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Abstract

We introduce a new algorithmic framework for solving non-convex optimization

problems, that is called Nested Alternating Minimization, which aims at combining the

classical Alternating Minimization technique with inner iterations of any optimization

method. We provide a global convergence analysis of the new algorithmic framework

to critical points of the problem at hand, which to the best of our knowledge, is the

first of this kind for nested methods in the non-convex setting. Central to our global

convergence analysis is a new extension of classical proof techniques in the non-convex

setting that allows for errors in the conditions. The power of our framework is illus-

trated with some numerical experiments that show the superiority of this algorithmic

framework over existing methods.

1 Introduction

In recent years non-convex and non-smooth optimization problems have gained a lot of

interest in numerous applied fields such as machine learning [23], signal processing [36, 32],
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data science [19, 26], operations research [20, 18] and more. While the theoretical results

in the convex setting (such as convergence analysis and rates of convergence) are extensive

(see, for instance, the recent book [6] and references therein), the tools and results available

regarding the non-convex setting are very limited, making this setting much more challenging.

An important task in the non-convex problem domain, which has already gained success in

several settings, is to establish global convergence of algorithms to critical points (see more

detail in Section 2). In this paper, we are motivated by the analysis and application of a large

and important class of nested algorithms, which we call Nested Alternating Minimization

(NAM) and will be precisely defined in Section 3. Our contribution consists of providing a

new general proof procedure that can be applied to obtain global convergence results for this

class of algorithms. As far as we know, this is the first theoretical guarantee for this class of

algorithms in the non-convex setting.

1.1 Global Convergence

Proving global convergence of an algorithm to a critical point involves showing that for any

starting point the entire sequence generated by the algorithm converges to a single critical

point of the optimization problem at hand. In recent years, this task received a lot of

attention starting with the works [3, 4, 5] and later with the work [11], which formulates a

simple proof technique to obtain global convergence results of algorithms that satisfy three

conditions in addition to the KL property of the objective function (see [25, 24, 10]). These

works pave the way for many modifications and extensions that have been, and are still being

developed (e.g., [35, 30] and references therein). The first condition consists of a sufficient

decrease requirement of the algorithm with respect to all variables (see, for instance, [11]) or

part of them (see, for instance, [35]), where the sufficient decrease can be measured in terms

of the original objective function as in [11] or a related Lyapunov function as in [31, 33].

The second condition consists of bounding the iterates gap from below by the function’s

sub-gradient norm.

In this work, we propose another proof technique to obtain global convergence results

in the non-convex setting. This extension allows more flexibility in accommodating the
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conditions of previous proposed recipes, in the sense that we propose a relaxed variant of

the first two conditions by adding some non-negative error terms (our recipe is a further

relaxation of the recipe suggested in [30], which only relaxes the second condition).

In Section 2, following the approach introduced in [11] and recently summarized in [12], we

develop the extended proof methodology in detail. Even though the techniques used to derive

the new methodology are not new and are based on [11, 12], the newly developed technique

allows us to easily analyze non necessarily sufficient decrease methods (due to the relaxation

of the first condition), which in turn opens the gate for obtaining global convergence results

of the very important and challenging class of Nested Alternating Minimization algorithms.

1.2 Nested Alternating Minimization Algorithms

The celebrated Alternating Minimization (AM) methodology is a technique for handling

complicated optimization problems that has regained a huge popularity in the last decade in

the context of non-convex optimization. The AM methodology splits an optimization prob-

lem into smaller sub-problems, which would hopefully be easier to solve in a closed form.

Unfortunately, in many cases, especially in the non-convex setting, even the resulting sub-

problems remain too complicated or too large to be solved explicitly. This led to a stream

of papers in recent years that suggest to approximate the solution of the sub-problems by

computing one (or several) iteration of a certain descent optimization algorithm (see, for

instance, [22, 33, 12, 35, 13]). This approach of One Iteration Approximation (OIA) led,

in many cases, to algorithms that enjoy global convergence guarantees using the techniques

mentioned in Section 1.1. However, the idea of OIA is limited to algorithms with a certain

sufficient decrease property (see our discussion above). Motivated by considering to approxi-

mate the solution of the sub-problems using non sufficient decrease methods (like Accelerated

Gradient Descent Method [29] and its variants for strongly convex or non-smooth functions

[9, 6]), we study the class of Nested Alternating Minimization (NAM) algorithms, which

allow to approximate the solution of the sub-problems using several iterations instead of

one, in order to achieve the relaxed sufficient decrease property discussed above. It should

be noted that our NAM framework also covers sub-problems which are solved using OIA,
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and therefore allows for combining different approximations (one iterations or several) for

different sub-problems.

In Section 3, we propose the general algorithmic framework of NAM for solving non-

convex and non-smooth problems. Our main contribution is to show that this algorithmic

framework, which captures a wide spectrum of algorithms, generates a globally convergent

sequence to critical points of the problem at hand. To this end, we define the notion of

Nested Friendly Algorithms (NFA), which captures the minimal necessary requirements of

the nested algorithm to be used within NAM in order to achieve the global convergence

of NAM. In Section 4, we illustrate the concept of NFA by presenting several examples

that satisfy the requirements and therefore can be used in NAM. Another central aspect in

applying NAM is to determine the number of inner iterations which is sufficient to guarantee

the global convergence. This is also discussed in Section 4. Finally, in Section 5 we illustrate

the advantage of the NAM framework in tackling the Regularized Structured Total Least

Squares (RSTLS) problem via its application on an image deblurring task.

2 A Procedure for Global Convergence with Errors

Consider an extended real-valued function F : Rd × Rd0 → (−∞,∞] that is bounded from

below and assumed to be proper and lower semi-continuous. We consider the following

two-block minimization problem

min
(z,u)∈Rd×Rd0

F (z,u) . (1)

Starting with any pair (z0,u0), let
{(

zk,uk
)}

k≥0 be a sequence generated by a generic

algorithm, which we denote by A, that aims at tackling Problem (1) in the sense of global

convergence to critical points of the function F . As mentioned above, our goal in this section

is to extend recent proof techniques with a set of relaxed conditions that still guarantee global

convergence (see [11] and also [12] for a recent and concise version).

Before proceeding we recall the following definition from non-smooth analysis (see, for

instance, [27]), which will be useful in our developments below.
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Definition 1. [Limiting Sub-differential]. Let f : Rn → (∞,∞] be a proper and lower semi-

continuous function. The limiting sub-differential (or simply the sub-differential) of f at

x ∈ Rn is denoted by ∂f (x) and is defined as the set

∂f (x) ≡
{

v ∈ Rn : ∃xk → x, f
(
xk
)
→ f (x) ,vk ∈ ∂̂f

(
xk
)
→ v as k →∞

}
,

where ∂̂f (x) is the Fréchet sub-differential of f at x ∈ dom (f), which is defined as

∂̂f (x) ≡
{

v ∈ Rn : lim inf
y 6=x,y→x

f (y)− f (x)− vT (y − v)

‖y − x‖
≥ 0

}
,

and when x 6∈ dom (f) we set ∂̂f (x) ≡ ∅.

Now, following [11], we extend the definition of gradient-like descent sequences to include

non-negative errors in the following way.

Definition 2. [Approximate gradient-like descent sequence]. A sequence
{(

zk,uk
)}

k≥0 is

called an approximate gradient-like descent sequence for minimizing the function F of Prob-

lem (1), if the following conditions hold:

(C1) Approximate sufficient decrease property. The sequence
{
F
(
zk,uk

)}
k≥0 is non-increasing

and there exist a positive scalar ρ1 > 0 and a non-negative error term ek1 ≥ 0 such that

ρ1
∥∥zk+1 − zk

∥∥2 − ek1 ≤ F
(
zk,uk

)
− F

(
zk+1,uk+1

)
, ∀ k ≥ 0.

(C2) Approximate sub-gradient lower bound on the iterates gap. There exist a vector wk+1 ∈

∂F
(
zk+1,uk+1

)
, a positive scalar ρ2 > 0 and a non-negative error term ek2 ≥ 0 such

that ∥∥wk+1
∥∥ ≤ ρ2

∥∥zk+1 − zk
∥∥+ ek2, ∀ k ≥ 0.

(C3) Continuity. If (z̄, ū) is a limit point of some sub-sequence
{(

zk,uk
)}

k∈K⊆N, then

lim sup
k∈K⊆N

F
(
zk,uk

)
≤ F (z̄, ū) .

(C4) Summability of the errors. The sequences
{√

ek1

}
k≥0

and
{
ek2
}
k≥0 are summable, that

is,
∞∑
k=1

√
ek1 <∞ and

∞∑
k=1

ek2 <∞.
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Few words about the new conditions (C1) and (C2). In the case that ek1 = ek2 = 0, for

all k ≥ 0, we recover the conditions introduced in [35] (note that in this case condition (C1)

reduces to the “regular” sufficient decrease property and condition (C4) trivially holds) and

the notion defined in Definition 2 coincides with the notion of partial gradient-like descent

sequence introduced in [35]. In addition, we obviously recover the original recipe of [11] when

the second block of the function F vanishes.

Condition (C1) includes two main requirements, which are: (i) approximate sufficient

decrease property of the sequence
{
F
(
zk,uk

)}
k≥0 in the sense of the additional non-negative

error term, and (ii) a non-increasing property of the sequence
{
F
(
zk,uk

)}
k≥0. It should be

noted that these two requirements together are obviously weaker than the “regular” sufficient

decrease property, which appears in all previous recipes as mentioned above. We illustrate

below that condition (C1) can be guaranteed in several settings.

Condition (C2) requires finding a sub-gradient with a norm, which is bounded from

above by the gap between two successive iterations, plus some non-negative error term. This

additional error term allows for some more flexibility in bounding the sub-gradient, but due

to condition (C4), these errors should be small enough such that the infinite sum of them is

finite. See [30] for a set of conditions which include errors only in condition (C2).

We would also like to stress the fact that now, in Definition 2, the two-block structure

comes into a play since the first two conditions are only measured in terms of the variable z

(see also [35]). This adds another level of flexibility in proving the approximate gradient-like

descent sequence property.

Now, we are in a position to prove that these relaxed conditions are enough to guarantee

global convergence to critical points of F . To this end, we denote by ω (x0) the set of limit

points of a sequence
{
xk
}
k≥0 and for any function f we denote by crit (f) the set of its

critical points.

