continuity of ∇yH (x, ·) (see Assumption B(ii)), we
have that ∥∥Aky∥∥ ≤ dk−1

∥∥yk − yk−1
∥∥+

∥∥∇yH
(
xk, yk

)
−∇yH

(
xk, yk−1

)∥∥
≤ dk−1

∥∥yk − yk−1
∥∥+ dk−1

∥∥yk − yk−1
∥∥

= 2dk−1

∥∥yk − yk−1
∥∥ .

Since L2

(
xk
)

is bounded from above by λ+
2 (see Assumption B(iii)) we get that dk−1 ≤ γ2λ

+
2

and thence∥∥Aky∥∥ ≤ 2γ2λ
+
2

∥∥yk − yk−1
∥∥ ≤ 2γ2λ

+
2

∥∥zk − zk−1
∥∥ ≤ 2ρ2

∥∥zk − zk−1
∥∥ . (3.24)

Summing up these estimations, we get the desired result in (3.20), that is,∥∥(Akx, Aky)∥∥ ≤ ∥∥Akx∥∥+
∥∥Aky∥∥ ≤ (2M + 3ρ2)

∥∥zk − zk−1
∥∥ .

This completes the proof.

In the following result, we summarize several properties of the limit point set. Let{
zk
}
k∈N be a sequence generated by PALM from a starting point z0. The set of all limit

points is denoted by ω (z0), i.e.,

ω
(
z0
)

=
{
z ∈ Rn × Rm : ∃ an increasing sequence of integers {kl}l∈N ,

such that zkl → z as l→∞
}
.
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Lemma 3.5 (Properties of the limit point set ω (z0)). Suppose that Assumptions A and B
hold. Let

{
zk
}
k∈N be a sequence generated by PALM which is assumed to be bounded. The

following assertions hold.

(i) ∅ 6= ω (z0) ⊂ crit Ψ

(ii) We have
lim
k→∞

dist
(
zk, ω

(
z0
))

= 0. (3.25)

(iii) ω (z0) is a nonempty, compact and connected set.

(iv) The objective function Ψ is finite and constant on ω (z0).

Proof. (i) Let z∗ = (x∗, y∗) be a limit point of
{
zk
}
k∈N =

{(
xk, yk

)}
k∈N. This means

that there is a subsequence
{(
xkq , ykq

)}
q∈N such that

(
xkq , ykq

)
→ (x∗, y∗) as q →∞.

Since f and g are lower semicontinuous (see Assumption A(i)), we obtain that

lim inf
q→∞

f
(
xkq
)
≥ f (x∗) and lim inf

q→∞
g
(
ykq
)
≥ g (y∗) . (3.26)

From the iterative step (3.3), we have for all integer k

xk+1 ∈ argminx∈Rn
{〈
x− xk,∇xH

(
xk, yk

)〉
+
ck
2

∥∥x− xk∥∥2
+ f (x)

}
.

Thus letting x = x∗ in the above, we get〈
xk+1 − xk,∇xH

(
xk, yk

)〉
+
ck
2

∥∥xk+1 − xk
∥∥2

+ f
(
xk+1

)
≤
〈
x∗ − xk,∇xH

(
xk, yk

)〉
+
ck
2

∥∥x∗ − xk∥∥2
+ f (x∗) .

Choosing k = kq − 1 in the above inequality and letting q goes to ∞, we obtain

lim sup
q→∞

f
(
xkq
)

≤ lim sup
q→∞

(〈
x∗ − xkq−1,∇xH

(
xkq−1, ykq−1

)〉
+
ck
2

∥∥x∗ − xkq−1
∥∥2
)

+ f (x∗) ,

(3.27)

where we have used the facts that both sequences
{
xk
}
k∈N and {ck}k∈N are bounded,

∇H continuous and that the distance between two successive iterates tends to zero
(see Lemma 3.3(ii)). For that very reason we also have xkq−1 → x∗ as q →∞, hence
(3.27) reduces to lim supq→∞ f

(
xkq
)
≤ f (x∗). Thus, in view of (3.26), f

(
xkq
)

tends
to f (x∗) as q →∞. Arguing similarly with g and yk we thus finally obtain

lim
q→∞

Ψ
(
xkq , ykq

)
= lim

q→∞

{
H
(
xkq , ykq

)
+ f

(
xkq
)

+ g
(
ykq
)}

= H (x∗, y∗) + f (x∗) + g (y∗)

= Ψ (x∗, y∗) .
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On the other hand we know from Lemmas 3.3(ii) and 3.4 that
(
Akx, A

k
y

)
∈ ∂Ψ

(
xk, yk

)
and

(
Akx, A

k
y

)
→ (0, 0) as k →∞. The closedness property of ∂Ψ (see Remark 2.1(ii))

implies thus that (0, 0) ∈ ∂Ψ (x∗, y∗). This proves that (x∗, y∗) is a critical point of
Ψ.

(ii) This item follows as an elementary consequence of the definition of limit points.

(iii) Set ω = ω (z0). Observe that ω can be viewed as an intersection of compact sets

ω =
⋂
q∈N

⋃
k≥q

{zk},

so it is also compact.

