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Abstract

In this paper, motivated by the flexibility of the Proximal Alternating Predictor Corrector
(PAPC) algorithm in tackling complex constrained convex optimization problems, we extend
the PAPC algorithm to include non-Euclidean proximal steps. We prove a sublinear convergence
rate of the ergodic sequence, and under additional assumptions on the non-Euclidean distances,
we show that the algorithm globally converges to a saddle-point. Finally, we demonstrate the
performance and simplicity of the proposed algorithm through its application to the multinomial
logistic regression problem.
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1 Introduction

In this paper we are interested in solving convex-concave min-max problems of the following form:

(M) min
u∈U

max
v∈V
{K (u, v) := f (u) + 〈u,Av〉 − g (v)} ,

where U and V are Euclidean vector spaces (see Section 2 for precise assumptions on the involved
functions f , g and the linear mapping A). Solving saddle-point problems is a very challenging
task, that can be tackled in several ways: (i) via techniques of variational inequalities starting
with the popular Extra-gradient method [13] (see also [15, 3]), (ii) via Lagrangian-based methods
(see, for instance, the recent review paper [20] and references therein), (iii) via splitting techniques
(see []), and (iv) via smoothing techniques (see [17]).This topic of research has been studied very
intensively in the last decade, due to the growing demand for simple and efficient optimization
algorithms that able tackling complex convex and non-smooth optimization problems. In order to
get an overview of plethora of relevant algorithms (in addition to the few we have mentioned above)
and applications, see the recent paper [7] and the extensive list of references therein.

Motivated by all these techniques, few years ago, we have developed in [9] the Proximal Al-
ternating Predictor Corrector (PAPC) algorithm to tackle saddle-point problems (M). The PAPC
algorithm, like several other methods in this domain, achieves a non-asymptotic efficiency estimate
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of O(1/ε), where ε > 0 is the desired accuracy. However, the novel and simple PAPC algorithm
seems to be more flexible in tackling various complex optimization models that include, for ex-
ample, block linear constraints (even with more than two blocks) or compositions of non-smooth
functions with linear mappings. The PAPC algorithm tackles such models by fully decomposing
them into simple algorithmic steps that avoid expansive computations (for details see [9]).

In this paper, building on these advantageous of the PAPC algorithm, we pursue this line of
research and propose a Non-Euclidean version of PAPC, which on one hand is proven to achieves
the same rate of convergence, but on the other hand, able to better exploit special structures and
geometry of the tackled saddle-point problems. By its name, the PAPC algorithm involve proximal
steps, which are the claasical operators of Moreau [14] that defined via the set of minimizes of the
sum of the corresponding function with a quadratic Euclidean norm. Therefore, by non-Euclidean
version we mean to replace the classical Moreau’s proximal mapping with a generalized operator
as defined in [2]. In Section 3 we provide all the needed details on proximal distances and their
corresponding generalized proximal operators. These operator will used in Section 4, where we
develop the Non-Euclidean PAPC (NEPAPC) algorithm and provide its theoretical guarantees.
We establish two main results: (i) and O(1/ε) rate of convergence results of NEPAPC, which
covers the result we have proved in [9] for PAPC as a particular case (when the proximal distance
is chosen to be the squared Euclidean norm), and (ii) convergence analysis which ensure that
NEPACP converges to a saddle-point. Finally, in section 5, we demonstrate the applicability of
NEPAPC in training a regularized multinomial logistic regression model.

Notations. Throughout this work we employ standard notation, as found in any standard text,
e.g. [18] and [4]. For a given set C ⊆ E, C denotes its closure and intC denotes its interior. The
relative interior is denoted by riC. We use the notation, ∇[1]φ(·, v), for the gradient map of the
function φ(·, v) with respect to its first variable. Similarly, ∂1φ(·, v), denotes the subgradient map
of the function φ(·, v) with respect to its first variable. We use domφ to denote the domain of φ
when φ is a set valued map, and to denote the effective domain of φ when φ is an extended valued
function. Unless otherwise stated, the inner-product 〈·, ·〉 is the dot product. For A,B ∈ Rm×n we
have 〈A,B〉 = Tr(ATB) =

∑m
i=1

∑m
j=1AijBij . Given a linear operator F : Rn → Rm, ‖F‖ denotes

the operator norm with respect to the l2-norm.

2 The Saddle-Point Model and Preliminaries

We consider the following convex-concave min-max problem

(M) min
u∈U

max
v∈V
{K (u, v) := f (u) + 〈u,Av〉 − g (v)} ,

where f : U→ R is a convex and continuously differentiable function with an L-Lipschitz continuous
gradient, g : V → (−∞,∞] is a proper, lower-semicontinuous (lsc), and convex function, and
A : V→ U is a linear mapping. For the simplicity of the presentation below we denote W = U×V.

Throughout the rest of the paper, our blanket assumption is that the convex-concave function
K (·, ·) has a saddle-point, i.e., there exists a feasible pair (u∗, v∗) ∈W ≡ U×dom g, which satisfies
(see [18, Section 36])

K (u∗, v) ≤ K (u∗, v∗) ≤ K (u, v∗) , ∀ (u, v) ∈W. (2.1)

We denote by W ∗ the set of all saddle-points of K (·, ·), which is assumed to be non-empty. It
is well-known that the existence of a saddle-point for problem (M) is equivalent to having a zero
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duality gap for the induced primal and dual problems:

(P) min
u∈U

{
p(u) := sup

v∈V
K(u, v) = f(u) + g∗(ATu)

}
and

(D) max
v∈V

{
d(v) := inf

u∈U
K(u, v) = −g(v)− f∗(−Av)

}
,

where ψ∗ denotes the Fenchel conjugate function of ψ (see [18]). Let Sp and Sd be the optimal
solution sets of the primal and dual problems, respectively. Then, the saddle-point condition (2.1)
is equivalent to p (u∗) = d (v∗) with (u∗, v∗) ∈ Sp × Sd, see [18, Lemma 36.2]. For constraint
qualification conditions which ensure the existence of a saddle-point see, e.g., [19, Chapter 11] and
[1, Chapter 5].