Lemma 1. Let
{(

zk,uk
)}

k≥0 be a bounded approximate gradient-like descent sequence for

minimizing F of Problem (1). Then, ω (z0,u0) is a non-empty and compact subset of crit (F )

and

lim
k→∞

dist
((

zk,uk
)
, ω
(
z0,u0

))
= 0.
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In addition, the function F is finite and constant on ω (z0,u0).

Proof. Since
{(

zk,uk
)}

k≥0 is bounded, ω (z0,u0) is a non-empty and compact set. There-

fore, it follows that dist
((

zk,uk
)
, ω (z0,u0)

)
converges to 0 as k goes to infinity. The non-

increasing property required in condition (C1) and the boundedness from below of F , yields

the convergence of the sequence
{
F
(
zk,uk

)}
k≥0. From condition (C1) we have

∥∥zk+1 − zk
∥∥2 ≤ 1

ρ1

(
F
(
zk,uk

)
− F

(
zk+1,uk+1

)
+ ek1

)
, (2)

which together with condition (C4) implies from (2) that

lim
k→∞

∥∥zk+1 − zk
∥∥ = 0. (3)

Let
{(

zk,uk
)}

k∈K be a convergent sub-sequence to some pair (z∗,u∗). Denote F ∗ ≡

F (z∗,u∗). From condition (C3) and the lower semi-continuity of F we derive that

lim
k→∞

F
(
zk,uk

)
= lim

k∈K
F
(
zk,uk

)
= F ∗. (4)

From condition (C2) there exists a sequence
{
wk
}
k≥0, for which wk ∈ ∂F

(
zk,uk

)
for all

k ≥ 0, that satisfies

lim
k→∞

∥∥wk
∥∥ ≤ lim

k→∞

(
ρ2
∥∥zk+1 − zk

∥∥+ ek2
)

= 0,

where the equality follows from (3) and condition (C4). This means that the sequence{
wk
}
k≥0 converges to 0 as k → ∞ and therefore (z∗,u∗) ∈ crit (F ), as follows from the

closedness property of the sub-differential (see [34]). Finally, since
{
F
(
zk,uk

)}
k≥0 converges

we can assume that lim
k→∞

F
(
zk,uk

)
= c ∈ R. Then, lim

k∈K
F
(
zk,uk

)
= c and from (4) we

derive that F is finite and constant over the set ω (z0,u0).

In order to obtain global convergence, based on Lemma 1, all we need to add is the KL

property [10, 24, 25], which was shown in many papers to be a central tool in achieving

global convergence results in the non-convex setting.

Definition 3. [Kurdyka– Lojasiewicz Property]. Let f : Rn → (∞,∞] be a proper and

lower semi-continuous function. The function f satisfies the KL property [24, 25] at x̄ ∈
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dom (∂f) ≡ {x ∈ Rn : ∂f (x) 6= ∅} if there exist η ∈ (0,∞], a neighborhood U of x̄ and a

function ϕ ∈ Φη, such that for all x ∈ U ∩ [f (x̄) < f (x) < f (x̄) + η] it holds that

ϕ′ (f (x)− f (x̄)) dist (0n, ∂f (x)) ≥ 1,

where Φη is the set of all desingularizing functions, which are concave and continuous func-

tions ϕ : [0, η)→ R+ such that ϕ (0) = 0, ϕ is C1 on (0, η) and continuous at 0, and for all

s ∈ (0, η) it holds that ϕ′ (s) > 0.

We now prove the main result of this section. It states that if a generic optimization

method A generates a bounded approximate gradient-like descent sequence for minimizing

F of Problem (1), then it globally converges to a critical point of F . It should be noted that

this unique limit point is dependent on the initialization point of A.

Theorem 1. [Global convergence]. Let
{(

zk,uk
)}

k≥0 be a bounded approximate gradient-

like descent sequence for minimizing F of Problem (1). If F satisfies the KL property, then

the sequence
{
zk
}
k≥0 has finite length and it globally converges to a point z∗. Moreover, let

u∗ be any limit point of the sequence
{
uk
}
k≥0, then (z∗,u∗) ∈ crit (F ).

Proof. Let (z∗,u∗) be a limit point of the sequence
{(

zk,uk
)}

k≥0, which exists due to the

boundedness assumption. From Lemma 1 (see (4)) we derive

lim
k→∞

F
(
zk,uk

)
= F (z∗,u∗) .

Assume that there exists k̃ ∈ N such that F
(
zk,uk

)
= F (z∗,u∗) and ek1 = 0 for all k ≥ k̃.

Then, from condition (C1) it follows that
{
F
(
zk,uk

)}
k≥0 has a “regular” sufficient decrease

property and therefore zk+1 = zk for all k ≥ k̃. This proves a finite convergence of the

sequence
{
zk
}
k≥0 and obviously the desired result. If F

(
zk,uk

)
= F (z∗,u∗) and ek1 > 0 for

all k ≥ k̃, then summing condition (C1) and using condition (C4) for all k ≥ k̃ yields

∞∑
k=k̃

∥∥zk+1 − zk
∥∥ ≤ 1
√
ρ1

∞∑
k=k̃

√
ek1 <∞.

Hence, the sequence
{
zk
}
k≥0 is of a finite length, and it globally converges to some z∗.

Now, on the other hand, assume that F
(
zk,uk

)
> F (z∗,u∗) for all k ≥ 0. We know

from condition (C1) that the sequence
{
F
(
zk,uk

)}
k≥0 is non-increasing and converges to
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F (z∗,u∗). Thus, for any γ > 0 there exists an integer k0 such that F
(
zk,uk

)
< F (z∗,u∗)+γ

for all k > k0. From Lemma 1

lim
k→∞

dist
((

zk,uk
)
, ω
(
z0,u0

))
= 0.

So, for any ε > 0 there exists an integer k1 such that dist
((

zk,uk
)
, ω (z0,u0)

)
< ε for any

k > k1. Again from Lemma 1 the function F is finite and constant on the non-empty and

compact set ω (z0,u0). Hence, from the Uniformized KL property [11, Lemma 6] there exists

a desingularizing function ϕ ∈ Φγ (see Definition 3) such that for any k > s ≡ max {k0, k1}+1

we have

ϕ′
(
F
(
zk,uk

)
− F (z∗,u∗)

)
· dist

(
0, ∂F

(
zk,uk

))
≥ 1. (5)

Since dist
(
0, ∂F

(
zk,uk

))
≤
∥∥wk

∥∥ for any wk ∈ ∂F
(
zk,uk

)
it follows from condition (C2)

and (5) that

ϕ′
(
F
(
zk,uk

)
− F (z∗,u∗)

)
≥ 1

ρ2 ‖zk − zk−1‖+ ek−12

. (6)

For any n1, n2 ∈ N we denote

∆n1,n2 ≡ ϕ (F (zn1 ,un1)− F (z∗,u∗))− ϕ (F (zn2 ,un2)− F (z∗,u∗)) .

Since ϕ is concave it follows from the gradient inequality that

∆k,k+1 ≥ ϕ′
(
F
(
zk,uk

)
− F (z∗)

)
·
(
F
(
zk,uk

)
− F

(
zk+1,uk+1

))
. (7)

By combining (6) and (7) with condition (C1), we establish

∆k,k+1 ≥
ρ1

(∥∥zk+1 − zk
∥∥2 − ek1/ρ1)

ρ2
(
‖zk − zk−1‖+ ek−12 /ρ2

) . (8)

Denote c = ρ2/ρ1, ẽ
k
1 := ek1/ρ1 and ẽk2 := ek2/ρ2. We obtain from (8) that√
c∆k,k+1

(
‖zk − zk−1‖+ ẽk−12

)
+ ẽk1 ≥

∥∥zk+1 − zk
∥∥ . (9)

Now, since c∆k,k+1
(∥∥zk − zk−1

∥∥+ ẽk−12

)
≥ 0 and ẽk1 ≥ 0 we obtain from (9) and the

geometric-arithmetic mean inequality that∥∥zk+1 − zk
∥∥ ≤√c∆k,k+1

(
‖zk − zk−1‖+ ẽk−12

)
+
√
ẽk1

≤ c

2
∆k,k+1 +

1

2

∥∥zk − zk−1
∥∥+

1

2
ẽk−12 +

√
ẽk1. (10)
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Summing up inequalities (10) for r = s+ 1, . . . , k we derive that

2
k∑

r=s+1

∥∥zr+1 − zr
∥∥ ≤ k∑

r=s+1

∥∥zr − zr−1
∥∥+ c

k∑
r=s+1

∆r,r+1 +
k∑

r=s+1

(
2
√
ẽr1 + ẽr−12

)
≤

k∑
r=s+1

∥∥zr+1 − zr
∥∥+

∥∥zs+1 − zs
∥∥+ c

k∑
r=s+1

∆r,r+1

+
k∑

r=s+1

(
2
√
ẽr1 + ẽr−12

)
=

k∑
r=s+1

∥∥zr+1 − zr
∥∥+

∥∥zs+1 − zs
∥∥+ c∆s+1,k+1

+
k∑

r=s+1

(
2
√
ẽr1 + ẽr−12

)
, (11)

where the last equality follows from the definition of ∆r,r+1. We now see that

k∑
r=s+1

∥∥zr+1 − zr
∥∥ ≤ ∥∥zs+1 − zs

∥∥+
k∑

r=s+1

(
2
√
ẽr1 + ẽr−12

)
+ c∆s+1,k+1

≤
∥∥zs+1 − zs

∥∥+
k∑

r=s+1

(
2
√
ẽr1 + ẽr−12

)
+ cϕ

(
F
(
zs+1,us+1

)
− F (z∗,u∗)

)
,

where the last inequality follows from the definition of ∆s+1,k+1 and the fact that ϕ ≥ 0.

Due to condition (C4), the infinite sum of errors above is also finite and therefore we finally

derive that
∞∑
r=1

‖zr+1 − zr‖ < ∞. Hence, the sequence
{
zk
}
k≥0 is of a finite length, and it

globally converges to some z∗. Last, from Lemma 1 it follows that (z∗,u∗) is a critical point

of the function F .

Remark 1. It should be noted that in Theorem 1 we prove convergence only of the sequence{
zk
}
k≥0. Therefore, if the problem and the algorithm at hand satisfy all the required condi-

tions of Definition 2 with respect to all blocks, then the u block can be removed.