Towards a contradiction, we assume that ω is not connected. Whence there exist two
nonempty and closed disjoint subsets A and B of ω such that ω = A ∪ B. Consider
the function γ : Rn × Rm → R defined by

γ (z) =
dist (z, A)

dist (z, A) + dist (z,B)

for all z ∈ Rn × Rm. Due to the closedness properties of A and B, the function
γ is well defined, it is also continuous. Note that A = γ−1 ({0}) = [γ = 0] and
B = γ−1 ({1}) = [γ = 1]. Setting U = [γ < 1/4] and V = [γ > 3/4], we obtain,
respectively, two open neighborhoods of the compact sets A and B. There exists
an integer k0 such that zk either belongs to U or to V for all k ≥ k0. Supposing
the contrary, there would exists a subsequence

{
zkq
}
q∈N evolving in the complement

of the open set U ∪ V . This would imply the existence of a limit point z∗ of zk in
Rn \ (U ∪ V ) which is impossible.

Put rk = γ
(
zk
)

for each integer k. The sequence {rk}k∈N satisfies:

1. rk /∈ [1/4, 3/4] for all k ≥ k0.

2. There exist infinitely many k such that rk < 1/4.

3. There exist infinitely many k such that rk > 3/4.

4. The difference |rk+1 − rk| tends to 0 as k goes to infinity.

The last point follows from the fact that γ is uniformly continuous on bounded sets
together with the assumption that

∥∥zk+1 − zk
∥∥→ 0. Clearly there exist no sequence

complying with the above requirements. The set ω is therefore connected.
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(iv) Denote by l the finite limit of Ψ
(
zk
)

as k goes to infinity. Take z∗ in ω (z0). There
exists a subsequence zkq converging to z∗ as q goes to infinity. On one hand the
sequence

{
Ψ
(
zkq
)}

q∈N converges to l and on the other hand (as we proved in assertion

(i)) we have Ψ (z∗) = l. Hence the restriction of Ψ to ω (z0) equals l.

Remark 3.3. Note that properties (ii) and (iii) in Lemma 3.5 are generic for any sequence{
zk
}
k∈N satisfying ‖zk+1 − zk‖ → 0 as k goes to infinity.

Our objective is now to prove that the sequence which is generated by PALM converges
to a critical point of Problem (M). For that purpose we consider now that the objective of
Problem (M) is a KL function, which is the case for example if f, g and H are semi-algebraic
(see the Appendix for more details).

3.5 Convergence of PALM to Critical Points of Problem (M)

Before proving our main theorem the following result, which was established in [1, Lemma
1] for the  Lojasiewicz property, would be adjusted within the more general KL property as
follows.

Lemma 3.6 (Uniformized KL property). Let Ω be a compact set and let σ : Rd → (−∞,∞]
be a proper and lower semicontinuous function. Assume that σ is constant on Ω and satisfies
the KL property at each point of Ω. Then, there exist ε > 0, η > 0 and ϕ ∈ Φη such that
for all u in Ω and all u in the following intersection{

u ∈ Rd : dist (u,Ω) < ε
}
∩ [σ (u) < σ (u) < σ (u) + η] (3.28)

one has,
ϕ′ (σ (u)− σ (u)) dist (0, ∂σ (u)) ≥ 1. (3.29)

Proof. Denote by µ the value of σ over Ω. The compact set Ω can be covered by a finite
number of open balls B (ui, εi) (with ui ∈ Ω for i = 1, . . . , p) on which the KL property
holds. For each i = 1, . . . , p, we denote the corresponding desingularizing function by
ϕi : [0, ηi)→ R+ with ηi > 0. For each u ∈ B (ui, εi) ∩ [µ < σ < µ+ ηi], we thus have

ϕ′i (σ (u)− σ (ui)) dist (0, ∂σ (u)) = ϕ′i (σ (u)− µ) dist (0, ∂σ (u)) ≥ 1. (3.30)

Choose ε > 0 sufficiently small so that

Uε :=
{
x ∈ Rd : dist (x,Ω) ≤ ε

}
⊂

p⋃
i=1

B (ui, εi) . (3.31)

Set η = min {ηi : i = 1, . . . , p} > 0 and

ϕ (s) =

p∑
i=1

ϕi (s) , ∀s ∈ [0, η) .
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Observe now that, for all u in Uε
⋂

[µ < σ < µ+ η], we obtain (cf. (3.30) and (3.31))

ϕ′ (σ (u)− µ) dist (0, ∂σ (u)) =

p∑
i=1

ϕ′i (σ (u)− µ) dist (0, ∂σ (u)) ≥ 1.

This completes the proof.

Now we will prove the main result.

Theorem 3.1 (A finite length property). Suppose that Ψ is a KL function such that
Assumptions A and B hold. Let

{
zk
}
k∈N be a sequence generated by PALM which is assumed

to be bounded. The following assertions hold.

(i) The sequence
{
zk
}
k∈N has finite length, that is,

∞∑
k=1

∥∥zk+1 − zk
∥∥ <∞. (3.32)

(ii) The sequence
{
zk
}
k∈N converges to a critical point z∗ = (x∗, y∗) of Ψ.