Since the main goal of this paper is to find saddle-points, it will be very convenient to use the
function Λ : W ×W → [−∞,∞], which characterize saddle-points of K (·, ·), and will be essential
for the notion of approximated saddle-points as defined below in Definition 2.1. Given two pairs
z = (x, y) ∈W and w = (u, v) ∈W, we define

Λ (z, w) := K (x, v)−K (u, y) = f (x) + g (y) + 〈x,Av〉 − 〈u,Ay〉 − f (u)− g (v) . (2.2)

Thus, we obviously have the following equivalence

w∗ ∈W ∗ ⇔ Λ (w∗, w) ≤ 0, ∀ w ∈W. (2.3)

Moreover, we can easily derive a sufficient condition for a limit point to be a saddle-point of problem
(M) using the function Λ (·, ·).

Lemma 2.1. Let {wn}n∈N ⊆W be a convergent sequence with a limit ŵ. Assume, for all w ∈W ,
that

lim inf
n→∞

Λ (wn, w) ≤ 0. (2.4)

Then, ŵ ∈W ∗.

Proof. Since Λ (·, w) is lsc, using (2.4), we get

Λ (ŵ, w) ≤ lim inf
n→∞

Λ (wn, w) ≤ 0,

and therefore the result follows from (2.3).

Following Nemirovsky and Yudin [16], we will use the following concept of approximated saddle-
points.

Definition 2.1 (ε-saddle-point). Given ε > 0, a point wε = (uε, vε) ∈ W is called ε-saddle-point
of K (·, ·), if

sup {Λ (wε, w) ≡ K (uε, v)−K (u, vε) : w = (u, v) ∈ Sp × Sd} ≤ ε. (2.5)

We conclude this section with two classical results that will be used in our developments below.
Given x, y, z ∈ U, the well-known three points Pythagoras identity is

〈y − z, x− y〉 =
1

2

(
‖x− z‖2 − ‖x− y‖2 − ‖y − z‖2

)
. (2.6)

We also recall the three points descent lemma (cf. [9, Fact 1])

f
(
u+
)
≤ f (u) + 〈∇f (ũ) , u+ − u〉+

L

2
‖u+ − ũ‖2, ∀ u, ũ, u+ ∈ U. (2.7)
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3 Non-Euclidean Distances and Proximal Mappings

In this paper we are focusing on non-Euclidean proximal distances in the more general sense as
introduced in [2]. When considering non-Euclidean distances, Bregman distances [5] are a common
choice, as observed in many papers over the last decades. For initial works, we point interested
readers to the works [6, 23, 8, 10], and also to the very recent work [21] and references therein.

In order to properly define non-Euclidean proximal distances, we first recall the notions of
essential smoothness and Legendre functions, as defined in [18, Section 26].

Definition 3.1 (Essential smoothness and Legendre type). Let ψ : E→ (−∞,∞] be a proper, lsc,
and convex function. Then, ψ is said to be essentially smooth if it is differentiable on int domψ
and

dom ∂ψ := {x : ∂ψ (x) 6= ∅} = int domψ. (3.1)

If, in addition, ψ is strictly convex on int domψ then it is considered of Legendre type or a Legendre
function.

Given a Legendre function ψ : E→ (−∞,∞], the associated Bregman distance [5] is defined on
E× int domψ by

Dψ (x, y) := ψ (x)− ψ (y)− 〈∇ψ (y) , x− y〉. (3.2)

A list of popular choices of Legendre functions and corresponding Bregman distances, can be found,
e.g., in [21] and references therein.

Bregman distances are not the only representatives of non-Euclidean distance-like functions.
Another popular choice is the ϕ-divergence proximal distance, see, e.g., [11, 23, 22]. For more
examples see [2] and the references therein. As mentioned above, in this paper we follow [2], which
proposed a general framework for proximal distances, that covers Bregman distances, ϕ-divergence
and others. We use here a variant of their definition as recorded next.

Definition 3.2 (Proximal distance). Let C ⊆ V be a nonempty, open, and convex set, and S be
a convex set such that C ⊇ S and C ∩ S is non-empty. A proximal distance with respect to (C, S)
is defined as a function D : V×C → (−∞,∞], where for each y ∈ C, D (·, y) is proper, lsc, convex
and essentially smooth with int domD (·, y) = C. In addition, for any (x, y) ∈ S× (C ∩ S), we have
D (x, y) ≥ 0 and D (y, y) = 0.

Note that we have omitted the condition that D(·, y) is level bounded, for all y ∈ C, as suggested
in [2, Definition 2.1(P3)]. In [2], this additional requirement ensures that proxDρf (y), to be precisely
defined below in (3.7), is nonempty (and compact) as it is assumed that f is lower bounded on
C and that C ∩ dom f 6= ∅ is nonempty, see [2, Proposition 2.1]. When f is not necessarily lower
bounded, which is the case in this work, level boundedness of D(·, y) is not enough. Thus, the
nonemptiness of the proximal map can either be explicitly assumed, or ensured by other sufficient
conditions, see, e.g., [21].