3 Nested Alternating Minimization Algorithms

The global convergence of Section 2 was obtained on the function F of Problem (1), which

consists of two blocks: z and u. The main reason for this split is flexibility in accommodating

the requirements given in Definition 2. Indeed, the first two requirements (conditions (C1)
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and (C2)) are measured only with respect to the block z. Therefore, when one designs an

algorithm to tackle a certain optimization problem, the split into two blocks z and u should

be done according to the structure of the involved functions and the analyzed algorithm in

order to guarantee these conditions. In this section, we would like to describe another level

of flexibility in splitting the variables into sub-blocks. We focus on the block z ∈ Rd and

split it into p sub-blocks, i.e., z =
(
zT1 , z

T
2 , . . . , z

T
p

)T
where zi ∈ Rdi for any i = 1, 2, . . . , p.

Throughout this section, we will assume that the function F (z,u) of Model (1) is of the

following additive composite block structure

min
(z,u)∈Rd×Rd0

{
F (z,u) ≡ G (z,u) +

p∑
i=1

gi (zi) + g0 (u)

}
, (12)

where the function G : Rd×Rd0 → R is non-convex but smooth, and the functions gi : Rdi →

(−∞,∞], i = 0, 1, 2, . . . , p, are non-convex and non-smooth. We will also make the following

assumption regarding the smooth function G.

Assumption 1. The gradient ∇G (z,u) is L-Lipschitz continuous over bounded subsets of

Rd × Rd0 .

The most classical approach to tackle Model (12) is the algorithmic framework of Alter-

nating Minimization (AM), which suggests to alternate in each iteration between the p + 1

blocks of Problem (12) in a cyclic fashion, while all other blocks are kept fixed.

Applying AM on Problem (12) results with p + 1 sub-problems that should be exactly

solved at each iteration. However, as we already discussed in the Introduction, in this

work we are interested in their approximations. Therefore, our main reason to consider this

block model, is due to the fact that the sub-problems with respect to the sub-blocks of z

will be approximated, while the u block will still be solved exactly. The approximation of

each of the sub-blocks of z is performed using some nested algorithm (each sub-block can

be updated using a different algorithm). Therefore, we refer to the algorithmic scheme as

Nested Alternating Minimization (NAM), and it is recorded below in Algorithm 1.

In order to make the presentation and developments simple, we introduce the following

notation. For any iteration k ≥ 0 and any sub-block i = 1, 2, . . . , p of z ∈ Rd, we denote

zk,i ≡
(
zk1, . . . , z

k
i , z

k−1
i+1 , . . . , z

k−1
p

)
∈ Rd,
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where zki , i = 1, 2, . . . , p, is the k-th update of the sub-block zi. Notice that we have

zk,p =
(
zk1, z

k
2, . . . , z

k
p

)
= zk and for simplicity we define zk,0 = zk−1.

Algorithm 1 Nested Alternating Minimization (NAM) Scheme

1: Input: Nested algorithms Ai, i = 1, 2, . . . , p.

2: Initialization:
(
z−1,u0

)
∈ Rd × Rd0 .

3: Iterative step:

4: for k ≥ 0 do

5: for i = 1, 2, . . . , p do

6: Update zki by applying iterations of algorithm Ai for minimizing the partial function

zi 7→ F
(
zk1 , . . . , z

k
i−1, zi, z

k−1
i+1 , . . . , z

k−1
p ,uk

)
,

with a starting point zk−1i .

7: end for

8: Define zk = zk,p.

9: Update uk+1 ∈ argmin
{
F
(
zk,u

)
: u ∈ Rd0

}
.

10: end for

3.1 Global Convergence of NAM

In this sub-section, we would like to prove global convergence of NAM using Theorem 1.

To establish this result, we will show that it is enough to prove that each of the sub-blocks

satisfies the following block-wise properties.

Definition 4. [Block-wise approximate gradient-like descent sequence]. A sequence{(
zk,uk

)}
k≥0 is called a block-wise approximate gradient-like descent sequence for minimizing

the function F of Problem (12), if the following conditions hold:

(B0) If ū is a limit point of some sub-sequence
{
ukj
}
j∈J0⊆N

, then

lim sup
j∈J0⊆N

g0
(
ukj
)
≤ g0 (ū) .

For any i = 1, 2, . . . , p:

(B1) There exist ρ1,i > 0 and a sequence of non-negative scalars
{
ek1,i
}
k≥0 such that

F
(
zk+1,i−1,uk+1

)
≥ F

(
zk+1,i,uk+1

)
+ max

{
0, ρ1,i

∥∥zk+1
i − zki

∥∥2 − ek+1
1,i

}
, ∀k ≥ 0.
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(B2) There exist ρ2,i ≥ 0, a sequence of non-negative scalars
{
ek2,i
}
k≥0, and a sequence of

sub-gradients
{
wk
i

}
k≥0 where wk

i ∈ ∂ziF
(
zk,i,uk

)
such that∥∥wk+1

i

∥∥ ≤ ρ2,i
∥∥zk+1

i − zki
∥∥+ ek+1

2,i , ∀k ≥ 0.

(B3) If z̄i is a limit point of some sub-sequence
{

z
kj
i

}
j∈Ji⊆N

, then

lim sup
j∈Ji⊆N

gi

(
z
kj
i

)
≤ gi (z̄i) .

(B4)
∑∞

k=1

√
ek1,i <∞ and

∑∞
k=1 e

k
2,i <∞.

Next, we show that under Assumption 1, any block-wise approximate gradient-like de-

scent sequence for minimizing the function F of Problem (12) generated by NAM, is also an

approximate gradient-like descent sequence according to Definition 2, and therefore is a glob-

ally convergent sequence using Theorem 1. Hence, the task of proving global convergence of

an algorithm that updates several blocks (could be any finite number) becomes much easier.

Indeed, our results in this section show that we can focus on each sub-block separately and

verify that the conditions (B0) to (B4) hold true. Therefore, as we will illustrate in Section

4, each sub-block can be updated in its own fashion and is not influenced from the updates

of the other sub-blocks.

Lemma 2. Let
{(

zk,uk
)}

k≥0 be a block-wise approximate gradient-like descent sequence

generated by NAM for minimizing F of Problem (12). Then, condition (C1) of Definition 2

is satisfied, i.e., there exist ρ1 > 0 and a sequence of non-negative scalars
{
ek1
}
k≥0 such that

F
(
zk,uk+1

)
≥ F

(
zk+1,uk+1

)
+ max

{
0, ρ1

∥∥zk+1 − zk
∥∥2 − ek+1

1

}
, ∀k ≥ 0.

Proof. Summing the inequalities in condition (B1) of Definition 4 for all i = 1, 2, . . . , p, and

using the short notations zk+1,p = zk+1 and zk+1,0 = zk, we have

F
(
zk,uk+1

)
≥ F

(
zk+1,uk+1

)
+

p∑
i=1

max
{

0, ρ1,i
∥∥zk+1

i − zki
∥∥2 − ek+1

1,i

}
≥ F

(
zk+1,uk+1

)
+ max

{
0,

p∑
i=1

(
ρ1,i
∥∥zk+1

i − zki
∥∥2 − ek+1

1,i

)}
≥ F

(
zk+1,uk+1

)
+ max

{
0, ρ1

∥∥zk+1 − zk
∥∥2 − ek+1

1

}
, (13)
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where we set ρ1 = min {ρ1,1, ρ1,2, . . . , ρ1,p} > 0 and ek1 =
∑p

i=1 e
k
1,i ≥ 0. Finally, by combining

inequality (13) with the fact that F
(
zk,uk

)
≥ F

(
zk,uk+1

)
, which follows directly from the

definition of uk+1 in NAM (see step 9), the required result follows.

Lemma 3. Let
{(

zk,uk
)}

k≥0 be a bounded block-wise approximate gradient-like descent se-

quence generated by NAM for minimizing F of Problem (12) and suppose that Assumption

1 holds. Then, condition (C2) of Definition 2 is satisfied, i.e., there exist ρ2 > 0, a se-

quence of non-negative scalars
{
ek2
}
k≥0, and a sequence of sub-gradients

{
wk
}
k≥0 where

wk ∈ ∂F
(
zk,uk

)
such that∥∥wk+1

∥∥ ≤ ρ2
∥∥zk+1 − zk

∥∥+ ek+1
2 , ∀k ≥ 0.

Proof. From condition (B2) of Definition 4 it follows that there exists w̄k+1
i , i = 1, 2, . . . , p,

for which

w̄k+1
i ∈ ∂ziF

(
zk+1,i,uk+1

)
= ∇ziG

(
zk+1,i,uk+1

)
+ ∂gi

(
zk+1
i

)
,

and ∥∥w̄k+1
i

∥∥ ≤ ∥∥zk+1
i − zki

∥∥+ ek+1
2,i .

By defining

wk+1
i ≡ w̄k+1

i −∇ziG
(
zk+1,i,uk+1

)
+∇ziG

(
zk+1,uk+1

)
, (14)

it is easy to check that wk+1
i ∈ ∂ziF

(
zk+1,uk+1

)
. In addition, we wish to bound the norm of

each wk+1
i , i = 1, 2, . . . , p. Using the triangle inequality, condition (B2) of Definition 4 and

Assumption 1 (which can be used since the sequence
{(

zk,uk
)}

k≥0 is bounded) we have∥∥wk+1
i

∥∥ =
∥∥w̄k+1

i −∇ziG
(
zk+1,i,uk+1

)
+∇ziG

(
zk+1,uk+1

)∥∥
≤
∥∥w̄k+1

i

∥∥+
∥∥∇ziG

(
zk+1,uk+1

)
−∇ziG

(
zk+1,i,uk+1

)∥∥
≤ ρ2,i

∥∥zk+1
i − zki

∥∥+ ek+1
2,i + L

p∑
j=i+1

∥∥zk+1
i − zki

∥∥ , (15)

where we used the definition of the short notation of zk+1,i. Additionally, since uk+1 is

the exact minimizer of the partial function u 7→ F
(
zk,u

)
, from the first-order optimality

condition we derive that

0d0 ∈ ∇uG
(
zk,uk+1

)
+ ∂g0

(
uk+1

)
.
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Therefore, −∇uG
(
zk,uk+1

)
∈ ∂g0

(
uk+1

)
and by defining

wk+1
u ≡ ∇uG

(
zk+1,uk+1

)
−∇uG

(
zk,uk+1

)
, (16)

we easily obtain from Assumption 1 that

∥∥wk+1
u

∥∥ ≤ L
∥∥zk+1 − zk

∥∥ . (17)

Overall, by constructing the vector wk+1 ≡
(
wk+1

1 ,wk+1
2 , . . . ,wk+1

p ,wk+1
u

)
it follows from

(14) and (16) that wk+1 ∈ ∂F
(
zk+1,uk+1

)
. Finally, using the triangle inequality it follows

from (15) and (17) that

∥∥wk+1
∥∥ ≤ p∑

i=1

(
ρ2,i
∥∥zk+1

i − zki
∥∥+ ek+1

2,i + L

p∑
j=i+1

∥∥zk+1
i − zki

∥∥)+ L
∥∥zk+1 − zk

∥∥
≤
∥∥zk+1 − zk

∥∥ p∑
i=1

ρ2,i +

p∑
i=1

ek+1
2,i + L

∥∥zk+1 − zk
∥∥ p∑
i=1

(p− i) + L
∥∥zk+1 − zk

∥∥
= ρ2

∥∥zk+1 − zk
∥∥+ ek+1

2 ,

where we set

ρ2 ≡ L+
L · p (p− 1)

2
+

p∑
i=1

ρ2,i > 0 and ek2 ≡
p∑
i=1

ek2,i ≥ 0,

and the proof is completed.