Proof. Since
{
zk
}
k∈N is bounded there exists a subsequence

{
zkq
}
q∈N such that zkq → z as

q →∞. In a similar way as in Lemma 3.5(i) we get that

lim
k→∞

Ψ
(
xk, yk

)
= Ψ (x, y) . (3.33)

If there exists an integer k̄ for which Ψ
(
zk̄
)

= Ψ (z) then the decreasing property (3.13)

would imply that zk̄+1 = zk̄. A trivial induction show then that the sequence
{
zk
}
k∈N is

stationary and the announced results are obvious. Since
{

Ψ
(
zk
)}

k∈N is a nonincreasing

sequence, it is clear from (3.33) that Ψ (z) < Ψ
(
zk
)

for all k > 0. Again from (3.33) for
any η > 0 there exists a nonnegative integer k0 such that Ψ

(
zk
)
< Ψ (z) + η for all k > k0.

From (3.25) we know that limk→∞ dist
(
zk, ω (z0)

)
= 0. This means that for any ε > 0 there

exists a positive integer k1 such that dist
(
zk, ω (z0)

)
< ε for all k > k1. Summing up all

these facts, we get that zk belongs to the intersection in (3.28) for all k > l := max {k0, k1}.

(i) Since ω (z0) is nonempty and compact (see Lemma 3.5(ii)), and since Ψ is finite and
constant on ω (z0) (see Lemma 3.5(iv)), we can apply Lemma 3.6 with Ω = ω (z0).
Therefore for any k > l we have

ϕ′
(
Ψ
(
zk
)
−Ψ (z)

)
dist

(
0, ∂Ψ

(
zk
))
≥ 1. (3.34)

This makes sense since we know that Ψ
(
zk
)
> Ψ (z) for any k > l. From Lemma 3.4

we get that

ϕ′
(
Ψ
(
zk
)
−Ψ (z)

)
≥ 1

2M + 3ρ2

∥∥zk − zk−1
∥∥−1

. (3.35)
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On the other hand, from the concavity of ϕ we get that

ϕ
(
Ψ
(
zk
)
−Ψ (z)

)
− ϕ

(
Ψ
(
zk+1

)
−Ψ (z)

)
≥ ϕ′

(
Ψ
(
zk
)
−Ψ (z)

) (
Ψ
(
zk
)
−Ψ

(
zk+1

))
. (3.36)

For convenience, we define for all p, q ∈ N and z the following quantities

∆p,q := ϕ (Ψ (zp)−Ψ (z))− ϕ (Ψ (zq)−Ψ (z)) ,

and

C :=
2 (2M + 3ρ2)

ρ1

∈ (0,∞) .

Combining Lemma 3.3(i) with (3.35) and (3.36) yields for any k > l that

∆k,k+1 ≥
∥∥zk+1 − zk

∥∥2

C ‖zk − zk−1‖
, (3.37)

and hence ∥∥zk+1 − zk
∥∥2 ≤ C∆k,k+1

∥∥zk − zk−1
∥∥ .

Using the fact that 2
√
αβ ≤ α + β for all α, β ≥ 0, we infer

2
∥∥zk+1 − zk

∥∥ ≤ ∥∥zk − zk−1
∥∥+ C∆k,k+1. (3.38)

Let us now prove that for any k > l the following inequality holds

k∑
i=l+1

∥∥zi+1 − zi
∥∥ ≤ ∥∥zl+1 − zl

∥∥+ C∆l+1,k+1.

Summing up (3.38) for i = l + 1, . . . , k yields

2
k∑

i=l+1

∥∥zi+1 − zi
∥∥ ≤ k∑

i=l+1

∥∥zi − zi−1
∥∥+ C

k∑
i=l+1

∆i,i+1

≤
k∑

i=l+1

∥∥zi+1 − zi
∥∥+

∥∥zl+1 − zl
∥∥+ C

k∑
i=l+1

∆i,i+1

=
k∑

i=l+1

∥∥zi+1 − zi
∥∥+

∥∥zl+1 − zl
∥∥+ C∆l+1,k+1

where the last inequality follows from the fact that ∆p,q+∆q,r = ∆p,r for all p, q, r ∈ N.
Since ϕ ≥ 0, we thus have for any k > l that

k∑
i=l+1

∥∥zi+1 − zi
∥∥ ≤ ∥∥zl+1 − zl

∥∥+ Cϕ
(
Ψ
(
zl+1

)
−Ψ (z)

)
.
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This easily shows that the sequence
{
zk
}
k∈N has finite length, that is,

∞∑
k=1

∥∥zk+1 − zk
∥∥ <∞. (3.39)

(ii) It is clear that (3.39) implies that the sequence
{
zk
}
k∈N is a Cauchy sequence and

hence is a convergent sequence. Indeed, with q > p > l we have

zq − zp =

q−1∑
k=p

(
zk+1 − zk

)
hence

‖zq − zp‖ =

∥∥∥∥∥
q−1∑
k=p

(
zk+1 − zk

)∥∥∥∥∥ ≤
q−1∑
k=p

∥∥zk+1 − zk
∥∥ .

Since (3.39) implies that
∑∞

k=l+1

∥∥zk+1 − zk
∥∥ converges to zero as l → ∞, it follows

that
{
zk
}
k∈N is a Cauchy sequence and hence is a convergent sequence. Now the

result follows immediately from Lemma 3.5(i).