In [2], the notion of induced proximal distance was also introduced (see [2, Definition 2.2]), which
is associated with each proximal distance. This notion was proposed as a natural generalization of
the three points identity (see [8, Lemma 3.1]) in terms of Bregman distances:

〈∇ψ (y)−∇ψ (z) , x− y〉 = Dψ (x, z)−Dψ (x, y)−Dψ (y, z) . (3.3)

We recall this definition below, which is adapted to our goals.
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Definition 3.3 (Induced proximal distance). Let D be a proximal distance with respect to (C, S).
Given λ ≥ 0, a function R : E× C → (−∞,∞] is called an λ-induced proximal distance to D with
respect to (C, S), if for any y ∈ C ∩ S,

∞ > R(x, y) ≥ λ

2
‖x− y‖2 ≥ 0, ∀ x ∈ S, (3.4)

and

〈∇1D(z, y), x− z〉 ≤ R(x, y)−R(x, z)− λ

2
‖z − y‖2, ∀ x ∈ S, ∀ z ∈ C ∩ S. (3.5)

For brevity, we write (D,R) ∈ Fλ(C, S) to denote that [D,R, C, S] satisfy the conditions of
Definition 3.3, with λ ≥ 0. Note that given λ > 0 and (D,R) ∈ Fλ(C, S), then (λ−1D, λ−1R) ∈
F1(C, S).

Given λ ≥ 0, following [2], we say that D is a λ-self-proximal with respect to (C, S), if (D,D) ∈
Fλ(C, S). For example, taking a Legendre function ψ : E→ (−∞,∞] it can be easily verified using
(3.3), that the corresponding Bregman distance Dψ is 0-self-proximal with respect to (int domψ, S),
where S is a convex set such that S ⊂ domψ and S ∩ int domψ 6= ∅. Furthermore, for any λ > 0,
(Dψ, Dψ) ∈ Fλ(int domψ, S) if and only if ψ is λ-strongly convex on S, i.e., ψ + δS is λ-strongly
convex. For more important examples and interesting results dealing with proximal distances and
corresponding induced proximal distances, see [2] and references therein.

3.1 Proximal Mappings

Let f : E → (−∞,∞] be a proper, lsc, and convex function. Given ρ > 0, the Moreau proximal
mapping [14] proxρf : E→ E, is defined by

proxρf (y) := argminx∈E

{
f(x) +

1

2ρ
‖x− y‖2

}
. (3.6)

The computation of the Moreau proximal mapping is not always tractable. Therefore, one way
to overcome this difficulty, is to replace the quadratic proximal term with a distance-like function
which better adapts to the geometry of the function Ψ. This leads us to the following extension of
the Moreau proximal mapping. Given a proximal distance D, we define the mapping proxDρf E→ E
by

proxDρf (y) := argminx∈E
{
f(x) + ρ−1D(x, y)

}
. (3.7)

The following result, which follows [2, Proposition 2.1], establishes two important properties of this
extension of the proximal mapping (cf. the proof of [2, Theorem 2.1]).

Proposition 3.1 (A well defined proximal map and the proximal inequality). Let f : E→ (−∞,∞]
be a proper, lsc, and convex function, (D,R) ∈ Fλ(C,dom f), with λ ≥ 0, and ρ > 0. Set
Y = C ∩ dom f and assume that dom proxDρf ⊇ Y . Then,

(i) proxDρf maps Y to Y , and, for every y ∈ Y , proxDρf (y) is nonempty and closed;

(ii) for any y ∈ Y and every z ∈ proxDρf (y)

ρ (f(z)− f(x)) ≤ 〈∇1D(z, y), x− z〉 ≤ R(x, y)−R(x, z)− λ

2
‖z − y‖2, ∀x ∈ dom f , (3.8)

Proof. Fix ρ > 0 and y ∈ Y . As C ⊇ dom f , it follows that

proxDρf (y) = argminx∈E{ϕ(x) := ρf(x) +D(x, y) + δC(x, y)}.
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Since ϕ is lsc and convex, as a sum of lsc and convex functions, we derive that proxDρf (y), which is
assumed to be nonempty, is closed. In addition, as C is open and C ∩ dom f 6= ∅, it follows that
ri dom f ∩ ri domD(·, y) ∩ ri dom δC is nonempty. Thus, by applying [18, Theorem 23.8], we obtain

∂ϕ(z) = ρ∂f(z) + ∂1D(z, y) +NC(z), ∀z ∈ E,

where NC : E ⇒ E is the normal cone of C, which is defined for all z ∈ C by

NC(z) =
{
w ∈ E : 〈w, x− z〉 ≤ 0, ∀ x ∈ C

}
,

and domNC = C. On the other hand, since C is an open set it follows that NC(z) = {0} for all
z ∈ C. Therefore, using the essential smoothness of D(., y), it follows from the Fermat’s optimality
condition, for any z ∈ dom proxDρf we obtain that z ∈ Y = C ∩ dom f with

0 ∈ ρ∂f(z) +∇1D(z, y). (3.9)

Thus, −ρ−1∇1D(z, y) ∈ ∂f(z) and by applying the subgradient inequality for the convex function
f we obtain the left inequality in (3.8). The right inequality is a direct result of Definition 3.3.

4 Non-Euclidean Proximal Alternating Predictor Corrector

We follow the description of the Proximal Alternating Predictor Corrector (PAPC) as introduced in
[9] algorithm, and extends the algorithm’s applicability by replacing the classical Moreau’s proximal
mapping with the general proximal mapping that corresponds to a well-chosen proximal distance
D. This requires the following assumption, which will be assumed throughout the rest of the work.