Lemma 4. Let
{(

zk,uk
)}

k≥0 be a block-wise approximate gradient-like descent sequence

generated by NAM for minimizing F of Problem (12). Then, condition (C3) of Definition 2

is satisfied, i.e., if (z̄, ū) is a limit point of some sub-sequence
{(

zk,uk
)}

k∈K⊆N, then

lim sup
k∈K⊆N

F
(
zk,uk

)
≤ F (z̄, ū) .

Proof. Recall that F (z,u) ≡ G (z,u) +
∑p

i=1 gi (zi) + g0 (u) and G is continuous. There-

fore, the result immediately follows from conditions (B0) and (B3) for all i = 1, 2, . . . , p of

Definition 4 .

Equipped with the three above lemmas, we can now state a global convergence result of

NAM for minimizing the function F of Problem (12).
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Theorem 2. Let
{(

zk,uk
)}

k≥0 be a bounded block-wise approximate gradient-like descent

sequence generated by NAM for minimizing F of Problem (12) under Assumption 1. If F

satisfies the KL property, then the sequence
{
zk
}
k≥0 has finite length and it globally converges

to some z∗ ∈ Rd. Moreover, let u∗ ∈ Rd0 be any limit point of
{
uk
}
k≥0, then (z∗,u∗) ∈

crit (F ).

Proof. According to Theorem 1, all we need to show is that the sequence
{(

zk,uk
)}

k≥0 is

an approximate gradient-like descent sequence for minimizing F according to Definition 2.

Conditions (C1), (C2) and (C3) of Definition 2 follow from Lemmas 2, 3 and 4, respectively.

Finally, condition (C4) follows from condition (B4) of Definition 4 using the definitions of

ek1 and ek2 introduced in the proofs of Lemma 2 and 3, respectively.

4 Examples of Nested Algorithms

In the previous section, we have developed a theory that guarantees global convergence

of NAM for any finite number of sub-blocks p, where we only need to verify the block-wise

properties of Definition 4. Satisfying these block-wise properties is done by choosing suitable

nested algorithms A1,A2, . . . ,Ap. Therefore, a natural question is which nested algorithms

can be chosen in order to satisfy these block-wise properties.

In this section, our main goal is to study nested algorithms that satisfy the block-wise

conditions of Definition 4. To this end, we will introduce a new class of nested algorithms,

called Nested Friendly Algorithms (NFA), and we will show that this class indeed accom-

modate the required block-wise properties. We will show below that some very well-known

algorithms (such as Accelerated Gradient Descent Method [29]) are NFAs. It should be noted

that NFA can be used for sub-blocks which satisfy the following structural assumption:

(T 1) The partial function zi 7→ F (z,u) is smooth and strongly convex (i.e., in this case

gi (zi) ≡ 0 in Model (12)).

Even though this assumption is not mild, there are several challenging and important non-

convex applications that have sub-blocks with this structure, and we will discuss one such

an application in detail below (see Section 5).
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Before discussing the new concept of NFA, we would like to mention that our NAM

framework also covers the following scenario. Suppose that some sub-blocks of z do not

satisfy the structural assumption (T 1). In this case, we can still approximate the solution of

the corresponding sub-problem using a One Iteration Approximation (OIA) as we discussed

in the Introduction. In this case, the corresponding partial function could be any non-smooth

and non-convex function. Thus, we define the following additional structural assumption:

(T 2) The partial function zi 7→ F (z,u) is non-smooth and non-convex.

We will show below, under a mild and standard assumption on the corresponding partial

function, that OIA of descent algorithms indeed satisfy the block-wise properties of Definition

4 and thus can be easily integrated into NAM. Therefore, the NAM framework generalizes

existing globally convergent algorithms which are only based on OIA, such as PALM [11]

and many more (see, for instance, [30, 14, 15, 37]). Thus, the NAM framework can easily

combine sub-blocks which are updated using NFA with sub-blocks which are updated using

an OIA.

Remark 2. Notice that if the partial function zi 7→ F (z,u) is strongly convex, then another

immediate approach to solve the corresponding sub-problem that satisfies all the block-wise

properties is exact minimization.

As we emphasized in Section 3, in order to guarantee the global convergence of any NAM,

all we need is to verify block-wise conditions and the integration is already proved above

in Theorem 2. This means that in the rest of this section we can focus on proving that

both NFA and OIA indeed satisfy these block-wise conditions for sub-blocks of type (T 1)

and (T 2), respectively. Therefore, the number of sub-blocks and the order of updating the

sub-blocks (could be different at each iteration), do not play any role and thus, for the sake

of simplicity of the presentation, we skip all sub-block notations and focus on two sub-blocks

of z: z1 of type (T 1) and z2 of type (T 2). In other words, from now on, our model is as

follows:

min
(z,u)∈Rd×Rd0

{F (z1, z2,u) ≡ G (z1, z2,u) + g2 (z2) + g0 (u)}, (18)

where F is bounded from below by some
¯
F ∈ R, G is a non-convex but smooth function,

which satisfies Assumption 1, and the functions gi : Rdi → (−∞,∞], i = 0, 2, are non-convex
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and non-smooth (notice that in this model we set g1 ≡ 0). For the sake of convenience of

the reader, we therefore recall the NAM algorithm in its two sub-blocks form, where the

sub-block z1 of type (T 1) is approximated using NFA and the sub-block z2 of type (T 2) is

approximated using one iteration of a descent algorithm.

Algorithm 2 Nested Alternating Minimization (NAM) Scheme for Two Sub-blocks

1: Input: A nested NFA algorithm A1 and a descent algorithm A2.

2: Initialization:
(
z−11 , z−12 ,u0

)
∈ Rd1 × Rd2 × Rd0 .

3: Iterative step:

4: for k ≥ 0 do

5: Update zk1 by jk ∈ N iterations of A1 for minimizing z1 7→ F
(
z1, z

k−1
2 ,uk

)
starting from zk−11 .

6: Update zk2 by one iteration of A2 for minimizing z2 7→ F
(
zk1 , z2,u

k
)

starting from zk−12 .

7: Update uk+1 ∈ argmin
{
F
(
zk1 , z

k
2 ,u
)

: u ∈ Rd0
}

.

8: end for

We now analyze the above algorithm, and according to the discussion above our re-

sults can be used to any NAM with any finite number of sub-blocks in any combination of

NFA/OIA updates. The rest of this section is organized as follows: we will first show that

sub-blocks of type (T 2), which are solved using an OIA, satisfy the block-wise properties

of Definition 4. It should be noted that the results obtained in [5] and [11] actually show

these conditions, but for the sake of completeness and for a unified presentation we provide

below the proofs. Then, we will show that sub-blocks of type (T 1), which are solved using

NFA, satisfy the block-wise properties and we will prove that some well-known algorithms

are NFA.

4.1 Solving Sub-blocks of Type (T 2) via an OIA

In this sub-section, we will focus on the minimization with respect to the sub-block z2, which

has the form of a classical additive composite model, i.e., sum of a smooth function and a

non-smooth function. Therefore, we will focus on a specific OIA, which is the celebrated

Proximal Grdaient method. More precisely, in this case, the update step of the sub-block z2
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is given by

zk2 = argmin
z2∈Rd1

{
∇z2G

(
zk1, z

k−1
2 ,uk

)T (
z2 − zk−12

)
+
tk
2

∥∥z2 − zk−12

∥∥2 + g2 (z2)

}
≡ proxg2tk

(
zk−12 − 1

tk
∇z2G

(
zk1, z

k−1
2 ,uk

))
, (19)

where by proxg2tk (·) we denote the Moreau proximal mapping [28] of g2, and tk = 2L2

(
zk1,u

k
)

when L2 (z1,u) is the Lipschitz constant of the gradient of the partial function z2 7→

G (z1, z2,u) for fixed z1 ∈ Rd1 and u ∈ Rd0 . It should be noted that the step-size tk, which

is used in (19), can be chosen in a more delicate way, and actually any tk > L2

(
zk1,u

k
)

could

work, but for the sake of simplicity we take tk = 2L2

(
zk1,u

k
)
.

Now, we will show that OIA using Proximal Gradient indeed satisfies the block-wise

conditions. To this end, we will make the following assumption regarding the partial function

of the sub-block z2.

Assumption 2. For any pair (z1,u) the partial function z2 7→ G (z1, z2,u) has an L2 (z1,u)-

Lipschitz continuous gradient. In addition, for any compact subset B ⊂ Rd1×Rd0 there exist

constants L̄2,
¯
L2 > 0 such that

inf {L2 (z1,u) : (z1,u) ∈ B} =
¯
L2,

and

sup {L2 (z1,u) : (z1,u) ∈ B} = L̄2.

Proposition 1. Let
{(

zk1, z
k
2,u

k
)}

k≥0 be a bounded sequence generated by NAM under As-

sumption 2. Then, conditions (B1) to (B4) of Definition 4 hold true for the sub-block z2.