This completes the proof.

Remark 3.4. (i) The boundedness assumption on the generated sequence
{
zk
}
k∈N holds

in several scenarios such as when the functions f and g have bounded level sets. For
a few more scenarios see [2].

(ii) An important and fundamental case of application of Theorem 3.1 is when the data
functions f, g and H are semi-algebraic. Observe also that the desingularizing func-
tion for semi-algebraic problems can be chosen to be of the form

ϕ (s) = cs1−θ, (3.40)

where c is positive real number and θ belongs to [0, 1) (see [1] for more details). As
explained below, this fact impacts the convergence rate of the method.

If the desingularizing function ϕ of Ψ is of the form (3.40), then, as in [1] the following
estimations hold.

(i) If θ = 0 then the sequence
{
zk
}
k∈N converges in a finite number of steps.

(ii) If θ ∈ (0, 1/2] then there exist ω > 0 and τ ∈ [0, 1) such that
∥∥zk − z∥∥ ≤ ω τ k.

(iii) If θ ∈ (1/2, 1) then there exist ω > 0 such that∥∥zk − z∥∥ ≤ ω k−
1−θ
2θ−1 .
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3.6 Extension of PALM for p Blocks

The simple structure of PALM allows to extend it to the more general setting involving
p > 2 blocks for which Theorem 3.1 holds. This is briefly outlined below. Suppose that
our optimization problem is now given as

minimize

{
Ψ (x1, . . . , xp) :=

p∑
i=1

fi (xi) +H (x1, . . . , xp) : xi ∈ Rni

}
,

where H : RN → R with N =
∑p

i=1 ni is assumed to be C1 and each fi, i = 1, . . . , p, is a
proper and lower-semicontinuous function (this is exactly Assumption A for p > 2). We
also assume that a modified version of Assumption B for p > 2 blocks holds. In this case
we denote by ∇iH the gradient of H with respect to variable xi, i = 1, . . . , p. We denote
by Li, i = 1, . . . , p, the Lipschitz moduli of ∇iH (x1, . . . , ·, . . . , xp), that is, the gradient
of H with respect to variable xi when all xj, i 6= j (j = 1, . . . , p), are fixed. Similarly to
Assumption B(ii), it is clear that each Li, i = 1, . . . , p, is a function of the p− 1 variables
xj, j 6= i (j = 1, . . . , p).

For simplicity of the presentation of PALM for the case of p > 2 blocks we will use the
following notations. Denote xk =

(
xk1, x

k
2, . . . , x

k
p

)
and

xk(i) =
(
xk+1

1 , xk+1
2 , . . . , xk+1

i−1 , x
k+1
i , xki+1, . . . , x

k
p

)
.

Therefore xk(0) =
(
xk1, x

k
2 . . . , x

k
p

)
= xk and xk(p) =

(
xk+1

1 , xk+1
2 , . . . , xk+1

p

)
= xk+1.

In this case the algorithm PALM minimizes Ψ with respect to each x1, . . . , xp, taken in
cyclic order while fixing the previous computed iterate. More precisely, starting with any(
x0

1, x
0
2, . . . , x

0
p

)
∈ RN , PALM generates a sequence

{
xk
}
k∈N via the following successively

scheme:

xk+1
i ∈ proxfi

cki

(
xki −

1

cki
∇iH

(
xk(i− 1)

))
, i = 1, 2, . . . , p,

where cki = γiLi and γi > 1. Theorem 3.1 can then be applied for the p-blocks version of
PALM.

3.7 The Proximal Forward-Backward Scheme

When there is no y term, PALM reduces to PFB. In this case we have Ψ (x) := f (x)+h (x)
(where h (x) ≡ H (x, 0)), and the proximal forward-backward scheme for minimizing Ψ can
simply be viewed as the proximal regularization of h linearized at a given point xk, i.e.,

xk+1 ∈ argminx∈Rn

{〈
x− xk,∇h

(
xk
)〉

+
tk
2

∥∥x− xk∥∥2
+ f (x)

}
.

A convergence result for the PFB scheme was first proved in [3] via the abstract framework
developed in that paper. Our approach allows for a simpler and more direct proof. The
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sufficient decrease property of the sequence
{

Ψ
(
xk
)}

k∈N follows directly from Lemma 3.2
with σ := f and t := tk > Lh. The second property “a subgradient lower bound for the
iterates gap” follows from the Lipschitz continuity of ∇h. Now the globally convergent
result follows immediately from Theorem 3.1. For the sake of completeness we record the
result in the following proposition.

Proposition 3.1 (A convergence result of PFB). Let h : Rd → R be a continuously
differentiable function with gradient ∇h assumed Lh-Lipschitz continuous and let f : Rd →
(−∞,+∞] be a proper and lower semicontinuous function with infRd f > −∞. Assume
that f +h is a KL function. Let

{
xk
}
k∈N be a sequence generated by PFB which is assumed

to be bounded and let tk > Lh. The following assertions hold.

(i) The sequence
{
xk
}
k∈N has finite length, that is,

∞∑
k=1

∥∥xk+1 − xk
∥∥ <∞.