Assumption A. Given g : V → (−∞,∞] be a proper, lsc and convex function, let (D,R) ∈
F1(C,dom g) be an induced proximal distance, such that for every σ ≤ 1/(τ‖A‖2) and every
z ∈ V, dom proxDσ(g+〈z,·〉) ⊇ C ∩ dom g.

The Non-Euclidean extension of PAPC is described as follows. Note that with D being the
classical squared Euclidean distance, NEPAPC reduces to PAPC [9].

Algorithm 1 Non-Euclidean Proximal Alternating Predictor Corrector (NEPAPC)

Initialization. τ ≤ 1/L, σ ≤ 1/(τ‖A‖2), u0 ∈ U and v0 ∈ C ∩ dom g.
General step. For k = 1, 2, . . . compute:

pk=uk−1 − τ(∇f(uk−1) +Avk−1), (4.1)

vk ∈proxDσ(g−〈AT pk,·〉)(v
k−1)

=argminv∈V

{
g (v)− 〈AT pk, v〉+

1

σ
D
(
v, vk−1

)}
, (4.2)

uk=uk−1 − τ(∇f(uk−1) +Avk). (4.3)

Assumption A together with Proposition 3.1 guarantees the validation for the proximal step
(4.2) and therefore the algorithm NEPAPC is well-defined as recorded in the following result.

Proposition 4.1. Let {wk = (uk, vk)}k∈N be a sequence generated by NEPAPC. Then, {wk}k∈N ⊆
U× (C ∩ dom g).
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A key advantage of PAPC, which is also relevant to the non-Euclidean variant NEPAPC, is that
it decomposed well according to the problem’s structure in terms of block separability. Similarly to
PAPC, the step (4.2) of EPAPC may be computationally challenging. However, when the model’s
data is block separable it can be decomposed as discussed next.

Consider the block variant of problem (M) given by

(SM) min
u∈U

max
vi∈Vi

i=1,2,...,m

{
f(u) + 〈u,

m∑
i=1

Aivi〉 −
m∑
i=1

gi(vi)

}
,

where each gi : Vi → (−∞,∞] is a proper, lsc, and convex function, and Ai : Vi → U is a linear
mapping, for all i = 1, 2, . . . ,m. Following Assumption A, we assume here that there exist induced
proximal distances (Di,Ri) ∈ F1(Ci,dom gi) such that dom proxDi

σ(gi+〈zi,·〉) ⊇ Ci ∩ dom gi, for every
σ > 0 and zi ∈ Vi. It is easy to verify that this block model can be captured as a particular
instance of model (M), which implies that the step (4.2) can be decomposed and parallelized, for
all i = 1, 2, . . . ,m, as follows

vki ∈ proxDi

σ(gi−〈AT
i p

k,·〉)(v
k−1
i ).

As can be seen from the above parallel updating steps, the proximal parameter σ is shared by
all the proximal steps, and is bounded by 1/τ‖A‖2 where A = (A1, A2, . . . , Am). When A is ill-
conditioned this may cause the proximal steps to be small. Therefore, in order to allow flexibility
for each block, we propose the following preconditioning scheme. Let ωi > 0, i = 1, 2, . . . ,m,
be the precondition coefficient for block i. First, we change the variables vi, i = 1, 2, . . . ,m, as
follows zi = ω−1

i vi. By defining Dωi(x, y) := ω−2
i Di(ωix, ωiy) and Rωi(x, y) := ω−2

i Ri(ωix, ωiy), we
have that (Dωi

i ,R
ωi
i ) ∈ F1(ω−1

i Ci, dom gi(ωi ·)). Therefore, the proximal step for updating the new
variable zi, i = 1, 2, . . . ,m, is given by

zki ∈ proxD
ωi

σ(gi(ωi ·)−〈ωiAT
i p

k,·〉)(z
k−1
i )

= argminzi∈Vi

{
gi(ωizi)− 〈ωiATi pk, zi〉+

1

σω2
Di(ωizi, ωizk−1

i )

}
= ω−1

i argminvi∈Vi

{
gi(vi)− 〈ATi pk, vi〉+

1

σω2
Di(vi, vk−1

i )

}
,

where the last equality uses the fact that zki = ω−1
i vki , k ∈ N. Thus, for all i = 1, 2, . . . ,m,

vki ∈ proxDi

σω2
i (gi−〈Aipk,·〉)

(vk−1
i ).

Therefore, the NEPAPC for block separable problems with preconditioning is recorded next.

Algorithm 2 NEPAPC for the block model (SM) with preconditioning

Initialization. Let u0 ∈ U and for each i = 1, 2, . . . ,m, ωi > 0 and v0
i ∈ Ci∩dom gi. Set τ ≤ 1/L

and σ ≤ 1/(τ‖Aω‖2), where Aω = (ω1A1, ω2A2, . . . , ωmAm).
General step. For k = 1, 2, . . . compute:

pk=uk−1 − τ

(
∇f(uk−1) +

m∑
i=1

Aiv
k−1
i

)
, (4.4)

vki ∈proxDi

σω2
i (gi−〈AT

i p
k,·〉)(v

k−1
i ), i = 1, 2, . . . ,m (4.5)

uk=uk−1 − τ

(
∇f(uk−1) +

m∑
i=1

Aiv
k
i

)
. (4.6)
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4.1 Convergence Analysis

In this section, following PAPC, we describe the two main results: (i) a convergence of NEPAPC
(cf. Algorithm 1) to a saddle-point of problem (M), (ii) a sublinear rate of convergence result of
NEPAPC for the ergodic sequence. We begin with the following technical lemma that collects some
useful properties of NEPAPC that will be essential in proving the main results (see Theorems 4.1
and 4.2).