Proof. Recall that each sub-problem with respect to the sub-block z2 is solved using one

iteration of the Proximal Gradient method, as in (19). To prove condition (B1), we obtain

from [11, Lemma 2] that

F
(
zk+1
1 , zk2,u

k+1
)
− F

(
zk+1
1 , zk+1

2 ,uk+1
)
≥
L2

(
zk+1
1 ,uk+1

)
2

∥∥zk+1
2 − zk2

∥∥2
≥ ¯
L2

2

∥∥zk+1
2 − zk2

∥∥2 , (20)

where the last inequality follows from Assumption 2. Now, condition (B1) easily follows

from (20) by setting ρ1,2 =
¯
L1/2 and ek1,2 = 0 for all k ≥ 0.
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Now we prove condition (B2). Using the update rule (19) it follows from the first-order

optimality condition that there exists gk ∈ ∂g2
(
zk2
)

such that

∇z2G
(
zk1, z

k−1
2 ,uk

)
+ tk

(
zk2 − zk−12

)
+ gk = 0d2 ,

which results in the inclusion

−∇z2G
(
zk1, z

k−1
2 ,uk

)
+ tk

(
zk−12 − zk2

)
∈ ∂g2

(
zk2
)
.

This means that

wk
2 ≡ ∇z2G

(
zk1, z

k
2,u

k
)
−∇z2G

(
zk1, z

k−1
2 ,uk

)
+ tk

(
zk−12 − zk2

)
∈ ∂z2F

(
zk1, z

k
2,u

k
)
.

Now, from the triangle inequality and Assumption 2 it follows that∥∥wk+1
2

∥∥ = L2

(
zk+1
1 ,uk+1

) ∥∥zk+1
2 − zk2

∥∥+ tk+1 ·
∥∥zk+1

2 − zk2
∥∥

= 3L2

(
zk+1
1 ,uk+1

) ∥∥zk+1
2 − zk2

∥∥
≤ 3L̄2

∥∥zk+1
2 − zk2

∥∥ ,
and the result follows by setting ρ2,2 = 3L̄2 and ek2,2 = 0 for all k ≥ 0.

To prove condition (B3), we take a sub-sequence
{

z
kj
2

}
j≥1

, which converges to some z̄2.

From the definition of zk2 as a minimizer of the proximal gradient operator (see (19)), we

have for all k ≥ 0 that

∇z2G
(
zk1, z

k−1
2 ,uk

)T (
zk2 − z̄2

)
+
tk
2

∥∥zk2 − zk−12

∥∥2 − tk
2

∥∥z̄2 − zk−12

∥∥2 + g2
(
zk2
)
≤ g2 (z∗2) .

Therefore, substituting k with kj and taking j →∞, it follows from Assumption 2 that

lim sup
j→∞

g2

(
z
kj
2

)
≤ g2 (z̄2) ,

since from (20) it it easily deduced that
∥∥zk2 − zk−12

∥∥ → ∞ as k → ∞. Last, condition

(B4) immediately follows from the fact that ek1,2 = ek2,2 = 0 for all k ≥ 0, and the proof is

completed.

4.2 Solving Sub-blocks of Type (T 1) via NFA

In this sub-section, we will show that the class of Nested Friendly Algorithms for solving

sub-problems in NAM with respect to sub-blocks of type (T 1) satisfies the properties of a
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block-wise approximate gradient like-descent sequence according to Definition 4. To this

end, we will make the following assumption regarding the sub-block z1 of type (T 1).

Assumption 3. For any pair (z2,u) the partial function z1 7→ F (z1, z2,u) is σ1 (z2,u)-

strongly convex with an L1 (z2,u)-Lipschitz continuous gradient. In addition, for any com-

pact subset B ⊂ Rd2 × Rd0 there exist constants
¯
σ1, L̄1 > 0 such that

inf {σ1 (z2,u) : (z2,u) ∈ B} =
¯
σ1,

and

sup {L1 (z2,u) : (z2,u) ∈ B} = L̄1.

Now we are ready to define the class of NFA.

Definition 5. [Nested friendly algorithm]. Let ϕk : Rn → R, k ∈ N, be a family of convex

functions, each with a minimizer v∗k and an optimal value ϕ∗k. Let A be an optimization

algorithm that generates, for any k ∈ N, a sequence
{
vk,i
}
i≥0 starting from vk,0. We say

that A is a Nested Friendly Algorithm (NFA) with respect to {ϕk}k≥0, if for any k ∈ N there

exist an index jk ∈ N and a non-increasing sequence of non-negative scalars {cA (k, j)}j≥0
such that

(N1) lim
j→∞

cA (k, j) = 0.

(N2) ϕk
(
vk,j
)
− ϕ∗k ≤

c2A(k,j)

2
·
∥∥vk,0 − v∗k

∥∥2 for all j ≥ jk.

(N3)
∞∑
k=1

√
cA (k, jk) <∞.

Remark 3. It should be noted that if algorithm A is NFA with some {jk}k≥0, then it is

obviously also NFA with any {lk}k≥0, where lk ≥ jk for all k ≥ 0.

In this sub-section, we will prove that under Assumption 3, when choosing an algorithm

A1 for minimizing the smooth partial function (see step 5 in Algorithm 2)

F k
1 (z1) ≡ F

(
z1, z

k−1
2 ,uk

)
= G

(
z1, z

k−1
2 ,uk

)
,

to be NFA, then conditions (B1) to (B4) of Definition 4 hold true. Before getting into the

proof, we would like to show that NFAs satisfy some properties, which will be useful for us

in proving this required result.
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Lemma 5. Let ϕk : Rn → R, k ∈ N, be a family of continuously differentiable and σk-

strongly convex functions with an Lk-Lipschitz continuous gradient such that σk ≥
¯
σ > 0 for

all k ≥ 0. Let A be an NFA with respect to {ϕk}k≥0 that generates sequences
{
vk,j
}
j≥0 with

vk,0 = vk−1,jk−1 for some starting point v0,0 = v0. Then, there exists lk ≥ jk, for all k ≥ 0,

such that the following properties hold for all k ≥ 0

(i) Overall non-increasing function value. c2A (k, lk) ≤
¯
σ and

ϕk
(
vk,lk

)
≤ ϕk

(
vk,0

)
= ϕk

(
vk−1,lk−1

)
.

(ii) Convergence of the gradients.∥∥∇ϕk (vk,lk)∥∥ ≤ δk,lk ≡
Lk · cA (k, lk)

∥∥vk,0 − v∗k
∥∥

√
σk

.

Proof. Since A is NFA, we know from Definition 5 that there exists a sequence {jk}k≥0 such

that (N2) and (N3) of Definition 5 hold. To prove that item (i) holds, we use the strong

convexity of ϕk to establish that

ϕk
(
vk,0

)
≥ ϕ∗k +∇ϕk (v∗k)

T (vk,0 − v∗k
)

+
σk
2

∥∥vk,0 − v∗k
∥∥2 = ϕ∗k +

σk
2

∥∥vk,0 − v∗k
∥∥2 , (21)

where the last equality follows from the fact that v∗k is a minimizer of ϕk and therefore

∇ϕk (v∗k) = 0. This fact with (N2) of Definition 5 and Remark 3 yields

ϕk
(
vk,jk

)
− ϕ∗k ≤

c2A (k, jk)

σk

(
ϕk
(
vk,0

)
− ϕ∗k

)
≤ c2A (k, jk)

¯
σ

(
ϕk
(
vk,0

)
− ϕ∗k

)
,

where the last inequality follows from the assumption that σk ≥
¯
σ for all k ≥ 0. Therefore,

item (i) holds for any lk ≥ jk that satisfies c2A (k, lk) ≤
¯
σ. Since (N1) of Definition 5 states

that cA (k, j)→ 0 as j →∞, there must exist such an index lk ≥ jk.

To show that item (ii) holds, we use the fact that the functions ϕk, for all k ≥ 0, are

strongly convex with an Lk-Lipschitz continuous gradient to obtain that

ϕk
(
vk,lk

)
− ϕ∗k ≥

σk
2

∥∥vk,lk − v∗k
∥∥2 ≥ σk

2L2
k

∥∥∇ϕk (vk,lk)−∇ϕ (v∗k)
∥∥2 =

σk
2L2

k

∥∥∇ϕk (vk,lk)∥∥2 ,
where the first inequality follows again from the fact that ∇ϕk (v∗k) = 0. This fact with (N2)

of Definition 5 yields ∥∥∇ϕk (vk,lk)∥∥ ≤ cA (k, lk)√
σk

· Lk
∥∥vk,0 − v∗k

∥∥ , (22)
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and item (ii) holds true with δk,lk ≡ Lk · cA (k, lk)
∥∥vk,0 − v∗k

∥∥ /√σk, which completes the

proof.

Remark 4. Equipped with the properties of NFAs obtained in Lemma 5, we would like to

describe the concept of NFA in the context of NAM for the sub-block z1 of type (T 1) under

Assumption 3. According to Lemma 5, saying that algorithm A1 in NAM (see step 5 in

Algorithm 1) is NFA means that with ϕk := F k
1 (z1), at each outer iteration k ≥ 0, the

algorithm A1 iteratively generates a sequence
{

zk,j1

}
j≥0

, which starts at zk,01 = zk−11 and

stops after jk inner iterations at zk,jk1 = zk1 (for simplicity and in order to guarantee that also

Lemma 5 holds true, we assume without the loss of generality that jk = lk), such that

(a) Overall non-increasing sequence:

F
(
zk1, z

k−1
2 ,uk

)
≤ F

(
zk−11 , zk−12 ,uk

)
, ∀k ≥ 0.

We emphasize that the sequences
{
F k
1

(
zk,j1

)}
j≥0

for all k ≥ 0 need not be non-

increasing.

(b) Bounded gradient: ∥∥∇z1F
(
zk1, z

k−1
2 ,uk

)∥∥ ≤ δk1 , ∀k ≥ 0,

where

δk1 ≡ δk,jk1 =
L1

(
zk−12 ,uk

)√
σ1
(
zk−12 ,uk

) · cA1 (k, jk)
∥∥zk1 − (z1)

∗
k

∥∥ ,
and (z1)

∗
k ∈ Rd1 is the minimizer of the strongly convex partial function F k

1 (z1).

Now, equipped with the above theory, we are ready to prove that NFAs satisfy the

conditions of a block-wise gradient-like descent sequence.

Proposition 2. Let
{(

zk1, z
k
2,u

k
)}

k≥0 be a bounded sequence generated by NAM under As-

sumption 3. Then, conditions (B1) to (B4) of Definition 4 hold true for the sub-block z1.