(ii) The sequence
{
xk
}
k∈N converges to a critical point x∗ of f + h.

It is well-known that PFB reduces to the projected gradient method (PGM) when
f = δX (where X is a nonempty, closed and nonconvex subset of Rd), i.e., PGM generates
a sequence

{
xk
}
k∈N via

xk+1 ∈ PX
(
xk − 1

tk
∇h
(
xk
))

.

Thus when h+δX is a KL function and h ∈ C1,1
Lh

, global convergence of the sequence
{
xk
}
k∈N

generated by PGM follows from Proposition 3.1, and recovers the result established in [3].

4 An Application to Matrix Factorization Problems

Matrix factorization problems play a fundamental role in data analysis and can be found
in many disparate applications. A very large body of literature covers this active research
area; for a recent account we refer for example to the book [18] and references therein.

In this section we show how PALM can be applied to a broad class of such problems to
produce a globally convergent algorithm.

4.1 A Broad Class of Matrix Factorization Problems

Let p, q,m, n and r be given integers. Define the following sets in the space of real matrices

Kp,q =
{
M ∈ Rp×q : M ≥ 0

}
,

F =
{
X ∈ Rm×r : R1 (X) ≤ α

}
,

G =
{
Y ∈ Rr×n : R2 (Y ) ≤ β

}
,

25



where R1 and R2 are lower semicontinuous functions and α, β ∈ R+ are given parameters.
Roughly speaking, the matrix factorization (or approximation) problem consists in find-

ing a product decomposition of a given matrix satisfying certain properties.

The Problem

Given a matrix A ∈ Rm×n and let r be an integer which is much smaller than min {m,n},
find two matrices X ∈ Rm×r and Y ∈ Rr×n such that

A ≈ XY,
X ∈ Km,r ∩ F ,
Y ∈ Kr,n ∩ G.

The functions R1 and R2 are often used to describe some additional features of the matrices
X and Y , respectively, arising in a specific application at hand (see more below).

To solve the problem, we adopt the optimization approach, that is, we consider the
nonconvex and nonsmooth minimization problem

(MF ) min {d (A,XY ) : X ∈ Km,r ∩ F , Y ∈ Kr,n ∩ G} ,

where d : Rm×n × Rm×n → R+ stands as a proximity function measuring the quality of
the approximation, satisfying d (U, V ) = 0 if and only if U = V . Note that d (·, ·) is not
necessarily symmetric and is not a metric.

Another way to formulate (MF ) is to consider its penalized version where the “hard”
constraints are the candidates to be penalized, i.e., we consider the following penalized
problem

(P −MF ) min {µ1R1 (X) + µ2R2 (Y ) + d (A,XY ) : X ∈ Km,r, Y ∈ Kr,n} ,

where µ1 and µ2 > 0 are penalty parameters. However, note that the penalty approach
requires the tuning of the unknown penalty parameters which might be a difficult issue.

Both formulations can be written in the form of our general Problem (M) with the
obvious identifications for the corresponding H, f and g, e.g.,

min
{

Ψ (X, Y ) := f (X) + g (Y ) +H (X, Y ) : X ∈ Rm×r, Y ∈ Rr×n} ,
where

MF-Constrained Ψc (X, Y ) := δKm,r∩F (X) + δKr,n∩G (Y ) + d (A,XY ) ,

MF-Penalized Ψp (X, Y ) := µ1R1 (X) + δKm,r (X) + µ2R2 (Y ) + δKr,n (Y ) + d (A,XY ) .

Thus, assuming that Assumptions A and B hold for the problem data quantified here
via [d,F ,G], and that the functions d,R1 and R2 are KL functions, we can apply PALM and
Theorem 3.1 to produce a globally convergent scheme to a critical point of Ψ that solves
the (MF ) problem. The above does not seem to have been addressed in the literature
within such a general formalism. It covers a multitude of possible formulations from which
many algorithms can be conceived by appropriate choices of the triple [d,F ,G] within a
given application at hands. This is illustrated next on an important class of problems.
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4.2 An Algorithm for the Sparse Nonnegative Matrix Factoriza-
tion

To be specific, in the sequel we focus on the classical case where the proximity measure is
defined via the Frobenius norm

d (A,XY ) =
1

2
‖A−XY ‖2

F

and for any matrix M , the Frobenius norm is defined by

‖M‖2
F =

∑
i,j

m2
ij = Tr

(
MMT

)
= Tr

(
MTM

)
= 〈M,M〉 ,

where Tr is the Trace operator. Many other proximity measures can also be used, such as
entropy-like distances, see e.g., [18] and references therein.

Example 4.1 (Nonnegative matrix factorization). With F = Rm×r and G = Rr×n, the
Problem (MF ) reduces to the so called Nonnegative Matrix Factorization (NMF) problem

min

{
1

2
‖A−XY ‖2

F : X ≥ 0, Y ≥ 0

}
.