Lemma 4.1. Let {wk = (uk, vk)}k∈N be a sequence generated by NEPAPC and suppose that As-
sumption A holds. Then, the following statements hold.

(i) For every v ∈ dom g and every k ∈ N,

K(uk, v)−K(uk, vk) ≤ 1

σ

(
R̂(v, vk−1)− R̂(v, vk)− 1

2

(
1− στ‖A‖2

)
‖vk − vk−1‖2

)
, (4.7)

with R̂(x, y) := R(x, y)− 1
2στ‖A(x− y)‖2.

(ii) For every u ∈ U and every k ∈ N,

K(uk, vk)−K(u, vk) ≤ 1

2τ

(
‖u− uk−1‖2 − ‖u− uk‖2 − (1− τL)‖uk − uk−1‖2

)
. (4.8)

(iii) For every w = (u, v) ∈ U× dom g and k ∈ N, we have

Λ
(
wk, w

)
≤ Γ

(
w,wk−1

)
− Γ

(
w,wk

)
− β

2
‖wk − wk−1‖2, (4.9)

where β = min{σ−1(1− στ‖A‖2), τ−1(1− τL)} ≥ 0 and for w̃ = (ũ, ṽ) ∈ U× C

Γ (w, w̃) :=
1

2τ
‖u− ũ‖2 +

1

σ
R̂ (v, ṽ) . (4.10)

Moreover, for all y ∈ Y , we have with α = min{σ−1(1− στ‖A‖2), τ−1}, that

Γ (w, y) ≥ α

2
‖w − y‖2. (4.11)

Proof. Fix k ∈ N and (u, v) ∈ U× dom g. We have

K(uk, v)−K(uk, vk) = g(vk)− g(v) + 〈uk,A(v − vk)〉
= g(vk)− g(v)− 〈pk,A(vk − v)〉+ 〈pk − uk,A(vk − v)〉
= g(vk)− g(v)− 〈AT pk, vk − v〉 − τ〈A(vk−1 − vk),A(vk − v)〉,

(4.12)

where the last equality is due to steps (4.3) and (4.1). Applying Proposition 3.1 to the step (4.2)
yields

g(vk)− g(v)− 〈AT pk, vk − v〉 ≤ 1

σ

(
R(v, vk−1)−R(v, vk)− 1

2
‖vk − vk−1‖2

)
. (4.13)

Finally, due to the Pythagoras identity (2.6) we have

−τ〈A(vk−1 − vk),A(vk − v)〉 =
τ

2

(
−‖A(v − vk−1)‖2 + ‖A(v − vk)‖2 + ‖A(vk − vk−1)‖2

)
≤ −τ

2
‖A(v − vk−1)‖2 +

τ

2
‖A(v − vk)‖2 +

τ

2
‖A‖2‖vk − vk−1‖2.

(4.14)

8



Thus, combining (4.12), (4.13), and (4.14) completes the proof of item (i).

The proof of the second item is actually identical to that of [9, Lemma 3.1(i)]. For completeness
we repeat its simple proof:

K(uk, vk)−K(u, vk) = f(uk)− f(u) + 〈Avk, uk − u〉

= f(uk)− f(u)− 〈∇f(uk−1), uk − u〉+
1

τ
〈uk−1 − uk, uk − u〉,

(4.15)

where the second equality is due to step (4.3). Applying now the three points descent lemma (2.7)
and the Pythagoras identity (2.6) completes the proof of item (ii).

The third item easily follows from the definition of β by summing (4.7) and (4.8). Finally, by
recalling that στ‖A‖2 < 1 with y = (y1, y2) we have

R̂ (y1, y2) = R (y1, y2)− 1

2
στ‖A(y1 − y2)‖2 ≥ 1

2

(
1− στ‖A‖2

)
‖y1 − y2‖2,

and therefore we easily obtain that Γ (w, y) ≥ (α/2) ‖w−y‖2 with α = min{σ−1(1−στ‖A‖2), τ−1}.
This completes the proof.

Now, we can immediately obtain the first main result: a rate of convergence of NEPAPC in the
ergodic sense.

Theorem 4.1 (Convergence rate for the ergodic sequence). Let {wk = (uk, vk)}k∈N be a sequence
generated by NEPAPC and suppose that Assumption A holds. Then, for any w ∈ U × dom g and
N ∈ N, the following holds for the ergodic sequence wN = (1/N)

∑N
k=1w

k

Λ
(
wN , w

)
≤ 1

N

(
1

2τ
‖u− u0‖2 +

1

σ
R̂
(
v, v0

))
. (4.16)

In addition, assume that the primal and dual optimal solution sets, Sp and Sd, are compact and
that R (·, y) is bounded on any compact subset of dom g, for every y ∈ C ∩ dom g. Then, for any
ε > 0, wN is an ε-saddle-point with ε = O(1/N).

Proof. Recalling that Γ (w, w̃) = (1/(2τ)) ‖u − ũ‖2 + (1/σ) R̂ (v, ṽ). Since Λ (·, w) is convex (cf.
Section 2), by Jensen’s inequality we have

Λ
(
wN , w

)
= Λ

(
1

N

N∑
k=1

wk, w

)
≤ 1

N

N∑
k=1

Λ
(
wk, w

)
≤ 1

N

N∑
k=1

(
Γ
(
w,wk−1

)
− Γ

(
w,wk

))
,

where the last inequality follows from (4.9) (after omiting the non-negative term (β/2) ‖wk −
wk−1‖2). Therefore, by combining now with (4.9), we obtain

Λ
(
wN , w

)
≤ 1

N

(
Γ
(
w,w0

)
− Γ

(
w,wN

))
≤ 1

N
Γ
(
w,w0

)
,

where the last inequality follows from the fact that Γ
(
w,wN

)
≥ 0 thanks to (4.11) of Lemma

4.1(iii). The first result now follows from the definition of Γ (·, ·). Te second result follows now
immediately from the definition of ε-saddle-point (see Definition 2.1).