Proof. To prove condition (B1), we notice from Remark 4(a) that after jk (inner) iterations

of A1 (which is NFA) for any (outer) iteration k ≥ 0 it holds that

F
(
zk+1
1 , zk2,u

k+1
)
≤ F

(
zk1, z

k
2,u

k+1
)
. (23)
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From the update of the sub-block z2 by a descent algorithm (see (20)), and from the update

of the u block, it follows that the sequence
{
F
(
zk1, z

k
2,u

k
)}

k≥0 is non-increasing. In addi-

tion, since the sequence
{
zk1
}
k≥0 is assumed to be bounded, there exists M1 > 0 such that∥∥zk+1

1 − zk1
∥∥ ≤ M1 for all k ≥ 0. Now, the strong convexity of the partial function F k

1 (z1)

yields

F
(
zk1, z

k
2,u

k+1
)
− F

(
zk+1
1 , zk2,u

k+1
)
≥ ∇z1F

(
zk+1
1 , zk2,u

k+1
)T (

zk1 − zk+1
1

)
+
σ1
(
zk2,u

k+1
)

2

∥∥zk1 − zk+1
1

∥∥2
≥ −

∥∥∇z1F
(
zk+1
1 , zk2,u

k+1
)∥∥ · ∥∥zk1 − zk+1

1

∥∥
+
σ1
(
zk2,u

k+1
)

2

∥∥zk1 − zk+1
1

∥∥2
≥ ¯
σ1
2

∥∥zk1 − zk+1
1

∥∥2 −M1δ
k+1
1 , (24)

where the second inequality follows from the Cauchy-Schwartz inequality, and the last in-

equality follows from Assumption 3 and Remark 4(b). Therefore, condition (B1) is es-

tablished by combining inequalities (23) with (24) and by setting ρ1,1 =
¯
σ1/2 > 0 and

ek1,1 = M1δ
k
1 ≥ 0.

Condition (B2) follows from Remark 4(b), since wk+1
1 = ∇z1F

(
zk+1
1 , zk2,u

k+1
)
, by setting

ρ2,1 = 0 and ek2,1 = δk1 . Condition (B3) easily follows from the smoothness of this partial

function.

Now we will prove condition (B4). By the definition of ek1,1 and ek2,1 it is enough to

show that the sequence
{√

δk1

}
k≥0

is summable. From the
¯
σ1-strong convexity of the partial

function F k
1 (z1), for all k ≥ 0, we have

F
(
zk1, z

k−1
2 ,uk

)
− F

(
z∗1, z

k−1
2 ,uk

)
≥ ∇z1F

(
z∗1, z

k−1
2 ,uk

)T (
zk1 − (z1)

∗
k

)
+ ¯
σ1
2

∥∥zk1 − (z1)
∗
k

∥∥2
= ¯
σ1
2

∥∥zk1 − (z1)
∗
k

∥∥2 , (25)

where the last equality follows from the fact that ∇z1F
(
z∗1, z

k−1
2 ,uk

)
= 0d1 . Therefore, since

we assume that F is bounded from below by some
¯
F ∈ R, it follows from (25) that

∥∥zk1 − (z1)
∗
k

∥∥2 ≤ 2

¯
σ1

(
F
(
zk1, z

k−1
2 ,uk

)
− F

(
z∗1, z

k−1
2 ,uk

))
≤ 2

¯
σ1

(
F
(
z−1,u0

)
−

¯
F
)
, (26)
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where the last inequality follows from the fact that the sequence
{
F
(
zk1, z

k
2,u

k
)}

k≥0 is non-

increasing as we proved above. Now, using Remark 4(b) we derive from (26) that

δk1 =
L1

(
zk−12 ,uk

)√
σ1
(
zk−12 ,uk

) · cA1 (k, jk)
∥∥zk1 − (z1)

∗
k

∥∥
≤ L̄1√

¯
σ1
· cA1 (k, jk)

∥∥zk1 − (z1)
∗
k

∥∥
≤ κ1 · cA1 (k, jk)

√
2
(
F
(
z−11 , z−12 ,u0

)
−

¯
F
)
,

where κ1 ≡ L̄1/
¯
σ1. Hence, from Definition 5(iii) we obtain that

∞∑
k=0

√
δk1 <∞ and therefore

∞∑
k=1

√
ek1,1 < ∞ (from the triangle inequality) and

∞∑
k=1

√
ek2,1 < ∞. Hence, condition (B4) is

established and the proof is completed.

Remark 5. In Propositions 1 and 2 we showed that solving the sub-problems using an OIA or

NFA, respectively, indeed generates sequences
{
zk1
}
k≥0 and

{
zk2
}
k≥0 that satisfy conditions

(B1) to (B4) of Definition 4. Therefore, all we left to show is that the updates of the u block

satisfy condition (B0), and therefore NAM generates a block-wise approximate gradient-

like descent sequence for minimizing F of Problem (12), which is globally convergent from

Theorem 2. To see that the updates of the block u indeed satisfy condition (B0), we take a

sub-sequence
{
ukj
}
j≥1 which converges to some ū. Recall that uk+1 is an exact minimizer

by its definition (see step 9 in Algorithm 1). Therefore

G
(
zk1, z

k
2,u

k+1
)

+ g2
(
zk2
)

+ g0
(
uk+1

)
≤ G

(
zk1, z

k
2, ū
)

+ g2
(
zk2
)

+ g0 (ū) ,

and thus from Assumption 1 it follows that

g0
(
uk+1

)
≤ g0 (ū) +∇uG (z)

(
zk1, z

k
2,u

k+1
)T (

ū− uk+1
)

+
L

2

∥∥ū− uk+1
∥∥2 ,

where we used the Descent Lemma applied on the function G. Substituting k with kj and

taking j →∞ gives

lim sup
j→∞

g0
(
ukj
)
≤ g0 (ū) .

Hence condition (B0) is also satisfied.

Remark 6. In the proof of Proposition 2 we used the fact that the sequence
{
F
(
zk1, z

k
2,u

k
)}

k≥0

is non-increasing. It should be noted that this property does not require the boundedness of
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the sequence
{(

zk1, z
k
2,u

k
)}

k≥0. Therefore, the boundedness requirement can be obtained if,

for example, the function F has a bounded level sets.

4.2.1 Examples of Nested Friendly Algorithms

In the previous sub-section, we showed that using NFA to solve sub-problems of sub-blocks of

type (T 1) generates a sequence that satisfies conditions (B1) to (B4) of Definition 4. In this

sub-section, we would like to show the reader that many well-known algorithms are indeed

NFAs. To this end, we recall that Definition 5 includes three conditions on the algorithm to

be NFA:

(N1) lim
j→∞

cA (k, j) = 0.

(N2) ϕk
(
vk,j
)
− ϕ∗k ≤

c2A(k,j)

2
·
∥∥vk,0 − v∗k

∥∥2, for all j ≥ jk.

(N3)
∞∑
k=1

√
cA (k, jk) <∞.

A closer inspection reveals that only the first two conditions are related to the per-

formance of the algorithm itself (mainly in terms of rate of convergence), while the third

condition concerns with controlling the number of inner iterations jk, k ≥ 0, to be performed

at each outer iteration such that the errors over all outer iterations are summable.

Therefore, we split now our discussion into two parts. First, we show that several classical

optimization methods satisfy the first two conditions. Afterwards, we will discuss how to set

the number of inner iterations in general.

The first two conditions of Definition 5 revolve around a rate of convergence property of

the nested algorithm in terms of function values. Hence, any algorithm with a known rate

of convergence of the function values can be NFA. For example, if we take the Accelerated

Gradient (AG) method of Nesterov [29] as our nested algorithm, then we have the classical

result of a fast rate of convergence in terms of function values. Mathematically speaking,

using the setting of Definition 5 with a family of convex functions {ϕk}k≥0, each with an

Lk-Lipschitz continuous gradient, then for any k ≥ 0 we have that AG satisfies the first two

conditions since in this case (see, for instance, [6, Theorem 10.34]) it holds that

ϕk
(
vk,j
)
− ϕ∗k ≤

2Lk ·
∥∥vk,0 − v∗k

∥∥2
(j + 1)2

,
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and therefore

cA (k, j) ≡ 2
√
Lk

j + 1
→ 0 as j →∞.

So, as can be seen, any optimization method with a provable rate of convergence in terms

of function values satisfies the first two conditions of Definition 5.

As another example, if ϕk, k ≥ 0, is additionally σk-strongly convex (which is a require-

ment on sub-blocks of type (T 1) that are solved using NFA), then we can use a variant of

AG called V-AG [6] which exploits the strong convexity and enjoys a better rate (see [6,

Theorem 10.42])

ϕk
(
vk,j
)
− ϕ∗k ≤

(
1− 1
√
κk

)j
σk + Lk

2

∥∥vk,0 − v∗k
∥∥2 ,

and therefore

cA (k, j) ≡
√
σk + Lk

(
1− 1
√
κk

) j
2

→ 0 as j →∞,

where κk = Lk/σk ≥ 1.

Next, without focusing on a specific algorithm, we would like to focus on the issue of

determining the required number of inner iterations jk for solving sub-blocks of type (T 1)

using algorithm A as NFA. We recall that the number of inner iterations is dictated by two

factors. The first is satisfying condition (iii) of Definition 5 (summability of the errors).

The second is satisfying the inequality c2A (k, jk) ≤
¯
σ of condition (i) in Lemma 5, which

guarantees overall non-increasing function values. Hence, we require that the number of

inner iterations satisfies

(a) c2A (k, jk) ≤
¯
σ for all k ≥ 0.

(b)
∞∑
k=1

√
cA (k, jk) <∞.

We should mention that it is enough to satisfy the above two requirements for all k ≥ K

for some K ∈ N (and we use this fact later). Notice that since cA (k, j) → 0 as j → ∞

(condition (i) of Definition 5), then each requirement can be satisfied for some sequence of

indices {jk}k≥0. Hence, in order to satisfy both requirements simultaneously, we will take a

sequence which bounds both sequences from above (see below).
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Requirement (a) can be easily verified since cA (k, jk) has an explicit dependency on jk.

For instance, in the case of AG we have

cA (k, jk) =
2
√
Lk

jk + 1
.