The nonnegative matrix factorization [23] has been at the heart of intense research ap-
plied to a variety of applications (see, e.g., [14] for applications in signal processing). More
recently the introduction of “sparsity” has been of particular importance, and variants
of NMF involving sparsity has also been considered in the literature (see, e.g., [20, 21]).
Many, if not most, algorithms are based on the Gauss-Seidel like method for solving the
NMF problem, see e.g., [11, 18, 24], and with quite limited convergence results. Moreover,
extended versions of NMF with sparsity were considered via relaxations and correspond-
ing convex re-formulations solved by sophisticated and computationally demanding conic
programming schemes, see e.g., [20, 21].

To illustrate the benefit of our approach, we now show how PALM can be applied to
solve directly the more difficult constrained nonconvex and nonsmooth sparse nonnegative
matrix factorization problem “as is”, and produces a simple convergent scheme.

First we note that the objective function d (A,XY ) := H (X, Y ) = (1/2) ‖A−XY ‖2
F is

a real polynomial function hence semi-algebraic; moreover, both functions X → H (X, Y )
(for fixed Y ) and Y → H (X, Y ) (for fixed X), are C1,1. Indeed we have

X → ∇XH (X, Y ) = (XY − A)Y T and Y → ∇YH (X, Y ) = XT (XY − A)

which are Lipschitz continuous with L1(Y ) ≡
∥∥Y Y T

∥∥
F

and L2(X) ≡
∥∥XTX

∥∥
F

as Lipschitz
modulis, respectively.

As a specific case, let us now consider the overall sparsity measure of a matrix defined
by

R1 (X) = ‖X‖0 :=
∑
i

‖xi‖0 , (xi column vector of X)
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which counts the number of nonzero elements in the matrix X. Similarly R2 (Y ) = ‖Y ‖0.
As shown in Example 5.2 (see the Appendix) both functions R1 and R2 are semi-

algebraic. Thanks to the properties of semi-algebraic functions (see the Appendix) it follows
that Ψc is semi-algebraic and PALM could be applied to produce a globally convergent
algorithm. However, to apply PALM properly, we need to compute the proximal map of
the nonconvex function ‖X‖0 on X ≥ 0 for some given matrix U . It turns out that this can
be done effectively, as the next proposition shows. Our result makes use of the following
operator (see, e.g., [26]).

Definition 4.1. Given any matrix U ∈ Rm×n, define the operator Ts : Rm×n ⇒ Rm×n by

Ts (U) := argminV ∈Rm×n

{
‖U − V ‖2

F : ‖V ‖0 ≤ s
}
.

Observe that the operator Ts is in general multi-valued. For a given matrix U , it
is actually easy to see that the elements of Ts (U) are obtained by choosing exactly s
indices corresponding the s first largest entries (in absolute value) of U and by setting
(Ts (U))ij = Uij for such indices and (Ts (U))ij = 0 otherwise. The multi-valuedness of Ts
comes from the fact that the s largest entries may not be uniquely defined.

Since computing Ts only requires determining the sth largest numbers of a matrix of
mn numbers, this can be done in O (mn) time [13] and zeroing out the proper entries in
one more pass of the mn numbers.

We define the usual projection map onto Rm×n
+ by

P+ (U) := argminV ∈Rm×n

{
‖U − V ‖2

F : V ≥ 0
}

= max {0, U} ,

where the max operation is taken componentwise.

Proposition 4.1 (Proximal map formula). Let U ∈ Rm×n and let f := δX≥0 + δ‖X‖0≤s.
Then

proxf1 (U) = argmin

{
1

2
‖X − U‖2

F : X ≥ 0, ‖X‖0 ≤ s

}
= Ts (P+ (U))

where Ts is defined in Definition 4.1.

Proof. Given any matrix U ∈ Rm×n, let us introduce the following notations

‖X‖2
+ =

∑
(i,j)∈I+

X2
ij and ‖X‖2

− =
∑

(i,j)∈I−
X2
ij,

where
I+ = {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : Uij ≥ 0}

and
I− = {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} : Uij < 0} .

Observe that the following relations hold

(i) ‖X‖2
F = ‖X‖2

+ + ‖X‖2
− (ii) ‖X − U‖2

+ + ‖X‖2
− = ‖X − P+ (U)‖2

F
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and
(iii) ‖X‖2

− = 0 ⇔ Xij = 0 ∀ (i, j) ∈ I−,

where the second relation follows from relation (i) and the fact that (P+ (U))ij = Uij for
any (i, j) ∈ I+ and (P+ (U))ij = 0 for any (i, j) ∈ I−.

From the above fact (i), we thus have that X̄ ∈ proxf1 (U) if and only if

X̄ ∈ argmin
{
‖X − U‖2

F : X ≥ 0, ‖X‖0 ≤ s
}

= argmin
{
‖X − U‖2

+ + ‖X − U‖2
− : X ≥ 0, ‖X‖0 ≤ s

}
= argmin

‖X − U‖2
+ + ‖X‖2

− − 2
∑

(i,j)∈I−
XijUij : X ≥ 0, ‖X‖0 ≤ s

 (4.1)

= argmin
{
‖X − U‖2

+ : Xij = 0 ∀ (i, j) ∈ I−, X ≥ 0, ‖X‖0 ≤ s
}
, (4.2)

where the last equality follows from the fact that every solution of (4.2) is clearly a solution
of (4.1), while the converse implication follows by a simple contradiction argument. Arguing
in a similar way, one can see that the constraint X ≥ 0 in problem (4.2) can be removed
without affecting the optimal solution of that problem. Thus, recalling the facts (ii) and
(iii) we obtain

X̄ ∈ argmin
{
‖X − U‖2

+ : ‖X‖2
− = 0, ‖X‖0 ≤ s

}
= argmin

{
‖X − U‖2

+ + ‖X‖2
− : ‖X‖0 ≤ s

}
= argmin

{
‖X − P+ (U)‖2

F : ‖X‖0 ≤ s
}

= Ts (P+ (U)) ,

where the last equality is by the definition of Ts (see Definition 4.1).