We proceed to our second main result which states the conditions for asymptotic convergence
to a saddle-point of NEPAPC. To this end we will need some additional assumption on the induced
proximal distance.

9



Assumption B. Given an induced proximal distance (D,R) ∈ F1(C, S) with S = dom g.

(i) For any two convergent sequences {xn}n∈N, {zn}n∈N ⊆ C ∩ S, if limn→∞ x
n = limn→∞ z

n,
then, for all v ∈ S, we have

lim
n→∞

(R (v, xn)−R (v, zn)) = 0. (4.17)

(ii) For any convergent sequence {vn}n∈N ⊆ C∩S, if limn→∞ v
n = v∗ ∈ S then limn→∞R (v∗, vn) =

0.

Theorem 4.2. Let {wk = (uk, vk)}k∈N be a sequence generated by NEPAPC and suppose that
Assumption A holds. Then, the following assertions hold.

(i) Assume that στ‖A‖2 < 1. Then, the sequence {wk}k∈N is bounded.

(ii) Assume that τ < 1/L and στ‖A‖2 < 1. If Assumption B(i) holds true, then, any limit point
of the sequence {wk}k∈N is a saddle-point of problem (M).

(iii) Assume τ < 1/L and στ‖A‖2 < 1. If Assumption B holds true, then, the sequence {wk}k∈N
converges to a saddle-point of problem (M).

Proof. Let w∗ be a saddle-point of problem (M). From (2.2) and (2.3) it follows that Λ
(
wk, w∗

)
=

−Λ
(
w∗, wk

)
≥ 0. Thus, we obtain form (4.9), for all k ∈ N, that

0 ≤ β

2
‖wk − wk−1‖2 ≤ Γ

(
w∗, wk−1

)
− Γ

(
w∗, wk

)
. (4.18)

Therefore, the sequence
{

Γ
(
w∗, wk

)}
k∈N is a nonincreasing and nonnegative sequence (see (4.11)),

i.e., it is monotone and bounded. Thus, with B = supk∈N Γ(w∗, wk) ∈ R+, we have for all k ∈ N

‖wk‖ ≤ ‖w∗ − wk‖+ ‖w∗‖ ≤
√

2B/α+ ‖w∗‖ ∈ R+,

which proves Item (i).
Next, under the conditions of (ii) we have that β > 0. From the first item it follows that{

Γ
(
w∗, wk

)}
k∈N convergent and therefore

lim
k→∞

(
Γ
(
w∗, wk−1

)
− Γ

(
w∗, wk

))
= 0.

Thus, from (4.18) it also follows that

lim
k→∞
‖wk − wk−1‖ = 0. (4.19)

Let {wjn}jn∈N be a convergent subsequence, where w∞ = limn→∞w
jn . Hence,

0 ≤ lim
n→∞

‖wjn−1 − w∞‖ ≤ lim
n→∞

‖wjn−1 − wjn‖+ lim
n→∞

‖wjn − w∞‖ = 0.

From Assumption B(i) combined with (4.9) it follows, for all w ∈W that

lim inf
n→∞

Λ
(
wjn , w

)
≤ lim

n→∞

(
Γ
(
w,wjn−1

)
− Γ

(
w,wjn

))
= 0.

Applying Lemma 2.1, we obtain that w∞ is a saddle-point, i.e., item (ii) is proved.

It remains to show that under the assumptions of item (iii) the sequence {wk}k∈N has a unique
limit point. Indeed, assume that w∞a and w∞b are two limit points of {wk}k∈N, i.e., win → w∞a and
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wjn → w∞b as n→∞. Then, due to the previous item, we have that both w∞a ∈W ∗ and w∞b ∈W ∗
are saddle-point of problem (M). Hence, by the same arguments that were made above for w∗, we
have that {Γ

(
w∞a , w

k
)
}k∈N is a convergent sequence. Specifically, we have

lim
n→∞

Γ
(
w∞a , w

jn
)

= lim
n→∞

Γ
(
w∞a , w

in
)

= 0, (4.20)

where the second equality is due to the Assumption B(ii). Therefore, with (4.11), we obtain
limn→∞‖wjn − w∞a ‖ = 0, which implies that w∞b = limn→∞w

jn = w∞a . This completes the proof
of item (iii).

5 Application: Regularized multinomial logistic regression

To illustrate the advantage and relevance of NEPAPC over the classical PAPC, we consider the
Multinomial Logistic Regression (MLR) model and the associated training problem, see, e.g., [12].
We show (after a proper saddle point reformulation of the problem), the benefits of using a non-
Euclidean distance over the classical prox used in PAPC. Indeed, within NEPAPC a simple explicit
formula is obtained, and the numerical illustration confirms the efficiency of NEPAPC over its
classical counterpart PAPC.

5.1 The Problem

Before describing the problem we recall some basic notations that will be used below. Given a
matrix M ∈ Rn×m, Mi denotes its ith row and mj denotes its jth column. The identity matrix is
denoted as I. The columns of I, i.e., the standard basis vectors, are denoted as ei, for i = 1, 2, . . . , n.
When we apply a scalar function ϕ to a vector ξ ∈ Rn (or to any multidimensional array), it is
applied elmentwise, e.g., ϕ(ξ) := (ϕ(ξ1), ϕ(ξ2), . . . , ϕ(ξn))T .