Hence, we can take
⌈
2
√
Lk/

¯
σ − 1

⌉
≤ jk. Notice that since we solve with NFA sub-blocks of

type (T 1) then from Assumption 3 there exits L̄ such that Lk ≤ L̄ for all k ≥ 0. Therefore,

we can also take ⌈
2
√
κ− 1

⌉
≤ jk,

where κ = L̄/
¯
σ ≥ 1. Similarly, we can show that requirement (a) for V-AG is satisfied if we

take  log (4) + 2log
(
L̄
)
− 4 log (

¯
σ)

log (
¯
σ)− 2 log

(√
L̄−√

¯
σ
)
 ≤ jk,

where we used the fact that Lk ≥
¯
σ.

As for requirement (b), it can also be easily satisfied since all we need is to guarantee

that the sequence
{√

cA (k, jk)
}
k≥0

converges to 0 fast enough such that its sum is finite.

Since cA (k, j) converges to 0 as j →∞ independently on the specific structure of cA (k, j),

it is enough to take a sequence {jk}k≥0 that grows fast enough to obtain the summability.

For example, if we set jk = s + 2bk/rc − 1 for some fixed integers s and r, we easily obtain

the desired requirement.

Last, recall that we need requirements (a) and (b) to hold together, so as mentioned

above, for each k ≥ 0, we can take the number of inner iterations to be an upper bound on

the number of iterations required for (a) and (b). To achieve this, since L̄ and
¯
σ are fixed

for any compact set, then taking jk = s + 2bk/rc − 1 (as described above) guarantees that

both (a) and (b) are satisfied simultaneously for all k ≥ K for some K ∈ N, and there is

no need to calculate the value of the constants L̄ and
¯
σ. Meaning, by taking, for example,

jk = s + 2bk/rc − 1 inner iterations of any algorithm that satisfies conditions (i) and (ii)

of Definition 5 guarantees that conditions (B1) to (B4) of Definition 4 are satisfied for this

sub-block.
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5 Numerical Experiments

In this section, we provide a specific application to show the advantage of using NAM, and

more importantly NAM which is incorporated with NFA, compared to OIA methods. Unlike

OIA descent methods, NAM with NFA allows several inner iterations, at each outer iteration,

in order to approximate the solution of each sub-problem. We will show that these additional

inner iterations at each outer iteration lead to a superior algorithm performance compared

to OIA based descent methods in terms of the obtained function value and in terms of a

relative error of the obtained solution. In our experiments, we will tackle the challenging

non-convex problem of Regularized Structured Total Least Squares (RSTLS).

5.1 RSTLS Problem Description

The RSTLS problem arises in the world of data estimation, when trying to estimate a vector

x ∈ Rd such that Ax ≈ b, where the matrix A and the vector b are contaminated by noise.

Known formulations to tackle this problem are the celebrated Least Squares (LS) approach,

Total Least Squares (TLS) and Structured Total Least Squares (STLS). See, for example [17]

and [2], respectively. These approaches are solved using some linear inverse methods, which

often result in solutions that have large norms (see [8]). Therefore, a regularizing function is

added to the problem formulation, that ends up with the RSTLS problem formulation (see,

for example, [16, 7]).

In this paper, we consider the class of RSLTS problems which are formulated as the

following non-convex and possibly non-smooth optimization problems

min
z∈Rd,u∈Rd0

F (z,u) ≡ σ2
wf (z) +

∥∥∥∥∥
(

d0∑
i=1

uiAi

)
z− b

∥∥∥∥∥
2

+
σ2
w

σ2
e

‖u‖2
, (27)

where A1,A2, . . . ,Ad0 ∈ Rn×d and b ∈ Rn are given and contain some noise, σw and σe are

the noise factors (see below), respectively, and f : Rd → (−∞,∞] is a regularizing function.

For more details about this problem formulation and its applications in image processing see

[8] and references therein.

In this section, we use NAM in order to solve Problem (27). We will consider two blocks,

z and u, where the sub-problem with respect to z will be approximated, while with respect to
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u it will be exactly solved. We chose to approximate the solution with respect to the z block

since its dimension can be large (for example, in the experiments to follow we have d = 2562).

In addition, we chose to find exact solutions with respect to the u block since its dimension

in the classical settings of this application is small (for example, in our experiments d0 = 6).

In this section, we do not decompose the block z into sub-blocks, even though our NAM

framework allows us to do so.

Our goal in this section is to show that there is an advantage in taking several inner

iterations for solving the sub-problem with respect to the block z, instead of one iteration

of a descent method. To this end, in each outer iteration we will take several AG inner

iterations (which was proved to be NFA in Section 4), and we will compare the obtained

results with the results of the Semi-Proximal Alternating (SPA) algorithm of [8], which is

an OIA based descent algorithm (see details below).

In order to be compatible with the concept of NFA in the z block, we choose in Problem

(27) the regularizing function f to be λ ‖z‖2 for some regularization parameter λ > 0. This

yields a non-convex formulation which is proper, lower semi-continuous, bounded from below

by 0 and satisfies the KL property (all these properties can be easily verified in this case,

since the function F is a quartic polynomial function). Under the notations introduced in

Section 4, we can write Problem (27) as F (z,u) = G (z,u) + g0 (u) where

G (z,u) = σ2
wf (z) + G̃ (z,u) ≡ λσ2

w ‖z‖
2 +

∥∥∥∥∥
(

d0∑
i=1

uiAi

)
z− b

∥∥∥∥∥
2

,

and

g0 (u) =
σ2
w

σ2
e

‖u‖2 .

In the following lemma, which its proof can be found in the Appendix, we see that

applying NAM (see exact steps below) on the RSTLS problem formulation generates a

globally convergent sequence
{
zk
}
k≥0, as follows from Theorem 2 and Proposition 2.

Lemma 6. Let
{(

zk,uk
)}

k≥0 be a sequence generated by NAM (see Algorithm 4). Then,

the sequence is bounded, the function F satisfies Assumption 1 and the partial function

z 7→ F (z,u) satisfies Assumption 3.
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We point out that in the general NAM framework, the function g0 is allowed to be non-

smooth, which is not the case in this specific application. In addition, it is easy to verify that

in this application the function u 7→ F (z,u), for a fixed z ∈ Rd, is strongly convex with a

linear gradient function (and hence satisfies Assumption 3). Therefore, if d0 (the dimension

of the block u) is small enough, then the sub-problem of minimizing the function F with

respect to u can be solved exactly, as also done in [8] (see more details below).

5.2 Description of the Algorithms for Solving the RSTLS Problem

As mentioned above, we would like to compare the SPA algorithm of [8], which is an OIA

based algorithm, with our NAM method incorporated with inner iterations of AG (in short

NAM-AG). The two algorithms, for the RSTLS problem, are described in Algorithms 3 and

4, respectively.

Algorithm 3 SPA Algorithm for RSTLS

1: Initialization:
(
z0,u0

)
∈ Rd × Rd0 .

2: Iterative step:

3: for k ≥ 0 do

4: Pick Lk (a Lipschitz constant of ∇zG̃
(
z,uk

)
) and update

zk+1 = proxσ2w
Lk

f

(
zk − 1

Lk
∇zG̃

(
zk,uk

))
.

5: Update uk+1 = argmin
{
F
(
zk+1,u

)
: u ∈ Rd0

}
.

6: end for

We see that in step 4 of the SPA algorithm we need to calculate the proximal mapping of

F . Since the function f is set to be λ ‖x‖2, simple calculations show that an explicit update

rule is given by the formula

zk+1 =
Lk

Lk + 2λσ2
w

(
zk − 1

Lk
∇zG̃

(
zk,uk

))
. (28)

We notice that the update (28) and also the initialization step in NAM-AG (see step 4 of

Algorithm 4) depend on Lk. We will describe how to calculate Lk in the next sub-section.

Now, in step 5 of SPA and in step 11 of NAM-AG we need to find an exact minimizer

of an optimization problem with respect to the block u. Since the function u 7→ F
(
zk+1,u

)
31



Algorithm 4 NAM with AG (NAM-AG) for RSTLS

1: Initialization:
(
z−1,u0

)
∈ Rd × Rd0 .

2: Iterative step:

3: for k ≥ 0 do

4: Set wk0 = zk0 = zk−1, t0 = 1 and pick Lk (a Lipschitz constant of ∇zG̃
(
z,uk

)
).

5: for j = 0, 1, 2, . . . , jk − 1 do

6: Update zkj+1 = wkj − 1
2λσ2

w+Lk
∇zF

(
wkj ,uk

)
.

7: Set tj+1 =
1+
√

1+4t2j
2 .

8: Update wkj+1 = zkj+1 +
tj−1
tj+1

(
zkj+1 − zkj

)
.

9: end for

10: Set zk = zkjk .

11: Update uk+1 = argmin
{
F
(
zk,u

)
: u ∈ Rd0

}
.

12: end for

is strongly convex, a unique minimizer for the problem can be obtained by the first-order

optimality condition, that is ∇uF
(
zk+1,uk+1

)
= 0d0 , and is given by the formula

uk+1 =

(
B
(
zk+1

)T
B
(
zk+1

)
+
σ2
w

σ2
e

Id0×d0

)−1
B
(
zk+1

)T
b, (29)

where B (z) =
[
A1z A2z . . . Ad0z

]
. A similar update formula, where we substitute zk+1

with zk, can also be derived for step 11 of NAM-AG. Since in practice d0 is small, the system

of linear equations in (29) can be solved efficiently.

5.3 Generating the Data

We follow the paper [8], and utilize the RSTLS formulation of (27) in order to reconstruct a

given blurred and noisy image. To this end, we consider the vector b as a vectorized observed

blurred image. We denote by zreal the real image.

In the experiments below, the vector b is obtained from the real image zreal by first

scaling the pixels of zreal to be between 0 and 1. Then, it is transferred through a blurring

operator, which is Gaussian blur Point Spread Function (PSF) of size q × q and standard

deviation γ. The PSF in this paper uses periodic boundary conditions (see [21, Chapter 3]

for more information regarding PSFs in image processing). After blurring, a different noise

drawn from a Gaussian distribution with parameters (0, σw) is added to each coordinate of
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the image. We denote by PSFreal the real blurring operator used to generate the observed

blurred and noisy image b. Hence,

b = PSFrealzreal + µ, µ ∼ Gauss (0d, σw) . (30)

In the RSTLS problem we assume that the real blurring operator PSFreal is not exactly

known. Instead, we assume that PSFreal is of the form

PSF (u) =

d0∑
i=1

uiAi,

for some unknown weight vector u ∈ Rd0 and known matrices A1,A2, . . . ,Ad0 called struc-

ture matrices. In practice, the blurring operator PSFreal is unknown and only the observed

PSF, denoted by PSFobs, is known. In the experiments below the observed blurring operator

PSFobs is constructed by summing PSFreal with the known structure matrices after each of

them was subjected to a different uniformly distributed noise from the interval [0, σe]. Thus,

PSFobs = PSFreal +

d0∑
i=1

ηiu
real
i Ai, η ∼ Unifrom [0d0 , σe] , (31)

where PSF
(
ureal

)
= PSFreal. Using the notations above, the objective of the RSTLS problem

is to find the following: (i) a reconstructed image z from the blurred image b such that

z ≈ zreal, where z is the output of Algorithm 3 or 4, and (ii) a reconstructed blurring

operator PSF (u) of the observed PSFobs such that PSF (u) ≈ PSFreal, where u is the output

of Algorithm 3 or 4.