With R1 := δX≥0 +δ‖X‖0≤α and R2 := δY≥0 +δ‖Y ‖0≤β, we now have all the ingredients to
apply PALM and formulate explicitly a simple algorithm for the sparse nonnegative matrix
factorization problem.
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PALM-Sparse NMF

1. Initialization: Select random nonnegative matrices X0 ∈ Rm×r and Y 0 ∈ Rr×n.

2. For each k = 0, 1, . . . generate a sequence
{(
Xk, Y k

)}
k∈N as follows:

2.1. Take γ1 > 1, set ck = γ1

∥∥∥Y k
(
Y k
)T∥∥∥

F
and compute

Uk = Xk − 1

ck

(
XkY k − A

) (
Y k
)T
, (4.3)

Xk+1 ∈ proxR1
ck

(
Uk
)

= Tα
(
P+

(
Uk
))
.

2.2. Take γ2 > 1, set dk = γ2

∥∥∥Xk+1
(
Xk+1

)T∥∥∥
F

and compute

V k = Y k − 1

dk

(
Xk+1

)T (
Xk+1Y k − A

)
,

Y k+1 ∈ proxR2
dk

(
V k
)

= Tβ
(
P+

(
V k
))
.

Remark 4.1. (i) Observe that PALM-Sparse NMF requires that the Lipschitz modulis∥∥∥Xk+1
(
Xk+1

)T∥∥∥
F

and
∥∥∥Y k

(
Y k
)T∥∥∥

F
remain bounded away from zero. This means

equivalently that we assume that

inf
k∈N

{∥∥Xk
∥∥
F
,
∥∥Y k

∥∥
F

}
> 0.

In view of Remark 3.1(iii), we could avoid this assumption by introducing a safeguard
ν > 0 and simply replacing the Lipschitz modulis in PALM-Sparse NMF by

max
(
ν,
∥∥∥Xk+1

(
Xk+1

)T∥∥∥
F

)
and max

(
ν,
∥∥∥Y k

(
Y k
)T∥∥∥

F

)
.

(ii) Note that the easier nonnegative matrix factorization problem given in Example 4.1
is a particular instance of the sparse NMF and in that case both operators Tα and
Tβ reduce to the identity operators. Hence, the computation in Step 2.1. for NMF
reduces to

Xk+1 = P+

(
Uk
)

where Uk is given in (4.3) (similarly for Y k+1). Moreover, since in that case the
constraints set Km,r and Kr,n are closed and convex, it follows from Remark 3.2(iii)

that we can set ck =
∥∥∥Y k

(
Y k
)T∥∥∥

F
and dk =

∥∥∥Xk+1
(
Xk+1

)T∥∥∥
F

in that case.
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The assumptions required to apply PALM are clearly satisfied and hence we can use
Theorem 3.1 in order to obtain that the generated sequence is globally convergent to a
critical point of the Sparse NMF problem (and similarly for NMF, as a special case). We
record this in the following theorem.

Theorem 4.1. Let
{(
Xk, Y k

)}
k∈N be a sequence generated by PALM-Sparse NMF which

is assumed to be bounded and to satisfy infk∈N
{∥∥Xk

∥∥
F
,
∥∥Y k

∥∥
F

}
> 0. Then,

(i) The sequence
{(
Xk, Y k

)}
k∈N has finite length, that is

∞∑
k=1

∥∥Xk+1 −Xk
∥∥
F

+
∥∥Y k+1 − Y k

∥∥
F
<∞.

(ii) The sequence
{(
Xk, Y k

)}
k∈N converges to a critical point (X∗, Y ∗) of the Sparse

NMF.

5 Appendix: KL Results

This appendix summarizes some important results on KL theory and gives some examples.

Definition 5.1 (Semi-algebraic sets and functions). (i) A subset S of Rd is a real semi-
algebraic set if there exists a finite number of real polynomial functions gij, hij : Rd →
R such that

S =

p⋃
j=1

q⋂
i=1

{
u ∈ Rd : gij (u) = 0 and hij (u) < 0

}
.

(ii) A function h : Rd → (−∞,+∞] is called semi-algebraic if its graph{
(u, t) ∈ Rd+1 : h (u) = t

}
is a semi-algebraic subset of Rd+1.

The following result is a nonsmooth version of the  Lojasiewicz gradient inequality, it
can be found in [16, 17].

Theorem 5.1. Let σ : Rd → (−∞,+∞] be a proper and lower semicontinuous function.
If σ is semi-algebraic then it satisfies the KL property at any point of domσ.

The class of semi-algebraic sets is stable under the following operations: finite unions,
finite intersections, complementation and Cartesian products.