We consider the Multinomial Logistic Regression (MLR) model and the associated training
problem, see, e.g., [12]. Given an observation with a feature vector x̂ ∈ Rn, the MLR model,
parameterized by U ∈ Rn×q, models the conditional probability of the observation’s class ĉ to be
l̂ ∈ {1, 2, . . . , q} by

P (ĉ = l̂|x̂;U) =
exp(x̂Tul̂)∑q
j=1 exp(x̂Tuj)

= exp
(
x̂TUŷ − log

q∑
j=1

exp(x̂Tuj)
)

= exp
(
〈x̂ŷT , U〉 − log

q∑
j=1

exp
(
(x̂TU)j

) )
,

where ŷ ≡ el̂ ∈ Rq is the l̂th standard basis vector.

Let {(xi, li)}mi=1 be a set of m independent samples, where xi ∈ Rn is the feature vector of
sample i, its class ci equals li ∈ {1, 2, . . . , q}, and we denote yi = eli ∈ Rq, for i = 1, 2, . . . ,m. We
set X = (x1, x2, . . . , xm) ∈ Rn×m, c = (c1, c2, . . . , cm), l = (l1, l2, . . . , lm). Then, the log-likelihood
of the model parameters U is given by

logP (c = l|X;U) = log
m∏
i=1

P (ci = li|xi;U) =
m∑
i=1

logP (ci = li|xi;U)

=

m∑
i=1

〈xiyTi , U〉 −
m∑
i=1

log

q∑
j=1

exp
(
(xTi U)j

)
.

(5.1)
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We formulate the problem of estimating the model’s parameters U in the following standard form

min
U∈Rn×q

µr(U) + loss(U).

As we aim to maximize the log-likelihood, we set the loss to be

loss(U) = − 1

m
logP (c = l|X;U),

where 1/m acts as scaling factor. The regularizer r(·) and the regularization parameter µ > 0 are
added in order to impose prior assumptions on U and to cope with the overfitting issues caused
by the high dimension of the feature space. In this example, we use a regularizer r : Rn×q → R+

which is defined by

r(U) =

q∑
j=1

(
α‖Duj‖1 +

1− α
2
‖uj‖22

)
= α‖DU‖1 +

1− α
2
‖U‖22,

where α ∈ (0, 1), D ∈ R(n−1)×n is the matrix of the forward difference linear operator D : Rn →
Rn−1 defined by (Dz)i = zi+1 − zi, i = 1, 2, . . . , n− 1, and the norms ‖·‖1 and ‖·‖2 are the vector
norms, i.e. the entrywise l1 and l2 norms, respectively. (The chosen regularizer can be viewed as a
hybrid between the elastic net [25] and a penalized version of the fused lasso [24]).

Thus, the training problem translates to the following convex optimization problem

(RMLR) min
U∈Rn×q

{
Φ(U) := µ1‖DU‖1+

µ2

2
‖U‖22−

1

m

m∑
i=1

〈xiyTi , U〉+
1

m

m∑
i=1

log

q∑
j=1

exp
(
(xTi U)j

) }
,

where µ1 = µα and µ2 = µ(1− α).

5.2 Min-Max Reformulations of (RMLR) and Algorithm

Throughout, we will use the following notations.

g(ζ) := log

q∑
j=1

exp(ζj),

W :={W = (w1, . . . , wq} ∈ R(n−1)×q : |Wij | ≤ 1, i = 1, 2, . . . , n− 1, j = 1, . . . , q},

V :={V ∈ Rm×q :

q∑
j=1

Vij = 1, i = 1, . . . ,m, Vij ≥ 0, i = 1, . . . , n, j = 1, . . . , q}

First, noting that ‖DU‖1 = max{〈W,DU〉 : W ∈ W}, we obtain the following saddle point
formulation of (RMLR):

(SRMLR1) min
U∈Rn×q

max
W∈W

{
µ2

2
‖U‖22 −

1

m

m∑
i=1

〈xiyTi , U〉+ µ1〈DTW,U〉+
1

m

m∑
i=1

g(xTi U)

}

It is well known that the function g has a Lipschitz continuous gradient, and thus within this
formulation we can apply the classical PAPC on the formulation (SRMLR1) by taking the smooth
function in model (M) (cf. Section 2) to be

f(U) :=
µ2

2
‖U‖22 −

1

m

m∑
i=1

〈xiyTi , U〉+
1

m

m∑
i=1

g(xTi U).
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However, within this formulation, the inherent m blocks separable structure of the model is not
exploited. As a result, the preconditioning (cf. Section 4) cannot be applied within this formulation,
and as we shall see in the numerical experiment given below, this negatively affect the computational
performance of (PAPC).

An alternating formulation that can exploit the block separable structure of the problem is as
follows. The main observation toward this task is based on the well known fact that the log sum
of exponent function is the conjugate of the (negative) entropy function when defined on the unit
simplex. More precisely, let us denote by ∆d := {x ∈ Rd+ :

∑n
i=1 ξi = 1}, the unit simplex on

Rd, and its relative interior by ∆+
d = {x ∈ Rd++ :

∑n
i=1 ξi = 1}. The (negative)-entropy function

h : Rd+ → R is defined as h(ξ) :=
∑d

i=1 ξi log(ξi), (with 0 log 0 = 0). Then, the following result
follows.

Lemma 5.1. For any z ∈ Rd, one has

log
d∑
j=1

exp(zj) = max{〈ξ, z〉 −
d∑
j=1

ξj log ξj : ξ ∈ ∆d}, (5.2)

with the maximum attained at S(z) =
(∑d

j=1 exp(zj)
)−1

exp(z).