In the previous sub-section, we pointed out that both algorithms depend on Lk, the

Lipschitz constant of the partial function z 7→ ∇zG̃
(
z,uk

)
, at each outer iteration k ≥ 0.

We recall that the PSF used in this paper has periodic boundary conditions, which results

with a PSF operator that is a Block Circulant with Circulant Blocks (BCCB) matrix (see

[21, Chapter 4] for exact definition, examples and relation to PSFs of BCCB matrices in the

context of image processing). One property of BCCB matrices is that its eigenvalues can be

computed efficiently. Therefore, in this paper we use the tight Lipschitz constant

Lk = 2λmax

( d0∑
i=1

ukiAi

)T ( d0∑
i=1

ukiAi

) . (32)
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We refer the reader to [21, Section 4.2.1] for information on how to efficiently calculate the

above constant for BCCB matrices.

5.4 Description of the Experiments

We ran the SPA and NAM-AG algorithms on a blurred version of the 256 × 256 pixels

cameraman test image taken from the MATLAB Image Processing Toolbox available in

[1]. Following Sub-section 4.2.1, the number of inner AG iterations is given by the formula

jk = s+ 2bk/rc − 1. In the experiments to follow, we set r = 10 and s ∈ {1, 10, 50, 100, 200},

which results in five different variants of NAM-AG, each differs by the number of inner AG

iterations. In order to blur the original image, we used a Gaussian PSFreal of size 5× 5 with

a standard deviation of γ = 2.

We performed R = 100 Monte Carlo trails, where in each trial we drew a different

observed image b and a different PSFobs, i.e., we drew different µ and η according to (30)

and (31), respectively. See Figure 1(a) and 1(b) for both the original image and one of the

100 blurred images.

(a) Original image (b) One of the 100 blurred and noisy images

Figure 1: The cameraman image used in the experiments.

In all experiments we set λ = 0.02, σw = 10−4 and σe = 10−3. In each Monte Carlo trail,
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the starting point of all methods is set to be z−1 = b (the observed blurred and noisy image)

and u0 = 0d0 .

We let SPA and the five different variants of NAM-AG run for N = 25, 000 total iter-

ations. For all the methods, the total iteration counter also counts inner iterations. Recall

that in the inner iterations we only update the z variable. Therefore, for N = 25, 000 total

iterations of SPA, each variable z and u is updated 25, 000 times. This is not the case for the

NAM-AG variants, which relatively to OIA methods update less the u variable for the same

number of inner iterations. For example, if j0 = 100 and j1 = 200, then the total iteration

counter after the first two outer iterations displays 300 out of N , which means that the z

variable was updated 300 times, while the u variable was updated only twice.

We compare all of the above methods using three different measures for a total number

of iterations of N = 25, 000:

1. The function value Fj of Problem (27) averaged over all Monte Carlo trials at each

iteration 1 ≤ j ≤ N , calculated by

Fj =
1

R

R∑
t=1

F
(
zjt ,u

j
t

)
,

where zjt and ujt are the j-th iterate out of N , in the t-th trail out of R. Since u can

be updated less than z, then by ujt we mean the last update of u. Since the optimal

function value is bounded from below by 0, then a value of Fj closer to 0 is an indication

for each method’s performance on solving the Model (27).

2. The deviation of the function value F
(
zjt ,u

j
t

)
from the function value at (zcon

t ,ucon
t )

averaged over all Monte Carlo trials at each iteration 1 ≤ j ≤ N , calculated by

Devcon
j =

1

R

R∑
t=1

(
F
(
zjt ,u

j
t

)
− F (zcon

t ,ucon
t )
)
.

Notice that the RSTLS problem is non-convex and there is no guaranty that the real

image zreal is a global solution of the problem. For each Monte Carlo trial and for

each of the above methods, the point zcon
t was obtained by running the corresponding

method for N = 50, 000 total iterations, and then setting the output image as zcon
t
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(i.e., zcon
t = zNt ). We point out that since all involved methods are globally convergent,

then the convergence point is uniquely defined for each method. Since the generated

sequence of function values is non-increasing, then Devcon
j closer to 0 is an indication

on how close the method is to its value at the point (zcon
t ,ucon

t ).

3. The average convergence gap over the Monte Carlo trials at each iteration 1 ≤ j ≤ N

with respect to the point of convergence zcon
t of each method in trail t, calculated by

ConGapj =
1

R

R∑
t=1

∥∥zjt − zcon
t

∥∥
zcon
t

.

We use this measure as an indication on how close the method is to its convergence

point zcon
t .

5.5 Results

All experiments were ran on an Intel(R) Core(TM) i7-8565 CPU @ 1.80GHz 1.99GHz with

40.0GB RAM, Windows 10 Pro 64-bit using MATLAB 2020a.

In Figure 2, we compare the average function values at each iteration of SPA and all

NAM-AG variants. We see that the OIA method SPA and NAM-AG with s = 1 (which is

OIA at the first r = 10 outer iterations) converge to a point with a higher function value

relatively to the nested NAM-AG variants with s ∈ {10, 50, 100, 200}. Moreover, while there

is almost no decrease in function values of SPA and NAM-AG with s = 1 after roughly 5, 000

total iterations, the other nested NAM-AG variants continue to decrease. We therefore see

that there is a clear benefit in using nested algorithms compared to OIA algorithms.

In Figure 3, we compare the average deviation of the function value at each iteration

from the output’s value (obtained after 50, 000 total iterations). It is clear that the nested

methods NAM-AG with s ∈ {10, 50, 100, 200} get closer to the value of their output in much

less iterations. Combining this result with Figure 2, we conclude that these four methods

require less iterations to reach a better solution, relatively to SPA and NAM-AG with s = 1.

In Figure 4, we compare the average relative error of the iterates zjt from zcon
t obtained

by running 50, 000 total iterations. We see that SPA and the four nested methods NAM-AG
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Figure 2: Average function value at each iteration 1 ≤ j ≤ N for N = 25, 000 over R = 100 Monte

Carlo trials, in a logarithmic scale. For all NAM-AG variants we set r = 10.

Figure 3: Average deviation of the function value from the value obtained after 50, 000 total

iterations, at each iteration 1 ≤ j ≤ N for N = 25, 000 over R = 100 Monte Carlo trials, in a

logarithmic scale. For all NAM-AG variants we set r = 10.
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Figure 4: Average relative error from zcont at each iteration 1 ≤ j ≤ N for N = 25, 000 over R = 100

Monte Carlo trials, in a linear scale. For all NAM-AG variants we set r = 10.

with s ∈ {10, 50, 100, 200} approach the point of convergence more rapidly. Combining this

result with previous results, we derive that these four nested methods reach a good solution

at the beginning of the methods’ run, while SPA reaches its inaccurate solution with the

same amount of iterations. We also see that NAM-AG with s = 1 requires more iterations

to reach a worse relative error.

Last, in Figure 5, we provide the images obtained by each of the methods after 2, 10, 100,

1000 and 3000 total iterations for one of the Monte Carlo trials. We see that the four nested

methods NAM-AG with s ∈ {10, 50, 100, 200} reach a sharper image within this range of

inner iterations, while SPA and NAM-AG with s = 1 does not.

6 Conclusion

In this paper, we provided a general recipe which serves as a base for proving global con-

vergence of algorithms that tackle non-convex optimization problems. We have generalized

the methodology of [11] to allow errors in the conditions. We utilized the new methodology
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Figure 5: Images obtained by the methods at selected iterations. From top to bottom: SPA and

NAM-AG with s ∈ {1, 10, 50, 100, 200}. From left to right: iteration 2, 10, 100, 1000 and 3000.
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in order to establish global convergence of Nested Alternating Minimization methods that

are incorporated with a Nested Friendly Algorithm. In addition, we also showed that it is

enough to verify block-wise properties in order to establish global convergence of the whole

sequence. To the best of our knowledge, this is the first result that proves global convergence

of general nested algorithms, which use non-descent inner algorithms, in the non-convex set-

ting. Moreover, to the best of our knowledge, this is the first methodology which can be

used to derive global convergence of methods which are not necessarily sufficient decrease

methods.

Appendix

We give here the proof of Lemma 6.

Proof. We established in the proof of Proposition 2 that the sequence
{
F
(
zk,uk

)}
k≥0 is

non-increasing. It is easy to verify that the objective function F (z,u) in (27) is coercive

for f (z) = λ ‖z‖2. Therefore, F has bounded level sets, and the sequence
{(

zk,uk
)}

k≥0 is

bounded since it is contained in the level set of F at level F (z−1,u0) ∈ R+.

Now, as we already mentioned, it is easy to check that the partial function z 7→ F (z,u),

for F of Problem (27), is strongly convex for any u ∈ Rd0 . In addition, the Hessian matrix

of the partial function z 7→ F (z,u) is given by

∇2
zF (z,u) = 2λσ2

wId×d + 2

(
d0∑
i=1

uiAi

)T ( d0∑
i=1

uiAi

)
.

Therefore, we derive that σ̄ = 2λσ2
w is a positive lower bound on the strong convexity

parameter of the partial function z 7→ F (z,u) for any u ∈ Rd0 . Additionally, one can verify

that the partial gradient ∇zG (z,u) is Lipschitz continuous with a constant

L (u) = 2λσ2
w + 2

∥∥∥∥∥
d0∑
i=1

uiAi

∥∥∥∥∥
2

. (33)

From the continuity of L (u) it follows that there exists some L̄ ≥ L (u) over any compact

subset of Rd0 . This implies that Assumption 3 holds. Last, since G (z,u) is a quadratic

polynomial function we easily derive that Assumption 1 is also satisfied for some L > 0.
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