Example 5.1 (Examples of semi-algebraic sets and functions). There is broad class of
functions arising in optimization.
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• Real polynomial functions.

• Indicator functions of semi-algebraic sets.

• Finite sums and product of semi-algebraic functions.

• Composition of semi-algebraic functions.

• Sup/Inf type function, e.g., sup {g (u, v) : v ∈ C} is semi-algebraic when g is a semi-
algebraic function and C a semi-algebraic set.

• In matrix theory, all the following are semi-algebraic sets: cone of PSD matrices,
Stiefel manifolds and constant rank matrices.

• The function x → dist (x, S)2 is semi-algebraic whenever S is a nonempty semi-
algebraic subset of Rd.

Remark 5.1. The above results can be proven directly or via the fundamental Tarski-
Seidenberg principle: The image of a semi-algebraic set A ⊂ Rd+1 by the projection π :
Rd+1 → Rd is semi-algebraic.

All these results and properties can be found in [1, 2, 3].

Let us now give some examples of semi-algebraic functions and other notions related to
KL functions and their minimization through PALM.

Example 5.2 (‖·‖0 is semi-algebraic). The sparsity measure (or the counting norm) of a
vector x of Rd is defined by

‖x‖0 := number of nonzero coordinates of x.

For any given subset I ⊂ {1, . . . , d}, we denote by |I| its cardinal and we define

J Ii =

{
{0} if i ∈ I,
R \ {0} otherwise.

The graph of ‖·‖0 is given by a finite union of product sets:

graph ‖·‖0 =
⋃

I⊂{1,...,d}

(
d∏
i=1

J Ii

)
× {d− |I|} ,

it is thus a piecewise linear set, and in particular a semi-algebraic set. Therefore ‖·‖0 is
semi-algebraic. As a consequence the merit functions appearing in the various sparse NMF
formulations we studied in Section 4 are semi-algebraic, hence KL.
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Example 5.3 (‖·‖p and KL functions). Being given p > 0 the p norm is defined through

‖x‖p =

(
d∑
i=1

‖xi‖p
) 1

p

, x ∈ Rd.

Let us establish that ‖·‖p is semi-algebraic whenever p is rational, i.e., p = p1
p2

where p1 and
p2 are positive integers. From a general result concerning the composition of semi-algebraic

functions we see that it suffices to establish that the function s > 0→ s
p1
p2 is semi-algebraic.

Its graph in R2 can be written as{
(s, t) ∈ R2

+ : t = s
p1
p2

}
=
{

(s, t) ∈ R2 : tp2 − sp1 = 0
}
∩ R2

+.

This last set is semi-algebraic by definition.

When p is irrational ‖·‖p is not semi-algebraic, however for any semi-algebraic and lower
semicontinuous functions H, f and any nonnegative real numbers α and λ the functions

Ψ1 (x, y) = f (x) + λ ‖y‖p +H (x, y)

Ψ2 (x, y) = f (x) + δ‖y‖p≤α +H (x, y)

Ψ3 (x, y) = δ‖x‖p≤α + δ‖y‖p≤α, y≥0 +H (x, y)

are KL functions (see, e.g., [2] and references therein) with ϕ of the form ϕ (s) = cs1−θ

where c is positive and θ belongs to (0, 1].

Convex Functions and KL Property

Our developments on the convergence of PALM and its rate of convergence seem to be new
even in the convex case. It is thus very important to realize that most convex functions
encountered in finite dimensional applications satisfy the KL property. This may be due to
the fact that they are semi-algebraic or subanalytic, but it can also come from more involved
reasons involving o-minimal structures (see [2] for further details) or more down-to-earth
properties like various growth conditions (see below). The reader which is wondering what
a non KL convex function looks like can consult [15]. The convex counterexample provided
in this work exhibit a wildly oscillatory collection of level sets, a phenomenon which seems
highly unlikely to happen with functions modeling real world problems.

An interesting and rather specific feature of convex functions is that their desingularizing
function ϕ can be explicitly computed from rather common and simple properties. Here
are two important examples taken from [2].

Example 5.4 (Growth condition for convex functions). Consider a proper, convex and
lower semicontinuous function σ : Rd → (−∞,+∞]. Assume that σ satisfies the following
growth condition: There exist a neighborhood U of x̄, η > 0, c > 0 and r ≥ 1 such that

∀x ∈ U ∩ [minσ < σ < minσ + η] , σ (x) ≥ σ (x̄) + c · dist (x, argminσ)r ,
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where x̄ ∈ argminσ 6= ∅. Then σ satisfies the KL property at the point x̄ for ϕ (s) =

r c−
1
r s

1
r on the set U ∩ [minσ < σ < minσ + η] (see, for more details, [15, 16]).

Example 5.5 (Uniform convexity). Assume now that σ is uniformly convex i.e., satisfies

σ (y) ≥ σ (x) + 〈u, y − x〉+ c ‖y − x‖p , p ≥ 1

for all x, y ∈ Rd and u ∈ ∂σ (x) (when p = 2 the function is called strongly convex). Then

σ satisfies the Kurdyka- Lojasiewicz property on domσ with ϕ (s) = pc−
1
p s

1
p .
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