Proof. See, e.g., [18, p.148] or it simply follows by writing the optimality conditions for the convex
problem (5.2).

Applying Lemma 5.1 for the separable sum of functions g in (SRMLR1), we then obtain the
following alternative saddle point reformulation:

(SRMLR2) min
U∈Rn×q

max
V ∈V,W∈W

{
µ2

2
‖U‖22−

1

m

m∑
i=1

〈xiyTi , U〉+〈
1

m

m∑
i=1

xiVi+µ1D
TW,U〉− 1

m

m∑
i=1

q∑
j=1

Vi,j log Vi,j

}
.

The V -block now decomposes nicely, but applying the classical PAPC would require to compute
for each block Vi the usual Euclidean prox of the entropy function over the simplex ∆q. However,
this task cannot be done explicitly and thus would imply a nested optimization loop requiring to
implement a numerical procedure. On the other hand, exploiting the geometry of the constraint V
described here by a unit simplex, we can instead naturally apply NEPAPC, by using the so-called
Kullback-Leibler (KL) distance which is obtained by using the entropy function h in the Bregman
distance Dh (·, ·) on ∆d ×∆+

d , which is given by

Dh(ξ, η) =
d∑
i=1

ξi log

(
ξi
ηi

)
= h(ξ)− 〈log(η), ξ〉. (5.3)

Indeed, equipped with this Dh, to compute the Vi step in NEPAPC, reduces to solve the following
optimization problem which is shown to admit a simple explicit formula.

Lemma 5.2. For any z ∈ Rd, η ∈ ∆+
d , and Dh as defined in (5.3), we have

v+ := argminξ∈∆d

{
h(ξ) + 〈z, ξ〉+ ρ−1Dh(ξ, η)

}
= S ((t− 1)z + t log(η)) ,

with t = (1 + ρ)−1.
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Proof. Simple algebra shows that finding v+ consists of solving the convex minimization problem

min

{
d∑
i=1

ξi log ξi − (
1

ρ+ 1
log ηi −

ρ

ρ+ 1
zi)ξi : x ∈ ∆d

}
.

Invoking Lemma 5.1, and setting t = (1 + ρ)−1 we immediately obtain the claimed formula for the
minimizer v+.

Thus, we can apply NEPAPC; more precisely, we will apply the block version of NEPAPC with
preconditioning as described in Algorithm 2. For V1, V2, . . . , Vm, we set the proximal distance to
be the Bregman distance Dh, with h(x) =

∑q
j=1 xj log(xj) and domh = Rq+. For W we use the

standard squared Euclidean distance. Note that in this case we have L = µ2. We find that it is
computationally effective to set the preconditioning parameters to be m for V and 1/µ1 for W ;
that is (cf. Section 4), we set here Aω = (X,DT ), and obtain the following algorithm.

Algorithm 3 NEPAPC for SRMLR2 with preconditioning

Initialization. Aω = (X,DT ), τ ≤ 1/µ2, σ ≤ 1/(τ‖Aω‖2), t = 1/(1 + mσ), U0 ∈ Rn×q, V 0
i ∈

∆+
1×q, for i = 1, 2, . . . ,m, W 0

i,j ∈ [−1, 1], for i = 1, 2, . . . , n− 1 and j = 1, 2, . . . , q.
General step. For k = 1, 2, . . . compute:

P k =(1− τµ2)Uk−1 +
τ

m

m∑
i=1

xiy
T
i −

τ

m

m∑
i=1

xiV
k−1
i − τµ1D

TW k−1,

V k
i =S

(
(1− t)xTi P k + t log V k−1

i

)
, i = 1, 2, . . . ,m,

W k
i,j=P[−1,1]

(
W k−1
i,j +

σ

µ1
(DP k)i,j

)
, i = 1, 2, . . . ,m,

Uk =(1− τµ2)Uk−1 +
τ

m

m∑
i=1

xiy
T
i −

τ

m

m∑
i=1

xiXV
k
i − τµ1D

TW k,

where P[−1,1](s) denotes the projection of s ∈ R on the interval [−1, 1].

5.3 Numerical experiment

We have conducted a synthetic numerical experiment, similar to that of [9, Example 2]. The
parameters of the model and the algorithm were set as follows: n = 1000, q = 50, m = 5000,
where for each class we have generated 100 samples, µ = 1e − 6, and α = 0.5. The model’s
parameter matrix U was predetermined, the samples xi were randomly generated and each sample
was randomly assigned a class according to probabilities which were computed by the MLR model.

We applied PAPC [9] on problem (SRMLR1) and the block version of NEPAPC (see Algorithm
3) on problem (SRMLR2). We measured the objective value of the primal problem (RMLR).
The lowest generated value was regarded as the optimal value. The results are summarized in
the following two figures. Figure 1 demonstrates that NEPAPC, that has the ability to adapt
to the structure of the problem, clearly outperforms PAPC, and shows the advantage of using
Non-Euclidean distances. In Figure 2 we show the performance of the main and ergodic sequences
generated by NEPAPC. As can be seen, the main sequence performs much better and seems to
converge at a linear rate. This phenomena was also observed in PAPC [9], and therefore it would
be interesting, in a future research, to tackle the theoretical guarantees of the main sequence of
these algorithms.

14



0 500 1,000 1,500 2,000
10−3

10−2

10−1

100

iterations

f-f
*

EPAPC ergodic
PAPC ergodic

Figure 1: Objective values: ergodic PAPC vs. ergodic NEPAPC
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Figure 2: Objective values: Sequence vs. ergodic sequence in NEPAPC
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